What is ∫ In (x2 ) dx equal to?

By Raj Vimal|Updated : September 28th, 2022

(I) 2x In (x) – 2x + c

(II) 2/x + c

(II) 2x ln (x) + c

(IV) 2 ln(x)/x - 2x + c

∫ In (x2 ) dx equal to 2x ln x - 2x + c

∫u . v dx = u . ∫v dx - ∫ du/dx . ∫v dx

ILATE Rule: I - Inverse function, L - Logarithmic function, A- Algebraic function, T - Trigonometric function & E-Exponential function.

Find the value of ∫ In (x2 ) dx

We have to find the value of ∫ In (x2 ) dx. Let x2 = u

⇒ x = √u

⇒ dx = 1/(2√u) du

On putting the value of x and dx in the given integral

∫ In (x2 ) = ∫ In u . 1/(2√u) du

= ½ ∫ In u . 1/√u du

= ½ [ln u . ∫1/ √u du - ∫1/u . ∫ 1/ √u du]

= ½ [ln u . 2√u - ∫1/u . 2 √u du]

= ½ [2√u ln u - 4√u] + c

Now, On putting u = x2 , we get

= ½ [2x ln x2 - 4c] + c

= x ln x2 - 2x + c

= 2x ln x - 2x + c

Summary:

What is ∫ In (x2 ) dx equal to? (A) 2x In (x) – 2x + c (B) 2/x + c (C) 2x ln (x) + c (D) 2 ln(x)/x - 2x + c

∫ In (x2 ) dx equal to 2x ln x - 2x + c.

Comments

write a comment

Follow us for latest updates