Differential Equations -1 Study Notes for Civil Engineering

By Sachin Singh|Updated : November 16th, 2017

 

1.  FIRST-ORDER DIFFERENTIAL EQUATIONS

1.1 Definitions

1.1.1      Order of a differential equation


Order of a differential equation is defined as the order of the highest order derivative of the dependent variable with respect to the independent variable involved in the given differential equation. Consider the following differential equations: 
order of a differential equation

The first, second and third equations  involve the highest derivative of first, second and third order respectively. Therefore, the order of these equations are 1, 2 and 3 respectively.

 

1.1.2        Degree of a differential equation 


To study the degree of a differential equation, the key point is that the differential equation must be a polynomial equation in derivatives, i.e., y′, y″, y″′ etc. Consider the following differential equations: 
degree of a differential equation

We observe that first equation is a polynomial equation in y″′, y″ and y′ with degree 1,  second equation  is a polynomial equation in y′ (not a polynomial in y though) with degree of 2. Degree of such differential equations can be defined. But third equation is not a polynomial equation in y′ and degree of such a differential equation can not be defined. 

By the degree of a differential equation, when it is a polynomial equation in derivatives, we mean the highest power (positive integral index) of the highest order derivative involved in the given differential equation. 

NOTE: Order and degree (if defined) of a differential equation are always positive integers. 

Example Find the order and degree, if defined, of each of the following differential equations: 
order and degree of a differential equation 
Solution 
(i) The highest order derivative present in the differential equation is 
order of a differential equation, so its order is one. It is a polynomial equation in y′ and the highest power raised to order of a differential equation is one, so its degree is one. 
(ii) The highest order derivative present in the given differential equation is 
order and degree of a differential equation, so its order is two. It is a polynomial equation in order and degree of a differential equationand order and degree of a differential equationand the highest power raised to order and degree of a differential equation is one, so its degree is one. 

(iii) The highest order derivative present in the differential equation is y′′′ , so its order is three. The given differential equation is not a polynomial equation in its derivatives and so its degree is not defined.

1.2     Separable Equations

1.2.1      Separable differential equation:

byjusexamprep

Example:

byjusexamprep

RC circuits: Charging: byjusexamprep

Discharging: byjusexamprep

1.2.2      Linear Differential Equations:

byjusexamprep,

integrating factor: byjusexamprep

Example:

byjusexamprepbyjusexamprep, byjusexamprep.

1.2.3         Exact Differential Equations

· Potential function: For byjusexamprep, we can find a byjusexamprep such that byjusexamprep and byjusexamprep; byjusexamprep is the potential function; byjusexamprep is exact.

· Exact differential equation: a potential function exists; general solution: byjusexamprep.

  Example: byjusexamprep.

· Theorem: Test for exactness: byjusexamprep

  Example: ,byjusexamprepbyjusexamprep.

1.2.4         Integrating Factors

·  Integrating factor: byjusexamprep such that byjusexamprep is exact.

Example: byjusexamprep.

·  How to find integrating factor: byjusexamprep

Example: byjusexamprep.

·  Separable equations and integrating factors: byjusexamprep

·  Linear equations and integrating factors: byjusexamprep

1.2.5         Homogeneous and Bernoulli Equations

·  Homogeneous differential equation: byjusexamprep; let byjusexamprep separable.

Example: byjusexamprep.

· Bernoulli equation: byjusexamprep; byjusexamprep linear; byjusexamprep separable; otherwise, let byjusexampreplinear

Example: byjusexamprep.

2      HIGHER ORDER LINEAR ODES

2.1        Homogeneous Linear ODEs

An linear ordinary differential equation of order n is said to be homogeneous if it is of the form

a_n(x)y^((n))+a_(n-1)(x)y^((n-1))+...+a_1(x)y^'+a_0(x)y=0,

(1)

where y^'=dy/dx, i.e., if all the terms are proportional to a derivative of y (or y itself) and there is no term that contains a function of x alone.

However, there is also another entirely different meaning for a first-order ordinary differential equation. Such an equation is said to be homogeneous if it can be written in the form

(dy)/(dx)=F(y/x).

 

Points to Remember

1. byjusexamprep, a nth order ODE if the nth derivative byjusexamprep of the unknown function byjusexamprep is the highest occurring derivative.

2. Linear ODE: byjusexamprep.

3. Homogeneous linear ODE: byjusexamprep.

Theorem: Fundamental Theorem for the Homogeneous Linear ODE: For a homogeneous linear ODE, sums and constant multiples of solutions on some open interval I are again solutions on I. (This does not hold for a nonhomogeneous or nonlinear ODE!).

General solution: byjusexamprep, where byjusexamprepis a basis (or fundamental system) of solutions on I; that is, these solutions are linearly independent on I.

4. Linear independence and dependence: n functions byjusexamprep are called linearly independent on some interval I where they are defined if the equation byjusexamprep on I implies that all byjusexamprep are zero. These functions are called linearly dependent on I if this equation also holds on I for some byjusexamprep not all zero.

Example: byjusexamprep.  Sol.: byjusexamprep.

Theorem: Let the homogeneous linear ODE have continuous coefficients byjusexamprep, byjusexamprep on an open interval I. Then n solutions byjusexamprep on I are linearly dependent on I if and only if their Wronskian is zero for some byjusexamprep in I. Furthermore, if W is zero for byjusexamprep, then W is identically zero on I. Hence if there is an byjusexamprep in I at which W is not zero, then byjusexamprep are linearly independent on I, so that they form a basis of solutions of the homogeneous linear ODE on I.

Wronskian: byjusexamprep

 

5. Initial value problem: An ODE with n initial conditions byjusexamprep, byjusexamprep, byjusexamprep.

2.2        Homogeneous Linear ODEs with Constant Coefficients

1. byjusexamprep: Substituting byjusexamprep, we obtain the characteristic equation byjusexamprep.

(i) Distinct real roots: The general solution is byjusexamprep

Example: byjusexamprep.  Sol.: byjusexamprep.

(ii) Simple complex roots: byjusexamprep, byjusexamprep, byjusexamprep.

Example: byjusexamprep.  Sol.: byjusexamprep.

(iii) Multiple real roots: If byjusexamprep is a real root of order m, then m corresponding linearly independent solutions are: byjusexamprep, byjusexamprep, byjusexamprep, byjusexamprep.

Example: byjusexamprep.  Sol.: byjusexamprep.

(iv) Multiple complex roots: If byjusexamprep are complex double roots, the corresponding linearly independent solutions are:

byjusexamprep, byjusexamprep, byjusexamprep, byjusexamprep.

2. Convert the higher-order differential equation to a system of first-order equations.

Example: byjusexamprep.

2.3        Nonhomogeneous Linear ODEs

1. byjusexamprep, the general solution is of the form: byjusexamprep, where byjusexamprep is the homogeneous solution and byjusexamprep is a particular solution.

2. Method of undermined coefficients

Example: byjusexamprep

Sol.: byjusexamprep.

3. Method of variation of parameters:

byjusexamprep,

where byjusexamprep, byjusexamprep.

Example: byjusexamprep

Sol.: byjusexamprep.

Thanks

Team Gradeup

Download Gradeup, Best gate exam app for Preparation

Comments

write a comment

Follow us for latest updates