# Environmental Engineering : Water Demand & sources of water

By Aditya Kumar|Updated : September 6th, 2021

Gradeup Brings you 60 Days Study Plan for the preparation of DFCCIL Civil Engineering. This Study Plan will be free and will be very beneficial for the students preparing and targeting the DFCCIL Exam. Save this article as it will get updated on a daily basis as scheduled.

## Water Demand

Fire Demand

Rate of fire demand is sometimes treated as a function of population and is worked out on the basis of empirical formulas:

(i) As per GO Fire Demand

=100(P)1/2

(ii) Kuichling’s Formula Where Q = Amount of water required in liters/minute.

P = Population in thousand.

(iii) Freeman Formula (iv) National Board of Fire Under Writers Formula

(a) For a central congested high valued city

(i) Where population < 200000 (ii) where population > 200000

Q = 54600 lit/minute for first fire

and Q=9100 to 36,400 lit/minute for a second fire.

(b) For a residential city.

(i) Small or low building,

Q=2,200 lit/minutes.

(ii) Larger or higher buildings,

Q=4500 lit/minute.

(iii) High value residences, apartments, tenements

Q=7650 to 13,500 lit/minute.

(iv) Three storeyed buildings in density built-up sections,

Q=27000 lit/minute.

(iv) Buston’s Formula The probability of occurrence of a fire, which, in turn, depends upon the type of the city served, has been taken into consideration in developing the above formula on the basis of actual water consumption in fire fighting for Jabalpur city of India. The formula is given as Where,

R = Recurrence interval of fire i.e., period of occurrence of fire in years, which will be different for residential, commercial, and industrial cities.

Per Capita Demand (q) Assessment of Normal Variation

(i) (ii) (iii) (iv) (v) (vi) Population forecasting Methods

(i) Arithmetic increase method Where, Prospective or forecasted population after n decades from the present (i.e., last known census) Population at present (i.e., last known census) Number of decades between now & future. Average (arithmetic mean) of population increases in the known decades.

(ii) Geometric Increase Method where, Initial population. Future population after ‘n’ decades. Assumed growth rate (%). where, Final known population Initial known population Number of decades (period) between and  (iii) Incremental Increases Method Where, Average increase of population of known decades Average of incremental increases of the known decades.

(iv) Decreasing rate of growth method

Since the rate of increase in the population goes on reducing, as the cities reach towards saturation, a method which makes use of the decrease in the percentage increase, in many times used, and gives quite rational results. In this method, the average decrease in the percentage increase is worked out, and is then subtracted from the latest percentage increase for each successive decade. This method is, however, applicable only in cases, where the rate of growth shows a downward trend.

(v) Logistic Curve Method

(a) Where, Population of the start point. Saturation population Population at any time t from the origin. Constant.

(b) (c) (d) (e) You can avail of Gradeup Super for all AE & JE Exams:

## Gradeup Super for AE & JE Exams (12+ Structured LIVE Courses and 160+ Mock Tests)

You can avail of Gradeup Green Card specially designed for all AE & JE Exams:

## Gradeup Green Card AE & JE (160+ Mock Tests)

Thanks,

Sahi Prep Hai to Life Set Hai  GradeStack Learning Pvt. Ltd.Windsor IT Park, Tower - A, 2nd Floor, Sector 125, Noida, Uttar Pradesh 201303 help@byjusexamprep.com