Gauss' Law & its Application

By Dhruv Kumar|Updated : November 6th, 2020

Gauss’s law

byjusexamprep

Gauss’s law states that the net flux of an electric field in a closed surface is directly proportional to the enclosed electric charge. It is one of the four equations of Maxwell’s laws of electromagnetism. It was initially formulated by Carl Friedrich Gauss in the year 1835 and relates the electric fields at the points on a closed surface and the net charge enclosed by that surface.

The electric flux is defined as the electric field passing through a given area multiplied by the area of the surface in a plane perpendicular to the field. Yet another statement of Gauss’s law states that the net flux of a given electric field through a given surface, divided by the enclosed charge should be equal to a constant.

Usually, a positive electric charge is supposed to generate a positive electric field. The law was released in 1867 as part of a collection of work by the famous German mathematician, Carl Friedrich Gauss.

 

Test Series's first Anniversary Sale

Get a Flat 30% Off with additional 1 YEAR extra validity on 2 Year Test Seriess

Lucky Winners to get Mobile phones, Smart bands and Test Seriess.

 Unlock Unlimited Access to 150+ Mocks for

 All Defence Exams

Gauss Law Equation

Let us now study Gauss’s law through an integral equation. Gauss’s law in integral form is given below:

∫E⋅dA=Q/ε0      ….. (1)

Where,

  • Eis the electric field vector
  • Q is the enclosed electric charge
  • ε0is the electric permittivity of free space
  • Ais the outward pointing normal area vector

Flux is a measure of the strength of a field passing through a surface. Electric flux is defined as

Φ=∫E⋅dA    …. (2)

We can understand the electric field as flux density. Gauss’s law implies that the net electric flux through any given closed surface is zero unless the volume bounded by that surface contains a net charge.

Gauss’s law for electric fields is most easily understood by neglecting electric displacement (d). In matters, the dielectric permittivity may not be equal to the permittivity of free-space (i.e. ε≠ε0). In the matter, the density of electric charges can be separated into a “free” charge density (ρf) and a “bounded” charge density (ρb), such that:

Ρ = ρf + ρb

byjusexamprep

More from us.

Free Classes for NDA I 2021 Exam, Click Here

Attempt Unlimited Tests for NDA I 2021 Exam, Click Here

Solve Daily Quizzes for NDA NA Exams

View Year-wise Papers of all NDA  Exams

The Most Comprehensive Exam Prep App.

Thanks

Comments

write a comment

Follow us for latest updates