Buoyancy Study notes for Chemical Engineering

By Sachin Singh|Updated : December 26th, 2022

Module-3 Buoyancy and Flotation: -

Archimedes principle:

Ø A body floating in a liquid / fluid is lifted upward by a force equal to the weight of liquid displaced by that body.

Ø This upward force known as buoyancy force.

Ø This force act through centre of buoyance which is at centroid of submerged portion of body.

 

byjusexamprep

For floating or submerged body:-

W = byjusexamprep [equilibrium equation]

byjusexamprep

byjusexamprep : byjusexamprep Volume of body [Submerged portion]

byjusexamprep Density of liquid/ fluid.

From equilibrium equation

byjusexamprep

byjusexamprep Density of body.

byjusexamprep

byjusexamprep Submerged volume fraction of body depends upon the density of liquid and body.

Stability of floating or submerged body:

Ø Rotational stability or stability of floating or submerged body, depends on Relative position of centre of gravity and centre of buoyancy.

Stability of Floating body:

Ø Stability of floating body depends on the position of metacentre or metacentric height.

Metacentre:-

Intersection point of , line of action of buoyancy force before and after rotation.

Ø Metacentric height equal to the distance between metacentre and centroid of body.

 

M G

 

 

 

G M

Ø M Above G

Ø MG +ve

Ø Stable condition

Ø GM (metacentric height) is the property of cross-section for a given weight.

Metacentric height

byjusexamprep

Metacentric –MG byjusexamprep GB byjusexamprep distance between C and B

Cbyjusexamprep centroid of full body

Example: -

Given: A rectangular block having dimension 3byjusexamprep

byjusexamprep

Find 1. Depth of immersion

2. Level of water after immersion

3 Metacentricheights

 

byjusexamprep

· Weight of body = weight of displaced water

36 byjusexamprep 1000 byjusexamprep byjusexamprep

byjusexamprep depth of immersion

· Volume of water is constant so.

byjusexamprep

byjusexamprep

byjusexamprep

· Metacentric Height :-

byjusexamprep

byjusexamprep

byjusexamprep

byjusexamprep

byjusexamprep

byjusexamprep

So. Floating block is in stable condition

 

Rigid Body Motion: -

Assumption: - incompressible fluid.

· Rigid body motion is the motion of fluid like a solid.

· In Rigid body motion, there is no relative motion between adjacent layers.

· For Rigid body motion consider Newton’s second law of motion –

byjusexamprep

F = surface force +body force

Surface force = pressure force

Body force = Gravity force or weight

Consider a Fluid element having dx, dy, dz and density byjusexamprep and pressure at its centre P.

 

 

 

Apply equillbrium equation in Z- direction (byjusexamprep

byjusexamprep

byjusexamprep

Similarly in x, and y direction

byjusexamprep

byjusexamprep

Body force = - ρgdxdydz byjusexamprep

Equation for Rigid body motion:-

In x- direction: (byjusexamprep)

byjusexamprep

Body force zero in x direction byjusexamprep acceleration in x direction

byjusexamprep

Similarly in y –direction

byjusexamprep

In z direction

byjusexamprep

byjusexamprep

Surface of constant pressure in horizontal motion (2-D motion)

In horizontal motion byjusexamprep

Than byjusexamprep …………(1)

And equation of motion

byjusexamprep

byjusexamprep

So put the values of byjusexamprep in eq. (1)

dp = byjusexamprep

Surface of constant pressure:-

Change in pressure byjusexamprep

From previous equation

byjusexamprep

byjusexamprep………………equation of “Surface of constant pressure”.

Rotation in a Cylindrical Container :- (Rigid Body Motion)

Force involves: (i) Centripetal force

(ii) Gravitational force [pressure force]

Consider an element, having position (r,z) : r=radial distance from z-z axis and Z= verical distance

from cetre of cylinder (of bottom as shown in figure)

From Newton’s second law of motion

byjusexamprep

byjusexamprep byjusexamprep dmbyjusexamprep elemental mass

byjusexamprep byjusexamprep

byjusexamprep

byjusexamprep ………….(a)

And pressure change in vertical direction byjusexamprep ………….(b)

So. From eq. (a) and (b) we can say that

byjusexamprep

By differenting p with respect to r and z

byjusexamprep………..(c)

Put values of byjusexamprep from eq. (a) and (b) in eq. (c)

byjusexamprep

This is the fundamental equation of flow in cylinder or for forced vortex flow.

Equation of free surface:-

For free surfacebyjusexamprepb/w two point on that surface

So. Form fundamental equation: -

byjusexamprep

byjusexamprep ………(d) here byjusexamprep represent the slope of free surface

byjusexamprep by integration equation (d) with respect to r

byjusexamprep

Put Boundary condition r=0, z=H

byjusexamprep

So, Z byjusexamprep (Equation of parabola)

NOTE: If we assume origin at apex of parabola than byjusexamprep

 

Volume of parabolic

byjusexamprep

Volume of parabolic = Volume of shaded portion byjusexamprep

NOTE:-

byjusexamprep

Example:-

Find the maximum angular velocity for which water is not spilled form tank.

Equation of surface

byjusexamprep byjusexamprep

byjusexamprep

byjusexamprep

Example:-

Find the volume of spilled water if w=6 rad per second and w=7 rad/sec.

Assume cylinder, and quantity of water same as in example (1)

For Case –I

given w=6 rad/sec.

byjusexamprep

So. byjusexamprep (Assume apex as origin)

byjusexamprep byjusexamprep

byjusexamprep byjusexamprep

Remaining Volume inside the cylinder = byjusexamprep

byjusexamprep

Spilled Volume = byjusexamprep

byjusexamprep 20.979 byjusexamprep

Case -2

byjusexamprep

byjusexamprep

byjusexamprep

And byjusexamprep

So. Apply free surface equation at point A

byjusexamprep

byjusexamprep

byjusexamprep

Volume of shaded portion = byjusexamprep

byjusexamprep

byjusexamprep

Final volume of water in cylinder

byjusexamprep

byjusexamprep

byjusexamprep

byjusexamprep

byjusexamprep

Example:-

Given conditions

I. Closed container

II. Fully filled with fluid without any pressure.

III. No free space means fully filled with liquid.

Calculate force on bottom and top surface.

Solution:

Force on bottom surface byjusexamprep Hydrostatic force byjusexamprep Force due to Rotation

Hydrostatic force byjusexamprep

Pressure force due rotation

Pressure byjusexamprep

Pressure force an elemental Ring (dr thickness)

byjusexamprep

byjusexamprep

byjusexamprep

byjusexamprep

byjusexamprep

Total force on bottom byjusexamprep

Total force on top byjusexamprep

Comments

write a comment

Follow us for latest updates