Time Left - 07:00 mins
SSC: Reading Comprehension Quiz: 10.01.2018
Attempt now to get your rank among 2913 students!
Question 1
Read the given passage carefully and choose the best answer to each question out of the four alternatives.
Evolution is change in the heritable characteristics of biological populations over successive generations. Evolutionary processes give rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms, and molecules.
All life on Earth shares a common ancestor known as the last universal common ancestor (LUCA), which lived approximately 3.5–3.8 billion years ago, although a study in 2015 found "remains of biotic life" from 4.1 billion years ago in ancient rocks in Western Australia. In July 2016, scientists reported identifying a set of 355 genes from the LUCA of all organisms living on Earth.
Repeated formation of new species (speciation), change within species (anagenesis), and loss of species (extinction) throughout the evolutionary history of life on Earth are demonstrated by shared sets of morphological and biochemical traits, including shared DNA sequences. These shared traits are more similar among species that share a more recent common ancestor, and can be used to reconstruct a biological "tree of life" based on evolutionary relationships (phylogenetics), using both existing species and fossils. The fossil record includes a progression from early biogenic graphite, to microbial mat fossils, to fossilized multicellular organisms. Existing patterns of biodiversity have been shaped both by speciation and by extinction. More than 99 percent of all species that ever lived on Earth are estimated to be extinct. Estimates of Earth's current species range from 10 to 14 million, of which about 1.9 million are estimated to have been named and 1.6 million documented in a central database to date. More recently, in May 2016, scientists reported that 1 trillion species are estimated to be on Earth currently with only one-thousandth of one percent described.
Evolution is change in the heritable characteristics of biological populations over successive generations. Evolutionary processes give rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms, and molecules.
All life on Earth shares a common ancestor known as the last universal common ancestor (LUCA), which lived approximately 3.5–3.8 billion years ago, although a study in 2015 found "remains of biotic life" from 4.1 billion years ago in ancient rocks in Western Australia. In July 2016, scientists reported identifying a set of 355 genes from the LUCA of all organisms living on Earth.
Repeated formation of new species (speciation), change within species (anagenesis), and loss of species (extinction) throughout the evolutionary history of life on Earth are demonstrated by shared sets of morphological and biochemical traits, including shared DNA sequences. These shared traits are more similar among species that share a more recent common ancestor, and can be used to reconstruct a biological "tree of life" based on evolutionary relationships (phylogenetics), using both existing species and fossils. The fossil record includes a progression from early biogenic graphite, to microbial mat fossils, to fossilized multicellular organisms. Existing patterns of biodiversity have been shaped both by speciation and by extinction. More than 99 percent of all species that ever lived on Earth are estimated to be extinct. Estimates of Earth's current species range from 10 to 14 million, of which about 1.9 million are estimated to have been named and 1.6 million documented in a central database to date. More recently, in May 2016, scientists reported that 1 trillion species are estimated to be on Earth currently with only one-thousandth of one percent described.
How is extinction demonstrated?
Question 2
Read the given passage carefully and choose the best answer to each question out of the four alternatives.
Evolution is change in the heritable characteristics of biological populations over successive generations. Evolutionary processes give rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms, and molecules.
All life on Earth shares a common ancestor known as the last universal common ancestor (LUCA), which lived approximately 3.5–3.8 billion years ago, although a study in 2015 found "remains of biotic life" from 4.1 billion years ago in ancient rocks in Western Australia. In July 2016, scientists reported identifying a set of 355 genes from the LUCA of all organisms living on Earth.
Repeated formation of new species (speciation), change within species (anagenesis), and loss of species (extinction) throughout the evolutionary history of life on Earth are demonstrated by shared sets of morphological and biochemical traits, including shared DNA sequences. These shared traits are more similar among species that share a more recent common ancestor, and can be used to reconstruct a biological "tree of life" based on evolutionary relationships (phylogenetics), using both existing species and fossils. The fossil record includes a progression from early biogenic graphite, to microbial mat fossils, to fossilized multicellular organisms. Existing patterns of biodiversity have been shaped both by speciation and by extinction. More than 99 percent of all species that ever lived on Earth are estimated to be extinct. Estimates of Earth's current species range from 10 to 14 million, of which about 1.9 million are estimated to have been named and 1.6 million documented in a central database to date. More recently, in May 2016, scientists reported that 1 trillion species are estimated to be on Earth currently with only one-thousandth of one percent described.
Evolution is change in the heritable characteristics of biological populations over successive generations. Evolutionary processes give rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms, and molecules.
All life on Earth shares a common ancestor known as the last universal common ancestor (LUCA), which lived approximately 3.5–3.8 billion years ago, although a study in 2015 found "remains of biotic life" from 4.1 billion years ago in ancient rocks in Western Australia. In July 2016, scientists reported identifying a set of 355 genes from the LUCA of all organisms living on Earth.
Repeated formation of new species (speciation), change within species (anagenesis), and loss of species (extinction) throughout the evolutionary history of life on Earth are demonstrated by shared sets of morphological and biochemical traits, including shared DNA sequences. These shared traits are more similar among species that share a more recent common ancestor, and can be used to reconstruct a biological "tree of life" based on evolutionary relationships (phylogenetics), using both existing species and fossils. The fossil record includes a progression from early biogenic graphite, to microbial mat fossils, to fossilized multicellular organisms. Existing patterns of biodiversity have been shaped both by speciation and by extinction. More than 99 percent of all species that ever lived on Earth are estimated to be extinct. Estimates of Earth's current species range from 10 to 14 million, of which about 1.9 million are estimated to have been named and 1.6 million documented in a central database to date. More recently, in May 2016, scientists reported that 1 trillion species are estimated to be on Earth currently with only one-thousandth of one percent described.
What is the total number of species which have been named and/or documented in a central database?
Question 3
Read the given passage carefully and choose the best answer to each question out of the four alternatives.
Evolution is change in the heritable characteristics of biological populations over successive generations. Evolutionary processes give rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms, and molecules.
All life on Earth shares a common ancestor known as the last universal common ancestor (LUCA), which lived approximately 3.5–3.8 billion years ago, although a study in 2015 found "remains of biotic life" from 4.1 billion years ago in ancient rocks in Western Australia. In July 2016, scientists reported identifying a set of 355 genes from the LUCA of all organisms living on Earth.
Repeated formation of new species (speciation), change within species (anagenesis), and loss of species (extinction) throughout the evolutionary history of life on Earth are demonstrated by shared sets of morphological and biochemical traits, including shared DNA sequences. These shared traits are more similar among species that share a more recent common ancestor, and can be used to reconstruct a biological "tree of life" based on evolutionary relationships (phylogenetics), using both existing species and fossils. The fossil record includes a progression from early biogenic graphite, to microbial mat fossils, to fossilized multicellular organisms. Existing patterns of biodiversity have been shaped both by speciation and by extinction. More than 99 percent of all species that ever lived on Earth are estimated to be extinct. Estimates of Earth's current species range from 10 to 14 million, of which about 1.9 million are estimated to have been named and 1.6 million documented in a central database to date. More recently, in May 2016, scientists reported that 1 trillion species are estimated to be on Earth currently with only one-thousandth of one percent described.
Evolution is change in the heritable characteristics of biological populations over successive generations. Evolutionary processes give rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms, and molecules.
All life on Earth shares a common ancestor known as the last universal common ancestor (LUCA), which lived approximately 3.5–3.8 billion years ago, although a study in 2015 found "remains of biotic life" from 4.1 billion years ago in ancient rocks in Western Australia. In July 2016, scientists reported identifying a set of 355 genes from the LUCA of all organisms living on Earth.
Repeated formation of new species (speciation), change within species (anagenesis), and loss of species (extinction) throughout the evolutionary history of life on Earth are demonstrated by shared sets of morphological and biochemical traits, including shared DNA sequences. These shared traits are more similar among species that share a more recent common ancestor, and can be used to reconstruct a biological "tree of life" based on evolutionary relationships (phylogenetics), using both existing species and fossils. The fossil record includes a progression from early biogenic graphite, to microbial mat fossils, to fossilized multicellular organisms. Existing patterns of biodiversity have been shaped both by speciation and by extinction. More than 99 percent of all species that ever lived on Earth are estimated to be extinct. Estimates of Earth's current species range from 10 to 14 million, of which about 1.9 million are estimated to have been named and 1.6 million documented in a central database to date. More recently, in May 2016, scientists reported that 1 trillion species are estimated to be on Earth currently with only one-thousandth of one percent described.
How do the fossil records progress?
Question 4
Read the given passage carefully and choose the best answer to each question out of the four alternatives.
Evolution is change in the heritable characteristics of biological populations over successive generations. Evolutionary processes give rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms, and molecules.
All life on Earth shares a common ancestor known as the last universal common ancestor (LUCA), which lived approximately 3.5–3.8 billion years ago, although a study in 2015 found "remains of biotic life" from 4.1 billion years ago in ancient rocks in Western Australia. In July 2016, scientists reported identifying a set of 355 genes from the LUCA of all organisms living on Earth.
Repeated formation of new species (speciation), change within species (anagenesis), and loss of species (extinction) throughout the evolutionary history of life on Earth are demonstrated by shared sets of morphological and biochemical traits, including shared DNA sequences. These shared traits are more similar among species that share a more recent common ancestor, and can be used to reconstruct a biological "tree of life" based on evolutionary relationships (phylogenetics), using both existing species and fossils. The fossil record includes a progression from early biogenic graphite, to microbial mat fossils, to fossilized multicellular organisms. Existing patterns of biodiversity have been shaped both by speciation and by extinction. More than 99 percent of all species that ever lived on Earth are estimated to be extinct. Estimates of Earth's current species range from 10 to 14 million, of which about 1.9 million are estimated to have been named and 1.6 million documented in a central database to date. More recently, in May 2016, scientists reported that 1 trillion species are estimated to be on Earth currently with only one-thousandth of one percent described.
Evolution is change in the heritable characteristics of biological populations over successive generations. Evolutionary processes give rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms, and molecules.
All life on Earth shares a common ancestor known as the last universal common ancestor (LUCA), which lived approximately 3.5–3.8 billion years ago, although a study in 2015 found "remains of biotic life" from 4.1 billion years ago in ancient rocks in Western Australia. In July 2016, scientists reported identifying a set of 355 genes from the LUCA of all organisms living on Earth.
Repeated formation of new species (speciation), change within species (anagenesis), and loss of species (extinction) throughout the evolutionary history of life on Earth are demonstrated by shared sets of morphological and biochemical traits, including shared DNA sequences. These shared traits are more similar among species that share a more recent common ancestor, and can be used to reconstruct a biological "tree of life" based on evolutionary relationships (phylogenetics), using both existing species and fossils. The fossil record includes a progression from early biogenic graphite, to microbial mat fossils, to fossilized multicellular organisms. Existing patterns of biodiversity have been shaped both by speciation and by extinction. More than 99 percent of all species that ever lived on Earth are estimated to be extinct. Estimates of Earth's current species range from 10 to 14 million, of which about 1.9 million are estimated to have been named and 1.6 million documented in a central database to date. More recently, in May 2016, scientists reported that 1 trillion species are estimated to be on Earth currently with only one-thousandth of one percent described.
What is meant by speciation?
Question 5
Read the given passage carefully and choose the best answer to each question out of the four alternatives.
Evolution is change in the heritable characteristics of biological populations over successive generations. Evolutionary processes give rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms, and molecules.
All life on Earth shares a common ancestor known as the last universal common ancestor (LUCA), which lived approximately 3.5–3.8 billion years ago, although a study in 2015 found "remains of biotic life" from 4.1 billion years ago in ancient rocks in Western Australia. In July 2016, scientists reported identifying a set of 355 genes from the LUCA of all organisms living on Earth.
Repeated formation of new species (speciation), change within species (anagenesis), and loss of species (extinction) throughout the evolutionary history of life on Earth are demonstrated by shared sets of morphological and biochemical traits, including shared DNA sequences. These shared traits are more similar among species that share a more recent common ancestor, and can be used to reconstruct a biological "tree of life" based on evolutionary relationships (phylogenetics), using both existing species and fossils. The fossil record includes a progression from early biogenic graphite, to microbial mat fossils, to fossilized multicellular organisms. Existing patterns of biodiversity have been shaped both by speciation and by extinction. More than 99 percent of all species that ever lived on Earth are estimated to be extinct. Estimates of Earth's current species range from 10 to 14 million, of which about 1.9 million are estimated to have been named and 1.6 million documented in a central database to date. More recently, in May 2016, scientists reported that 1 trillion species are estimated to be on Earth currently with only one-thousandth of one percent described.
Evolution is change in the heritable characteristics of biological populations over successive generations. Evolutionary processes give rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms, and molecules.
All life on Earth shares a common ancestor known as the last universal common ancestor (LUCA), which lived approximately 3.5–3.8 billion years ago, although a study in 2015 found "remains of biotic life" from 4.1 billion years ago in ancient rocks in Western Australia. In July 2016, scientists reported identifying a set of 355 genes from the LUCA of all organisms living on Earth.
Repeated formation of new species (speciation), change within species (anagenesis), and loss of species (extinction) throughout the evolutionary history of life on Earth are demonstrated by shared sets of morphological and biochemical traits, including shared DNA sequences. These shared traits are more similar among species that share a more recent common ancestor, and can be used to reconstruct a biological "tree of life" based on evolutionary relationships (phylogenetics), using both existing species and fossils. The fossil record includes a progression from early biogenic graphite, to microbial mat fossils, to fossilized multicellular organisms. Existing patterns of biodiversity have been shaped both by speciation and by extinction. More than 99 percent of all species that ever lived on Earth are estimated to be extinct. Estimates of Earth's current species range from 10 to 14 million, of which about 1.9 million are estimated to have been named and 1.6 million documented in a central database to date. More recently, in May 2016, scientists reported that 1 trillion species are estimated to be on Earth currently with only one-thousandth of one percent described.
What percentage of all species that ever lived on earth is still present?
Question 6
Read the following passage carefully and answer the questions given below it.
A well-dressed young man entered a big textile ship one evening. He was able to draw the attention of the salesmen who thought him rich and likely to make heavy purchases. He was shown the superior varieties of suit lengths and sarees. But after casually examining them, he kept moving to the next section where readymade goods were being sold and further on the hosiery section. By then, the salesmen had begun to double his intentions and drew the attention of the manager. The manager asked him what the matter was. He told that he had come there before but drew little attention. His pride was hurt and he wanted to assert himself. He had come in good dress only to get decent treatment, not for getting any textiles. He left without making any purchase.
The young man was well dressed because ___________.
Question 7
Read the following passage carefully and answer the questions given below it.
A well-dressed young man entered a big textile ship one evening. He was able to draw the attention of the salesmen who thought him rich and likely to make heavy purchases. He was shown the superior varieties of suit lengths and sarees. But after casually examining them, he kept moving to the next section where readymade goods were being sold and further on the hosiery section. By then, the salesmen had begun to double his intentions and drew the attention of the manager. The manager asked him what the matter was. He told that he had come there before but drew little attention. His pride was hurt and he wanted to assert himself. He had come in good dress only to get decent treatment, not for getting any textiles. He left without making any purchase.
The salesmen in the shop are described as people who pay attention to _________.
Question 8
Read the following passage carefully and answer the questions given below it.
A well-dressed young man entered a big textile ship one evening. He was able to draw the attention of the salesmen who thought him rich and likely to make heavy purchases. He was shown the superior varieties of suit lengths and sarees. But after casually examining them, he kept moving to the next section where readymade goods were being sold and further on the hosiery section. By then, the salesmen had begun to double his intentions and drew the attention of the manager. The manager asked him what the matter was. He told that he had come there before but drew little attention. His pride was hurt and he wanted to assert himself. He had come in good dress only to get decent treatment, not for getting any textiles. He left without making any purchase.
The young man moved away to the hosiery section because he __________.
Question 9
Read the following passage carefully and answer the questions given below it.
A well-dressed young man entered a big textile ship one evening. He was able to draw the attention of the salesmen who thought him rich and likely to make heavy purchases. He was shown the superior varieties of suit lengths and sarees. But after casually examining them, he kept moving to the next section where readymade goods were being sold and further on the hosiery section. By then, the salesmen had begun to double his intentions and drew the attention of the manager. The manager asked him what the matter was. He told that he had come there before but drew little attention. His pride was hurt and he wanted to assert himself. He had come in good dress only to get decent treatment, not for getting any textiles. He left without making any purchase.
The manager asked the young man what he wanted because ____________.
Question 10
Read the following passage carefully and answer the questions given below it.
A well-dressed young man entered a big textile ship one evening. He was able to draw the attention of the salesmen who thought him rich and likely to make heavy purchases. He was shown the superior varieties of suit lengths and sarees. But after casually examining them, he kept moving to the next section where readymade goods were being sold and further on the hosiery section. By then, the salesmen had begun to double his intentions and drew the attention of the manager. The manager asked him what the matter was. He told that he had come there before but drew little attention. His pride was hurt and he wanted to assert himself. He had come in good dress only to get decent treatment, not for getting any textiles. He left without making any purchase.
The young man left without making purchases because he ______________.
- 2913 attempts
- 24 upvotes
- 65 comments
Jan 17SSC & Railway