Boolean Algebra & Minimization-1

By Priya Upadhyay|Updated : September 13th, 2021

Boolean algebra is an algebraic structure defined on a set of elements together with two binary operators (+) and (.)

  • variable is a symbol, for example, Α, used to represent a logical quantity, whose value can be 0 or 1.
  • The complement of a variable is the inverse of a variable and is represented by an overbar, for example ' .'
  • literal is a variable or the complement of a variable.

Boolean algebra is an algebraic structure defined on a set of elements together with two binary operators (+) and (.)

  • variable is a symbol, for example, Α, used to represent a logical quantity, whose value can be 0 or 1.
  • The complement of a variable is the inverse of a variable and is represented by an overbar, for example ' .'
  • literal is a variable or the complement of a variable.

Closure: For any x and y in the alphabet A, x + y and x.y are also in A.

Boolean Value

The value of the Boolean variable can be either 1 or 0. The base for this number system is 2.

Boolean Operators

There are four Boolean operators

  1. AND (∙) operator = The output will be like Y= (A.B)
AY
000
010
100
111
  1. OR (+) operator=  The output will be like Y= (A + B)
AY
000
011
101
111
  1. NOT (A') operator= The output will be like Y= Complement of A
AY
01
10
  1. XOR () operator = The output will be like
ABY
000
011
101
110

It is also known as inequality checking gate.

AY
001
100
010
111

It is also known as equality checking gate.

Operator Precedence

The operator for evaluating Boolean expression is

  1. Parenthesis
  2. NOT
  3. AND
  4. OR.

Duality

If an expression contains only the operations AND, OR and NOT. Then, the dual of that expression is obtained by replacing each AND by OR, each OR by AND, all occurrences of 1 by 0, and all occurrences of 0 by 1. Principle of duality is useful in determining the complement of a function.

 Example:Logic expression: (x y' z) + (x y z' ) + (y z) + 0 ,

              Duality of above logic expression is: (x + y' + z) • (x + y + z' ) • (y + z) • 1

Literals remain same while calculating the above expression.

Boolean Function

  • Any Boolean functions can be formed from binary variables and the Boolean operators •, +, and ' (for AND, OR, and NOT, respectively).
  • For a given value of variable, the function can take only one value either 0 or 1.
  • A Boolean function can be shown by a truth table. To show a function in a truth table we need a list of the 2n combinations of 1's and 0's of the n binary variables and a column showing the combinations for which the function is equal to 1 or 0. So, the table will have 2n rows and columns for each input variable and tile final output.
  • A function can be specified or represented in any of the following ways:
    • A truth table
    • A circuit
    • A Boolean expression
    • SOP (Sum Of Products)
    • POS (Product of Sums)
    • Canonical SOP
    • Canonical POS
  • Important Boolean operations over Boolean values:

image004

Table of Some Basic Theorems

image005

Important Theorems used in Simplification

  • NOT-Operation theorem: image006
  • AND-Operation theorem: image007
  • OR-Operation theorem: image008
  • Distribution theorem: A + BC = A (A + B)(A + C)

Note: image009

  • Demorgan's Theorem: image010 image011
  • Transposition Theorem: (A + B) (A + C) = A + BC
  • Consensus Theorem: This theorem is used to eliminate redundant term. It is applicable only when if a boolean function contains three variables. Each variable used two times. Only one variable is complemented or uncomplemented. Then the related terms so that complemented or uncomplemented variable is the answer.

1

Universal Logic Gate:  A gate is considered as universal logic gate if it is capable to obtain all the operations just by using that single gate. The two universal logic agtes are NAND, NOR.

NAND: AND followed by NOT

           it is represented by (↑).

           The output will be like   Y= 

The truth table will be

AY
001
101
011
110

NOR:OR followed BY NOT

       It is represented by (↓).

 

The truth table will be

ABY
001
010
100
110

No of Gate Required:

OperationsNAND Gates NeededNOR Gates Needed
NOT11
OR32
AND23
XOR45
ExNOR54

You can follow the detailed champion study plan for GATE CS 2021 from the following link:

Detailed GATE CSE 2021 Champion Study Plan

Candidates can also practice 110+ Mock tests for exams like GATE, NIELIT with Test Series check the following link:

Click Here to Avail GATE CSE Test Series!(100+ Mock Tests)

Get unlimited access to 21+ structured Live Courses all 112+ mock tests with Online Classroom Program for GATE CS & PSU Exams:

Click here to avail Online Classroom Program for Computer Science Engineering

Thanks

Comments

write a comment

Follow us for latest updates