बहुलक का सूत्र क्या होता है?
By BYJU'S Exam Prep
Updated on: November 14th, 2023
बहुलक का सूत्र l+h (fm-f1/(fm-f1)(fm-f2) है। जब किसी एक संख्या बारम्बारता किसी समूह में अधिक हो तो उस संख्या को बहुलक या बहुपद कहते हैं। आसन शब्दों में कहें तो कोई एक नम्बर या बिंदु की आवृति किसी डाटा या सूचनाओं के समूह में आये तो वह बहुपद कलता है। उदहारण के लिए – 1,2,3,4,5,6,4,3,4,7,0,4,5,4 में बहुलक 4 है, क्योंकि इसकी बारम्बारता अधिक है।
आँकड़ों में, मोड सूत्र का उपयोग डेटा के दिए गए सेट के मोड या मोडल मान की गणना करने के लिए किया जाता है। इसे उस मान के रूप में परिभाषित किया जाता है जो किसी दिए गए सेट में बार-बार आ रहा है। अर्थात किसी डेटा सेट में मान या संख्या, जिसकी बारंबारता अधिक होती है या अधिक बार प्रकट होती है, बहुलक या मोडल मान कहलाती है। मध्यमान और माध्यिका के अलावा बहुलक केंद्रीय प्रवृत्ति के तीन मापों में से एक है।
Table of content
बहुलक का सूत्र (Mode Formula)
केंद्रीय प्रवृत्ति के उपायों का एक मान बहुलक है। यह संख्या हमें एक सामान्य धारणा देती है कि कौन से डेटा सेट तत्वों के होने की सबसे अधिक संभावना है। बहुलक के मूल्य के कई व्यावहारिक अनुप्रयोग हैं और यह महत्वपूर्ण है। ऐसी कई स्थितियाँ हैं जहाँ औसत (या माध्य) का उपयोग करना प्रभावी नहीं होगा।
किसी डेटासेट में सबसे अधिक बार दिखाई देने वाले मान या संख्या को मोड कहा जाता है। हमें कभी-कभी उस मान की पहचान करने की आवश्यकता हो सकती है जो डेटासेट में अधिक बार दिखाई देता है। इन स्थितियों में, हम डेटा के दिए गए संग्रह के लिए बहुलक निर्धारित करते हैं। डेटा के एक निश्चित सेट के लिए, एक मोडल मान मौजूद हो भी सकता है और नहीं भी।
बहुलक = L+h (fm-f1)/(fm-f1)(fm-f2)
- यहाँ L = मोडल क्लास की निचली सीमा है।
- h = वर्ग अंतराल का आकार है।
- fm = मोडल वर्ग की आवृत्ति है।
- f1 = मोडल क्लास से पहले वाले वर्ग की बारंबारता है।
- f2 = मोडल क्लास के बाद वाले वर्ग की बारंबारता है।
Summary:
बहुलक का सूत्र क्या होता है?
l+h (fm-f1/(fm-f1)(fm-f2)) बहुपद या बहुलक का सूत्र (Mode Formula) होता है। जिसका उपयोग गणित के सांख्यिकी में किया जाता है। माध्य और/या माध्यिका आवश्यक रूप से मोड मान के समान नहीं हैं। बार-बार संख्याओं के बिना, डेटा के लिए कोई बहुलक नहीं हो सकता। बिना किसी संख्या के डेटा सेट के लिए, बहुलक भी निर्धारित किया जा सकता है। अवर्गीकृत आँकड़ों के लिए बहुलक अवलोकन द्वारा ज्ञात किया जा सकता है, जबकि समूहीकृत आँकड़ों के लिए बहुलक सूत्र का प्रयोग करके ज्ञात किया जा सकता है।
Related Questions: