Maclaurin's Series Expansion of esin x
We know that,
- f(x) = esin x ⇒ f(0) = e = 1
- f'(x) = esin x (cos x) ⇒ f'(0) = 1
- f''(x) = esin x cos2 x + esin x (-sin x)
- f''(0) = 1 = esin x [cos2 x - sin x]
- f'''(x) = esin x [-sin 2x - cos x] + esin x [cos3 x - sin x cos x]
- f'''(x) = -1 + 1 = 0
- f (x) = esin x [-2 cos 2x + sin x] + esin x cos x [-sin 2x - cos x] + esin x [3 cos2 x(−sin x) − cos 2x/2 × 2] + esin x [cos4 x - sin x cos2 x]
- f (0) = -2 -1 -1 + 1 = -3
Substitue in Maclaurin Series
esin x = 1 + x + x2/2 + x3/3! (0) + x4/4! X (-3) + ……
= 1 + x + x2/2 - x4/8 + …..
Therefore, the Maclaurin's series expansion of esin x is 1 + x + x2/2 - x4/8 + …..
Summary:
The Maclaurin's series expansion of esin x is? (a) 1 + x - x2/2 + x4/12 - ….. (b) 1 - x +x2/2 - x4/8 + ….. (c) 1 + x + x2/2 - x4/8 + ….. (d) 1 + x + x2/2 - x4/12 + …..
1 + x + x2/2 - x4/8 + ….. is the Maclaurin's series expansion of esinx. A Taylor series expansion of a function about 0 is called Maclaurin's series. It is renamed after the Scottish mathematician Colin Maclaurin.
Comments
write a comment