SSC CGL Geometry Questions & Concepts: Important Theorems and Properties of Circle

By Ashwini Shivhare|Updated : July 27th, 2022

SSC CGL Geometry constitutes one major portion of the syllabus for SSC CGL 2022. Out of the four stages of the CGL selection process, in the Tier 1 CBT exam, SSC CGL Geometry questions account for around 5-6 questions and in the tier 2 exam, in quantitative aptitude paper, one of the compulsory papers for the candidates, around 12 - 15 questions are asked from the Geometry.

Today we will learn SSC CGL Geometry formulas and basic concepts of the Circle. Let us start: 

Table of Content

SSC CGL Geometry Syllabus

Despite the fact that SSC CGL geometry questions are crucial, due to the extensiveness of the syllabus, candidates sometimes ignore geometry. Additionally, Geometry for the SSC CGL exam is only an extension of what we learned up till Class 10. Consequently, if handled systematically, this subject can be easily prepared in a few of months. Let us take look at the SSC CGL Geometry topics which constitute SSC CGL Geometry Syllabus.

  1. Basics of Geometry
  2. Polygons
  3. Triangle
  4. Circle
  5. Quadrilateral
  6. Mensuration 2D and 3D
  7. Miscellaneous

SSC CGL Geometry Questions

As per the SSC CGL Previous Year Question Paper trends, the commission generally asks around 5 to 6 questions from this topic. Hence, candidates must not skip this topic and should familiarise themselves with the SSC CGL Geometry questions. Below, we have explained the concepts of geometry questions which will help you clear your doubts and improve your performance. 

SSC CGL Geometry Concepts: Important Theorems and Properties of Circle

Let the radius of circle is ‘R’, diameter = D

 

(1) byjusexamprep     Maximum area of triangle = R2

If the given triangle is right angle triangle and its base is the diameter of the circle. Then, the maximum possible area of the triangle will be R2.

 

(2) If AB and CD are two chords intersecting each other at P.

byjusexamprepbyjusexamprep

 

byjusexamprepbyjusexamprep

(3) If PA and PB are two tangents and LM is the tangent intersecting both tangents PA and PB as given in the figure.

Then, PA = PB = 1/2 Perimeter of triangle PLM.

 

byjusexamprep

 

(4) If BA is a chord intersecting tangent T at P as in the below figure.

Then, PA x PB = PT2

 

byjusexamprep

5. This property is an important property of circle. It will help you to save your time in the exam. But don’t confuse between figure 5(a) and 5(b).

If angle AOC is x0 and BOD is y0, then angle APC and BPD will be equal to half of the sum of both angle x0 and y0.

byjusexamprepbyjusexamprep

                            Fig. 5 (a)

If angle AOC is x0 and BOD is y0, then angle APC and BPD will be equal to half of difference of the angle x0 and y0.

 

byjusexamprepbyjusexamprep

            Fig. 5 (b)

(6) Quadrilateral formed by angle bisectors of a cyclic quadrilateral will be always a cyclic quadrilateral.

If given quadrilateral ABCD is a cyclic quadrilateral and RA, RB, PC and PD are angle bisectors of angle A, B, C and D. Then, quadrilateral PQRS formed by these angle bisectors will also be a cyclic quadrilateral.

Properties of Cyclic Quadrilateral:

1. The sum of diagonally opposite angle will always be equal to 1800.

byjusexamprep

PQRS is also a cyclic quadrilateral.

(7) In the given diagram, ABCD is a cyclic quadrilateral.

If AB is parallel to CD, and AD is parallel to BC then, diagonals AC and BD will also equal.

byjusexamprep

(8) Tangents

(a) If there are two circles which are at a distance apart from each other, then the maximum possible number of common tangents are 4.

byjusexamprep
 Fig. 8 (a)

(b) If there are two circles touching each other externally, then the maximum number of possible common tangents are 3.

byjusexamprep

Fig. 8 (b)

(c) If there are two circles intersecting each other, then the maximum number of possible common tangents are 2.

 

byjusexamprep

Fig. 8 (c)

(d) If there are two circles touching each other internally, then the maximum number of possible common tangents are 1.

byjusexamprep

Fig. 8 (d) No. of common tangents = 1

(e) If there are two circles, either concentric or one is inside the another and do not touch.
then, the number of common tangents will be zero.

byjusexamprep
Fig. 8 (e) No. of common tangents = 0

(9)

(a) If PA and PB are two tangents from P on the circle at A and B.
then, PA = PB

byjusexamprep

(b) The line joining the centre and the point on the circle at which tangent meets will always be perpendicular to the tangent.

byjusexamprep

 

(10) If the tangent PAQ and chord AB makes an angle θ, then the angle made by chord AB on the circle will always be θ.
Similarly, If the tangent PAQ and chord AC makes an angle ϕ, then the angle made by chord AC on the circle will always be ϕ.

 

byjusexamprep

byjusexamprep

 

(10) If AB, BC, CD and AD are tangents on circle as given in the diagram,

Then AB + CD = BC + AD

 

byjusexamprep

(11) The distance between centres of two circles.

(a)

byjusexamprep

distance b/w centres = r1 - r2

(b)

byjusexamprep

distance b/w centres = r1 + r2

(12) Length of Direct Common Tangent.

If ‘d’ is the distance between centres of two circles and r1 and r2 are the radius of given two circles.

 

byjusexamprepor byjusexamprep

Fig. 12 (a)                                                                          Fig. 12 (b)

 

                      byjusexamprep                                            byjusexamprep

Transversal common tangent

byjusexamprep

                 byjusexamprep


Note: Do not confuse between transversal and direct common tangent.

(12). This question is asked many times in SSC Exams. Remember the diagram as it is given, all three circles have a direct common tangent.

 

byjusexamprepbyjusexamprep

 

(13)

byjusexamprep

If PQ is diameter and PR||QS

Then, PQ = RS and byjusexamprep

(14) If ABCD is a cyclic quadrilateral and angle APC is x0, then angle ADC = 900 – x/2 and angle ABC = 900+x/2.

byjusexamprep

 

(15) If AB, BC, CD and AD are tangents on the given circle, then x0+y0 = 180 degree.

byjusexamprep

(16) If you find such diagram and angle ADB = x0 then angle ACB = 1800 -x0.

byjusexamprepbyjusexamprep

(17) If AB is the diameter of the bigger circle and ‘r’ is the radius of the smaller circle.

byjusexamprep

 A                                                                 B

                             byjusexamprep

(18) If AB is the tangent of two circles at A and B, P is the point at which both circles meet. Then, angle APB will be 900.

byjusexamprepbyjusexamprep

(19) If there are two circles of same radius ‘R’ and the distance between their centres is ‘R’.

Then, the length of common chord CD = √ 3 R.

byjusexamprep

                      byjusexamprep

 

 

20. How to find the distance between two chords?

(a) If chords are on the opposite sides of centre

Let ‘a’ and ‘b’ are the length of chords and ‘d’ is the distance between them.
If it follows this relation, byjusexamprep

Then, we can say that byjusexamprep

byjusexamprep

(b) If chords are on the same side of centre

Let ‘a’ and ‘b’ are the length of chords and ‘d’ is the distance between them.
If it follows this relation, byjusexamprep

Then, we can say that byjusexamprep

byjusexamprep

Solving SSC CGL Geometry questions on the basis of these concepts will help you score the maximum marks from the quantitative aptitude section. You can also 

Related SSC CGL Topics
SSC CGL 2022SSC CGL Syllabus
SSC CGL Previous Years QuestionsSSC CGL Vacancy

Comments

write a comment

FAQs

  • In the Tier 1 CBT exam, SSC CGL Geometry account for around 5-6 questions and in the tier 2 exam around 12 - 15 questions are asked from Geometry. Geometry is part of the Quantitative Aptitude syllabus.

  • SSC CGL Geometry syllabus comprises the following topics

    • Basics of Geometry
    • Polygons
    • Triangle
    • Circle
    • Quadrilateral
    • Mensuration 2D and 3D
    • Miscellaneous
  • In the SSC CGL exam, the difficulty level of the Geometry questions lies in the range of Easy to moderate. Some questions are of the easy level and a few questions are difficult and tricky to attempt. In the case of Tier 2, the difficulty level increases.

  • Geometry formulas for SSC CGL Exam can be found in this article. You can also check important concepts on Circle. Students can revise these geometry formulas before the SSC Exams to improve their marks.

  • Geometry is an important subject in the quant syllabus for the SSC CGL exam. To prepare SSC CGL Geometry, candidates can check the following books: Kiran Text Book Approach To Elementary And Advance Mathematics For SSC CGL by Kiran Publication and in addition to that you can pick any Previous years' questions book.

SSC & Railway

CGLSSC GDDFCCILCHSLCPONTPCMTSStenoGroup DDelhi PoliceOthersCoursesMock Test

Follow us for latest updates