Determinants

By Dhruv Kumar|Updated : February 25th, 2023

Here are the study notes of Determinants important for NDA, Air Force X & Y and other Defence exams.                                                                                                                                                                                                                                                                                                                              

A determinant of order two is written as byjusexamprep  where and the value of this determinant will be byjusexamprep.

In the same manner determinant of order three and four 

  byjusexamprep

Horizontal lines are called rows and vertical lines are called columns and in any determinant are called diagonals elements.

All the elements in the determinant byjusexamprep  are complex number.

Note** - All the real number are also a complex number.

If all the elements in the determinant is a real number then that is called the real determinant.

If at least one number is Imaginary number in the determinant then that is known as the imaginary determinant.

Minors:-  If we delete row and column passing through the element  byjusexamprep, the determinant thus obtain is called minor and is usually define by byjusexamprep .

Like we have determinant 

byjusexamprep, then the minor of byjusexamprep i.e.

byjusexamprep Note that 1st column and 2nd row are deleted.

Cofactors:- byjusexamprep is called cofactor of byjusexamprep  and it is denoted by byjusexamprep .

Properties of the determinants 

1. The value of determinant does not get change when we change the row into column and column into a row. The determinant obtain by interchange by row and column is called transpose of the determinant and it is denoted by byjusexamprep  .

Thus by the above properties  byjusexamprep

byjusexamprep

2. If all the element of row or column is zero then the , then determinant is zero .

3. When we change any two  row or any two-column of the determinant then the sign of determinant will get change.

If byjusexamprep row gets interchange then byjusexamprep

4. If all the elements of the row or column get to multiply by any constant number then value of determinant also gets multiplied by that constant.

If byjusexamprep condition byjusexamprep  .

5. If all the element of any row or column are proportional or identical to other row or column then determinant must be zero.

byjusexamprep

Example  

6. If each element of any row or column is sum of two numbers, the determinant can be expressed as the sum of determinants of the same order.

Example  byjusexamprep

It should be remain same in the both determinant of right hand side.

We can also express this in three number sum determinants.

7. If any determinant byjusexamprep become zero on putting x=a then (x – a) is a factor of byjusexamprep.

8. Determinant which all elements are zero except diagonals elements, is equal to the product of diagonal element.

Example:- byjusexamprep  and also byjusexamprep is called unit determinant and its value id 1.

9. If all the element of a determinant below the diagonal or above the diagonal are zero , then that is called triangular determinant.

Example :byjusexamprep  

10. Skew-Symmetric determinants:- if the determinant then the determinant is called skew-symmetric determinants.

byjusexamprep

The value of odd order Skew-Symmetric determinants is always zero.

Example  byjusexamprep

Product of two Determinants:- 

 Letbyjusexamprep then 

 byjusexamprep

Multiplication also perform by row by column or column by row as require in the problems.

Determinants of the Co-factors :-  

Let  byjusexamprepdenotes the determinant of the co-factors that byjusexamprep  where byjusexamprep  and if determinants of order 3 and byjusexamprep then 

byjusexamprep

System Of Linear Equations :- 

1. Homogeneous linear equation:- 

Consider the system of homogeneous linear equation in three unknowns x, y and z

byjusexamprep

Clearly this system always has a solution x = y = z = 0, which is called zero solution or trivial solution.

Case I : If byjusexamprep there is only one solution x = y = z = 0 

Case II : If byjusexamprep the system has infinite solutions and so non-trivial solution.

 2. Cramer’s Rule 

 

Consider the system of linear equation 

byjusexamprep

We define byjusexamprep and byjusexamprep which is obtain by supressing the column of the coefficient of x and replacing it by a column of the constant term on right-hand side.

Similarly  byjusexamprep and byjusexamprep

Now 

Case I : if byjusexamprep  , solution of system ( 1 ) is given by,byjusexamprep , byjusexamprepand the system is called consistent. 

Case II : byjusexamprepbut at least one of byjusexamprep  then the system does not possess any common solution and so system is called inconsistent.

Case III : (i) :byjusexamprep and also byjusexamprepand at least one co-factor of byjusexamprep , then the system have infinite many solution and the system can be solved by elimination method.

(ii) : if byjusexamprep and all cofactor are zero then the system is equivalent to only one equation in three unknowns and then we given any two unknowns arbitrary values and find the remaining unknowns in term of three constant. 

SOME FUNDAMENTAL DETERMINANTS 

  1.  byjusexamprep
  2. byjusexamprep
  3. byjusexamprep
  4. byjusexamprep

Download the BYJU’S Exam Prep App Now

The Most Comprehensive Exam Prep App

#DreamStriveSucceed

Comments

write a comment

Follow us for latest updates