Find the value of ∫ In (x2 ) dx
We have to find the value of ∫ In (x2 ) dx. Let x2 = u
⇒ x = √u
⇒ dx = 1/(2√u) du
On putting the value of x and dx in the given integral
∫ In (x2 ) = ∫ In u . 1/(2√u) du
= ½ ∫ In u . 1/√u du
= ½ [ln u . ∫1/ √u du - ∫1/u . ∫ 1/ √u du]
= ½ [ln u . 2√u - ∫1/u . 2 √u du]
= ½ [2√u ln u - 4√u] + c
Now, On putting u = x2 , we get
= ½ [2x ln x2 - 4c] + c
= x ln x2 - 2x + c
= 2x ln x - 2x + c
Summary:
What is ∫ In (x2 ) dx equal to? (A) 2x In (x) – 2x + c (B) 2/x + c (C) 2x ln (x) + c (D) 2 ln(x)/x - 2x + c
∫ In (x2 ) dx equal to 2x ln x - 2x + c.
Comments
write a comment