Network Equations Using Laplace Transform

By Mallesham Devasane|Updated : December 28th, 2016

Laplace Transform: It is an integral transformation of a function f(t) from the time domain into the complex frequency domain F(s).

Laplace transform can be used to transform the time domain circuits into S domain circuits to simplify the solution of integral differential equations to the manipulation of a set of algebraic equations.

If f(t) is the time domain function then its Laplace transform is denoted by F(s) and is defined by the equation.

1

where s is complex frequency variable.

s=σ + jω; where σ is attenuation constant (damping factor, and ω is angular frequency.

time domain

Laplace domain

Circuit Analysis using Laplace and Inverse Laplace transform

laplace analysis

Properties of Laplace Transform

Linearity
  • t-domain: L[K1f1(t) + K2f2(t)]
  • s-domain: [K1f1(s) + K2f2(s)]
Differentiation
  • t-domain: 
image002
  • s-domain: snf(s) – sn–1f(0) – sn–2f′(0) – sn–3f′(0)…..
 Integration:
  • t-domain:

 image003

  • s-domain:

 image004

Scaling
  • t-domain: L[f(at)]
  • s-domain:

 image005

Time shifting
  • t-domain: L[f(t – a)]
  • s-domain: e–as f(s)
Shifting in s-domain
  • t-domain: L[e–at f(t)]
  • s-domain: f(s + a)
Convolution
  • t-domain: L[f1(t) × f2(t)]
  • s-domain: f1(s) ∙ f2(s)
Initial value theorem
  • t-domain: 
image006
  • s-domain:

 image007

Final value theorem
  • t-domain: 
image008
  • s-domain:

 image009

Laplace Transform of Periodic Function

image010

where, f1(t) = Function over one time period, and f(t) = Periodic function with time period T.

Functions & Laplace transform
  • Constant function (1) or Unit step function (u(t)) : Laplace Transform is 1/s 
  • Unit step function shifted / delayed by T ( U(t – T) ): Laplace Transform is (e–sT)/s
  • Unit impulse ( δ(t) ): Laplace Transform is 1
  • Exponential function ( eat ): Laplace Transform: 1/(s – a)
  • Exponential function (e–at ): Laplace Transform is 1/(s + a)
  • Sine function ( sin ωt ): Laplace Transform is ω/(s2 + ω2)
  • Cosine function ( cos ωt ): Laplace Transform is s/(s2 + ω2)
  • Damped Sine  ( e–at sin ωt ): Laplace Transform is ω/((s+a)2 + ω2)
  • Damped Cosine  ( e–at sin ωt ): Laplace Transform is (s+a) /((s+a)2 + ω2)
  • Ramp function ( t(n = 1, 2, 3,….) ): Laplace Transform is 
image012
  • Unit ramp function ( t ): Laplace Transform is 1/s2
  • Damped sine function ( e–at sin ωt ): Laplace Transform is 
image013
  • Damped cosine function ( e–at cos ωt ): Laplace Transform is

 image014

  • Damped cosine function ( e–at tn ): Laplace Transform is

 image015

  • Differentiation theorem (image016 ) Laplace Transform is sF(s) – f(0 –)
  • Integration theorem (image017) Laplace Transform is 
image018
  • Hyperbolic sine function ( sin h ωt ): Laplace Transform
image019
  • Hyperbolic cosine function ( cos h ωt ): Laplace Transform is 
image020
  • Damped hyperbolic sine function ( e–at sin h ωt ): Laplace Transform is

 image021

  • Damped hyperbolic cosine function ( e–at cos h ωt ): Laplace Transform is

 image022

  • Initial value theorem: Laplace Transform is

 image023

  • Final value theorem: Laplace Transform is

 image024

  • Shifting theorem f(t ± a): Laplace Transform is e±as F(s)

Laplace Transform of a Periodic Function

f(t + nt) = f(t), where n is positive or negative integer.

image026

where, F1(s) is the Laplace transform of the first cycle of the periodic function.

image027

 

Analysis of Basic elements (R,L and C): Let I = I(s) be the Laplace transform of i= i (t).

RLC

Capacitor: 

Capacitance Inductor:

Inductor

Resistor:

Resistor

Comments

write a comment

Follow us for latest updates