# ESE Mains 2023 

Mechanical Engineering

## Questions \& Solutions

PAPER - 1

| ESE ME Paper 1: Marks Distribution |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S.No. | Subjects | Difficulty <br> Level 2023 | 2023 <br> Marks | Marks | Marks |  |  |
| 1 | Thermodynamics | Moderate | 60 | 72 | 32 |  |  |
| 2 | Refrigeration and Air- |  |  |  |  |  |  |
| Conditioning | Moderate | 72 | 64 | 24 |  |  |  |
| 3 | Power Plant | Tough | 44 | 136 | 112 |  |  |
| 4 | IC Engines | Easy | 56 | 32 | 64 |  |  |
| 5 | Heat Transfer | Moderate | 84 | 52 | 92 |  |  |
| 7 | Fluid Mechanics and Machinery | Moderate | 112 | 64 | 84 |  |  |
| 7 | Renewable Source of Energy | Moderate | 52 | 60 | 72 |  |  |
|  | Total | Moderate | 480 | 480 | 480 |  |  |

## Mechanical Engineering <br> Paper-1

## SECTION - 'A'

1. 

(a) (i) Differentiate between rotational and irrotational flows. Can there be any possibility of having zones possessing characteristics of both rotational and irrotational flows?
[6 Marks]
(ii) If the expression for the stream function is described by $\psi=x^{3}-3 x^{2} y$, determine whether the flow is rotational or irrotational. Further, find out the correct expression of the velocity potential function of the following two, considering the flow is irrotational:
(1) $\phi=y^{3}-3 x^{2} y$
(2) $\phi=-7 x^{3} y$
[6 Marks]

## Sol.

## (i) Rotational flow and irrotational flow

- Rotational flow is the type of flow in which the fluid particles rotate about their axis while flowing along streamlines.
- On the other hand, a flow in which the fluid particles flow along the streamlines does not rotate about their axis is the irrotational flow.


When a viscous fluid flows over a flat plate, flow inside the boundary layer is rotational and flow outside the boundary layer is irrotational.

(ii) $\quad \psi=x^{3}-3 x y^{2}$

For irrotational flow, $\psi$ must satisfy Laplace equation,
i.e, $\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0$

LHS: $\frac{\partial}{\partial \mathbf{x}}\left(\frac{\partial \psi}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{\partial \psi}{\partial y}\right)$
$=\frac{\partial}{\partial x}\left(3 x^{2}-3 y^{2}\right)+\frac{\partial}{\partial y}(-3 x \times 2 y)$
$=6 \mathrm{x}+(-6 \mathrm{x})$
$=0$ (RHS): Irrotational flow
Also, for 2-D, irrotational flow ' $\phi$ ' must satisfy Laplace equation.

1. $\phi=y^{3}-3 x^{2} y$

To check: $\frac{\partial^{2} \phi}{\partial \mathbf{x}^{2}}+\frac{\partial^{2} \phi}{\partial \mathbf{y}^{2}}=0$
LHS: $\frac{\partial}{\partial \mathbf{x}}\left(\frac{\partial \phi}{\partial \mathbf{x}}\right)+\frac{\partial}{\partial \mathbf{y}}\left(\frac{\partial \phi}{\partial \mathbf{y}}\right)$
$=\frac{\partial}{\partial x}(-6 x y)+\frac{\partial}{\partial y}\left(3 y^{2}-3 x^{2}\right)$
$=-6 y+(6 y)$
$=0$ (RHS)
$\phi=y^{3}-3 x^{2} y$ is a valid potential function.
2. $\phi=-7 x^{3} y$

To check: $\frac{\partial^{2} \phi}{\partial \mathbf{x}^{2}}+\frac{\partial^{2} \phi}{\partial \mathbf{y}^{2}}=0$
LHS: $\frac{\partial}{\partial x}\left(\frac{\partial \phi}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{\partial \phi}{\partial y}\right)$
$=\frac{\partial}{\partial x}\left(-7 \times 3 x^{2} y\right)+\frac{\partial}{\partial y}\left(-7 x^{3}\right)$
$=(-21 \times 2 x y)+0$
$=-42 x y \neq 0: \phi=-7 x^{3} y$ is not a valid potential function.
(b) A refrigerated truck whose dimensions are $12 \mathrm{~m} \times 2.5 \mathrm{~m} \times 3 \mathrm{~m}$ is to be precooled from $30^{\circ} \mathrm{C}$ to an average temperature of $5^{\circ} \mathrm{C}$. The construction of the truck is such that a transmission heat gain occurs at the rate of $90 \mathrm{~W} /{ }^{\circ} \mathrm{C}$. If the ambient temperature is $30^{\circ} \mathrm{C}$, determine how long it will take for a system with a refrigeration capacity of 10 kW to precool this truck. The density of air may be taken as $1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and its specific heat at average temperature of 17.5 ${ }^{\circ} \mathrm{C}$ is $\mathrm{C}_{\mathrm{p}}=1 \mathrm{~kJ} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$. State the assumptions, if any.
[12 Marks]
Sol.
Mass of air inside refrigerated truck,

Heat lost by air,

$$
\begin{aligned}
\mathrm{m} & =\rho \times \text { Vol }_{\text {air }} \\
& =1.2 \times(12 \times 2.5 \times 3) \\
& =108 \mathrm{~kg} \\
\text { Qair } & =m C_{p} \Delta \mathrm{~T}
\end{aligned}
$$

Heat transfer,

$$
\begin{aligned}
\mathrm{Q}_{\text {transfer }} & =\mathrm{UA}\left(\mathrm{~T}_{\text {ambiet }}-\mathrm{T}_{\text {avg }}\right) \\
& =90 \times\left(30-\mathrm{T}_{\text {avg }}\right) \\
& =90 \times(30-17.5) \\
& =1125 \mathrm{~W}=1.125 \mathrm{~kW} \\
Q_{\text {ref }} & =10 \mathrm{~kW} \\
Q_{\text {ref }} & =Q_{\text {transfer }}+\frac{\mathrm{Q}_{\text {air }}}{\mathrm{t}}
\end{aligned}
$$

Where, $\mathrm{t} \rightarrow$ time taken to precool the truck

$$
10=1.125+\frac{2700}{t}
$$

$$
\text { Or } t=304.23 \mathrm{~s}=5.07 \mathrm{~min}
$$

(c) An engine oil flows through a copper tube of 1 cm internal diameter and 0.02 cm wall thickness at the flow rate of $0.1 \mathrm{~kg} / \mathrm{s}$. Consider that the temperature of the oil at the entry is $30^{\circ} \mathrm{C}$. If the oil is heated to $50^{\circ} \mathrm{C}$ by steam condensing at atmospheric pressure, calculate the length of the copper tube. The properties of the oil are as follows:
$C_{p}=1964 \mathrm{~J} / \mathrm{kg}-\mathrm{K}, \rho=876 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{k}=0.144 \mathrm{~W} / \mathrm{m}-\mathrm{K}$,
$\mu=0.210 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}, \operatorname{Pr}=2870$
[12 Marks]

## Sol.



Heat transfer, $Q=\dot{m C}_{p}\left(T_{e}-T_{i}\right)$
$\dot{\mathrm{m}}=$ mass flow rate
$C_{p}=$ Specific heat of oil
$\mathrm{T}_{\mathrm{e}}=$ Exit temperature of oil
$T_{i}=$ Inlet temperature of oil

$$
\begin{aligned}
\dot{\mathrm{Q}} & =\dot{\mathrm{m}} \mathrm{C}_{\mathrm{p}}\left(\mathrm{~T}_{\mathrm{e}}-\mathrm{T}_{\mathrm{i}}\right) \\
& =0.1 \times 1964 \times(50-30)=3928 \mathrm{~J} / \mathrm{s}
\end{aligned}
$$

For oil,

$$
\operatorname{Re}=\frac{\rho \overline{\mathrm{V}} \mathrm{~d}_{\mathrm{i}}}{\mu}
$$

$d_{i}=$ inner diameter of pipe
$\overline{\mathrm{V}}=$ average velocity of oil
$\rho=$ density of oil
$\mu=$ viscosity of oil
A = cross-section area of pipe

$$
\begin{gathered}
\operatorname{Re}=\frac{\rho \times \frac{\dot{m}}{\rho \times \frac{\pi}{4} d_{i}^{2}} \times d_{i}}{\mu}=\frac{4 \dot{m}}{\pi d_{i} \mu} \\
\operatorname{Re}=\frac{4 \times 0.1}{\pi \times 0.01 \times 0.210}=60.63
\end{gathered}
$$

$\operatorname{Re}<2300$, hence flow through pipe is laminar.
For fully developed laminar flow with constant wall temperature (as condenser steam)

$$
\mathrm{Nu}=\frac{\mathrm{h}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}}}{\mathrm{k}}=3.66
$$

$$
h_{i}=3.66 \times \mathrm{k} / \mathrm{d}_{\mathrm{i}}
$$

$$
h_{i}=3.66 \times 0.144 / 0.01
$$

$$
h_{i}=52.704 \mathrm{~W} / \mathrm{m}-\mathrm{K}
$$



$$
\Delta \mathrm{T}_{\mathrm{m}}=\frac{\Delta \mathrm{T}_{\mathrm{i}}-\Delta \mathrm{T}_{\mathrm{o}}}{\ln \left(\frac{\Delta \mathrm{~T}_{\mathrm{i}}}{\Delta \mathrm{~T}_{\mathrm{o}}}\right)}=\frac{70-50}{\ln \left(\frac{70}{50}\right)}=59.44^{\circ} \mathrm{C}
$$

$$
\mathrm{Q}=\mathrm{h}_{0} \mathrm{~A}_{0} \Delta \mathrm{~T}_{\mathrm{m}}
$$

$$
3928=\mathrm{h}_{\mathrm{o}} \times \pi \mathrm{d}_{0} \ell \Delta \mathrm{~T}_{\mathrm{m}}
$$

$$
3928=\frac{\mathrm{h}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}}}{\mathrm{~d}_{0}} \times \pi \mathrm{d}_{0} \ell \Delta \mathrm{~T}_{\mathrm{m}} \quad\left(\because \mathrm{~h}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}}=\mathrm{h}_{\mathrm{o}} \mathrm{~d}_{\mathrm{o}}\right)
$$

$$
3928=52.704 \times 0.01 \times \pi \times \ell \times 59.44
$$

$$
\text { Or } \ell=39.9 \mathrm{~m}
$$

(d) Explain the mechanism of $\mathrm{NO}_{x}$ formation and also the methods for its reduction in stationary gas turbine engines.
[12 Marks]
Sol. NOx emission is one of the predominant emissions in stationary gas turbine engines. This emission is controlled by the standards. The most prevalent NOx emission is nitric oxide or nitrogen monoxide, NO, and nitrogen dioxide, $\mathrm{NO}_{2}$. Nitric oxide is the one which is mainly formed in the combustion chamber. Factors that influence the amount of NO formed are:
(i) Peak temperature,
(ii) Percentage of excess air,
(iii) Pressure,
(iv) Residence time at peak temperature and
(v) Fuel bound nitrogen

The peak temperature is attained when the fuel is burned with the stoichiometric (chemically correct) amount of air. Higher the temperature of the air at the inlet to the combustion chamber, higher the resulting equilibrium adiabatic flame temperature.
Burning the fuel with excess air lowers the maximum temperature but increases the availability of oxygen and nitrogen in the products of combustion. It is known that for a fixed air supply temperature and combustion chamber pressure, the amount of NO formed for equilibrium conditions increases from $0 \%$ excess air to $30 \%$ excess air, then starts to decrease even though the adiabatic equilibrium flame temperature decreases continuously. It is a known fact that increasing the combustion temperature, pressure, increase the equilibrium adiabatic flame temperature but decreases the amount of NO formed.

The preceding discussion assumes that equilibrium has been reached. The next important thing is to determine the rate at which at the products will reach equilibrium. The basic mechanism presently used to predict the formation of NO had its origin in the work of Zeldovich and coworkers around 1946.

## NOx Reduction in Stationary Engines:

It is known that the higher the temperature and longer the gases are at that temperature, more nitric oxide is formed. $\mathrm{NO}_{x}$ is the main pollutant from stationary gas turbine engines.

Prior to $\mathrm{NO}_{x}$ emission controls, gas turbine engine combustion chambers were designed so that the fuel-air ratio in the primary zone was approximately the stoichiometric value; that is, the percent excess air in the primary zone was $0 \%$. This resulted in maximum temperature. The maximum temperature can be reduced by designing the combustion chamber so that the primary zone either operates fuel rich (insufficient air for complete combustion) or fuel lean (excess air). Both of these conditions can result in increased smoke (fuel rich) or increased carbon monoxide and total hydrocarbon emissions (fuel lean). Several methods can be used to reduce $\mathrm{NO}_{x}$, emissions such as water or steam injection or staged combustion or selective catalytic reduction.
The most commonly used method of controlling $\mathrm{NO}_{x}$, emissions is with water or steam injection into the primary zone of the combustion chamber. The water (or steam) injected acts as a heat sink, resulting in a lower maximum temperature, thereby reducing the amount of $\mathrm{NO}_{x}$ formed. The rate at which water is injected is approximately $50 \%$ of the fuel flow. Steam, rates are usually $100-200 \%$ of the fuel flow.

Staged combustion is currently being tested by a number of manufacturers. It provides a way of achieving $\mathrm{NO}_{x}$ emission levels of 25 ppm or less at $15 \%$ oxygen without using water or steam injection. Most of the systems being tested use a two-stage premixed combustor for use
with natural gas. The resulting mixture is lean, so the amount of $\mathrm{NO}_{x}$ is low. Selective catalytic reduction involves injecting ammonia into the gas turbine engine exhaust steam. The exhaust gases then pass over a catalyst where the NO , reacts with the ammonia $\left(\mathrm{NH}_{3}\right)$, oxygen $\left(\mathrm{O}_{2}\right)$ and nitrogen, $\left(\mathrm{N}_{2}\right)$ to form water, $\left(\mathrm{H}_{2} \mathrm{O}\right)$, and nitrogen $\left(\mathrm{N}_{2}\right)$. When combined with water or steam injection, it is reported that NO, levels of 10 ppm or less can be achieved. One major disadvantage is that the reaction is very much temperature dependent. For a vanadium pentoxide type catalyst, the exhaust gas temperature range for best operation is $600-750^{\circ} \mathrm{F}$. For this reason, the selective catalytic reduction method for reducing NO, emission is limited to combined cycles only.
(e) (i) Why are higher heat transfer rates experienced in dropwise condensation than in film condensation?
(ii) Distinguish between nucleate boiling and film boiling.
[6 Marks]
[6 Marks]
Sol.
(i) Higher heat transfer rates are experienced in dropwise condensation compared to film condensation due to the following reasons:

Enhanced Surface Area: Dropwise condensation occurs when individual droplets form and grow on the condensing surface. These droplets act as separate condensation sites, creating a highly textured and rough surface. This roughness significantly increases the surface area available for heat transfer compared to a smooth film of condensed liquid in film condensation. The increased surface area allows for more efficient heat transfer.

Reduced Thermal Resistance: In dropwise condensation, the formation of individual droplets on the surface creates a layer of vapor between the droplets and the surface. This vapor layer acts as an insulator, reducing the thermal resistance between the condensing surface and the droplets. Consequently, heat can more effectively transfer from the condensing surface to the droplets, leading to higher heat transfer rates.

Self-Cleaning Effect: Dropwise condensation exhibits a self-cleaning effect, where the droplets formed on the surface tend to coalesce and shed away, carrying heat with them. As the droplets detach, they leave behind fresh condensation sites, creating a continuous cycle of droplet formation. This self-cleaning mechanism prevents the accumulation of a stagnant film of condensate, which would otherwise hinder heat transfer. In film condensation, the continuous presence of a liquid film can lead to a decrease in heat transfer rates.

It's important to note that achieving and maintaining dropwise condensation can be challenging in practice, as the formation and retention of droplets can be disrupted by various factors such as surface contamination, impurities, and surface wetting characteristics. However, under ideal conditions, dropwise condensation offers superior heat transfer performance compared to film condensation.
(ii)

Nucleate boiling and film boiling are two different stages or regimes of boiling that occur during heat transfer processes. Here's how they can be distinguished:


## Nucleate Boiling:

Mechanism: Nucleate boiling occurs when small bubbles of vapor form at discrete nucleation sites on a heated surface. These nucleation sites can be roughness elements, surface defects, or other imperfections. As the surface temperature increases, these bubbles grow and detach from the surface, causing agitation and mixing of the liquid.

Bubble Characteristics: In nucleate boiling, the bubbles formed are small and dispersed. They typically have a short lifespan and quickly detach from the surface due to buoyancy or fluid flow. The bubble formation and departure create a boiling noise and visual appearance known as "the Leidenfrost effect."

Heat Transfer: Nucleate boiling provides efficient heat transfer due to the direct contact between the hot surface and the bubbles. The bubbles act as carriers, removing heat from the surface as they rise to the bulk liquid. This mechanism enhances heat transfer rates compared to other modes of heat transfer.

## Film Boiling:

Mechanism: Film boiling occurs when a continuous vapor film forms and blankets the heated surface. At high heat fluxes or surface temperatures, the liquid near the surface vaporizes rapidly, creating a vapor layer that insulates the surface from the bulk liquid. This film of vapor inhibits direct contact between the surface and the liquid, leading to reduced heat transfer efficiency.

Vapor Film Characteristics: In film boiling, a stable and continuous vapor film exists on the heated surface. The thickness of this vapor film is relatively large compared to the small bubbles observed in nucleate boiling. The presence of the vapor film creates a barrier to heat transfer.

Heat Transfer: Film boiling is associated with significantly reduced heat transfer rates compared to nucleate boiling. The insulating vapor film impedes heat transfer by introducing a large thermal resistance between the heated surface and the liquid. The heat transfer in film boiling primarily occurs through radiation and conduction across the vapor film.

In summary, nucleate boiling involves the formation and detachment of small bubbles from the heated surface, providing efficient heat transfer through direct contact between the surface
and the liquid. On the other hand, film boiling occurs when a continuous vapor film forms on the surface, resulting in reduced heat transfer efficiency due to the presence of an insulating vapor layer.
2.
(a) (i) Find the distance from the pipe wall at which the local velocity is equal to the average velocity for turbulent flow in pipe.
[12 Marks]
(ii) Distinguish between hydrodynamically smooth and rough boundaries.
[8 Marks]

## Sol.

(i) For turbulent flow in pipe $(\operatorname{Re} \geq 4000)$

As we know $\frac{\mathrm{V}_{\mathrm{avg}}-\mathrm{u}}{\mathrm{V}^{*}}=5.75 \log \left(\frac{\mathrm{R}}{\mathrm{y}}\right)-3.75$
For $\mathrm{V}_{\text {avg }}=\mathrm{u}$,
$5.75 \log \left(\frac{R}{y}\right)-3.75=0$

$$
\log \left(\frac{R}{y}\right)=\frac{3.75}{5.75}
$$

$$
\frac{R}{y}=4.489
$$

$$
y=\frac{R}{4.489}
$$

$$
y=0.223 R
$$

Where $y=$ distance from pipe wall
$R=$ Radius of pipe
(ii) HYDRODYNAMICALLY SMOOTH \& ROUGH BOUNDARIES

In turbulent flow in pipes, the region closes to the boundary, the effect of viscosity is maximum, i.e., flow is still laminar. This is known as the laminar sublayer.

The thickness of the laminar sublayer is directly proportional to the kinematic viscosity and inversely proportional to flow velocity. Thus, the thickness of the laminar sublayer decreases with an increase in the Reynold number.
According to Nikuradse, the expression of the laminar sublayer is given by

$$
\delta^{\prime}=\frac{11.6 v}{V_{*}}
$$

If the thickness of the laminar sublayer is large and eddies are not able to penetrate up to the boundary, then the boundary acts as hydrodynamically smooth.

If the thickness of the laminar sublayer is small and eddies are able to penetrate till the boundary, then the boundary acts as hydrodynamically rough.

Let K is the average height of the irregularities projecting from the surface of a boundary, as shown in figure.


The boundary is said to be rough if the value of $K$ is large and smooth if the value of $K$ is low.

|  | Nikuradse's experiment | Roughness Reynolds <br> number |
| :---: | :---: | :---: |
| Smooth boundary | $\frac{\mathrm{K}}{\delta^{\prime}}<0.25$ | $\frac{\mathrm{~V}_{*} \mathrm{~K}}{\mathrm{v}}<4$ |
| Transition range | $0.25<\frac{\mathrm{K}}{\delta^{\prime}}<6$ | $4<\frac{\mathrm{V}_{*} \mathrm{~K}}{\mathrm{~V}}<100$ |
| Rough boundary | $\frac{\mathrm{K}}{\delta^{\prime}}>6$ | $\frac{\mathrm{~V}_{*} \mathrm{~K}}{v}>100$ |

(b) (i) In a closed system, 3 kg of air at initial conditions of 400 kPa and $90{ }^{\circ} \mathrm{C}$ adiabatically expands until its volume is 2.5 times the initial volume and temperature becomes equal to that of surroundings. If the conditions of the surroundings are 100 kPa and $25{ }^{\circ} \mathrm{C}$, determine the following for this process:
(1) The maximum work
(2) The change in availability
(3) The irreversibility
[15 Marks]
(ii) Prove that for an ideal gas, the slope of an isochoric line on the T-s diagram is more than that of the isobaric line.
[5 Marks]
Sol.
(i) Given,
$m_{\text {air }}=3 \mathrm{~kg}$
$\mathrm{P}_{1}=400 \mathrm{kPa}$
$\mathrm{T}_{1}=90^{\circ} \mathrm{C}$
$\mathrm{V}_{2}=2.5 \mathrm{~V}_{1}$
$\mathrm{P}_{0}=100 \mathrm{kPa}$
$\mathrm{T}_{0}=25^{\circ} \mathrm{C}$

1. $(\Delta \mathrm{S})_{\mathrm{sys}}=\mathrm{C}_{\mathrm{V}} \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)+\mathrm{R} \ln \left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)$

$$
\begin{aligned}
& =0.718 \times \ln \left(\frac{25+273}{10+273}\right)+0.287 \times \ln (2.5) \\
(\Delta \mathrm{S})_{\text {sys }} & =-0.1417+0.2629 \\
(\Delta \mathrm{~S})_{\text {sys }} & =0.1212 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \\
\Delta \mathrm{~S}_{\text {sys }} & =3 \times 0.1212=0.3637 \mathrm{~kJ} / \mathrm{K} \\
\mathrm{~W}_{\max } & =\mathrm{T}_{0}(\Delta \mathrm{~S})-\Delta \mathrm{U} \\
& =298 \times 0.3637-\mathrm{mcv} \Delta \mathrm{~T} \\
& =108.38-3 \times 0.718(25-90) \\
& =108.38+140.01=248.39 \mathrm{~kJ}
\end{aligned}
$$

2. Change in availability $=\phi_{1}-\phi_{2}$

Where $\phi=U+\mathrm{Po}_{0} \mathrm{~V}-\mathrm{T}_{0} \mathrm{~S}$

$$
\begin{aligned}
\Delta \phi & =\left(\phi_{1}-\phi_{2}\right)=\left(\mathrm{U}_{1}+\mathrm{P}_{0} \mathrm{~V}_{1}-\mathrm{T}_{0} \mathrm{~S}_{1}\right)-\left(\mathrm{U}_{2}+\mathrm{P}_{0} \mathrm{~V}_{2}-\mathrm{T}_{0} \mathrm{~S}_{2}\right) \\
& =\mathrm{T}_{0}\left(\mathrm{~S}_{2}-\mathrm{S}_{1}\right)-\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right)-\mathrm{P}_{0}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \\
\Delta \phi & =\mathrm{W}_{\max }-\mathrm{P}_{0}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \\
& =248.39-100 \times\left(2.5 \mathrm{~V}_{1}-\mathrm{V}_{1}\right) \\
\Delta \phi & =248.39-100 \times 1.5 \mathrm{~V}_{1} \\
\mathrm{~V}_{1} & =\frac{\mathrm{mRT}_{1}}{\mathrm{P}_{1}}=\frac{3 \times 0.287 \times 363}{400} \mathrm{~m}^{3} \\
\mathrm{~V}_{1} & =0.7813 \mathrm{~m}^{3}
\end{aligned}
$$

Put in equation (i)
$\Delta \phi=248.39-100 \times 1.5 \times 0.7813 \mathrm{~kJ}$
$\Delta \phi=131.186 \mathrm{~kJ}$
3. Irreversibility (I)

$$
\begin{aligned}
& \mathrm{I}=\mathrm{T}_{0}(\Delta \mathrm{~S})_{\text {universe }}=\mathrm{T}_{0}\left(\Delta \mathrm{~S}_{\text {system }}+\Delta \mathrm{S}_{\text {surr }}\right) \\
& \mathrm{I}=\mathrm{T}_{0}(\Delta \mathrm{~S})_{\text {sys }} \\
& \mathrm{I}=298 \times 0.3637 \mathrm{~kJ}=108.38 \mathrm{~kJ}
\end{aligned}
$$

(ii) For isochoric process $(\mathrm{V}=\mathrm{C})$

$$
\begin{array}{ll}
T d S=d U+P d V & (P d V=0) \\
T d S=d U=m c v d T & \text { (For ideal gas) } \\
\left(\frac{d T}{d S}\right)_{V}=\frac{T}{m c_{V}} \quad \text { (Slope of isochoric process on T-S curve) }
\end{array}
$$

For isobaric process ( $\mathrm{P}=$ constant)
TdS $=\mathrm{dH}-\mathrm{VdP}$

$$
(\mathrm{VdP}=0)
$$

TdS $=d H=m c_{p} d T$
(For ideal gas)
$\left(\frac{d T}{d S}\right)_{p}=\frac{T}{m c_{p}}$ (Slope of isobaric process on T-S curve)

As $\mathrm{c}_{\mathrm{P}}>\mathrm{c}_{\mathrm{V}} \Rightarrow\left(\frac{\mathrm{dT}}{\mathrm{dS}}\right)_{\mathrm{P}}<\left(\frac{\mathrm{dT}}{\mathrm{dS}}\right)_{V}$
(c) A square plate heater ( $15 \mathrm{~cm} \times 15 \mathrm{~cm}$ ) is inserted between two slabs. Slab A is 2 cm thick ( k $=50 \mathrm{~W} / \mathrm{m}^{-}{ }^{\circ} \mathrm{C}$ ) and slab B is 1 cm thick ( $\mathrm{k}=0.2 \mathrm{~W} / \mathrm{m}-{ }^{\circ} \mathrm{C}$ ). The outside heat transfer coefficients on side of $A$ and side of $B$ are $200 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ and $50 \mathrm{~W} / \mathrm{m}^{2}-{ }^{\circ} \mathrm{C}$ respectively. The temperature of surrounding air is $25^{\circ} \mathrm{C}$. If the rating of heater is 1 kW , find the-
(i) maximum temperature of the system.
(ii) outer surface temperature of two slabs.

Assume steady-state heat flow.
[20 Marks]

## Sol.


$\mathrm{k}_{\mathrm{A}}=50 \mathrm{~W} / \mathrm{m}-{ }^{\circ} \mathrm{C}, \quad \mathrm{k}_{\mathrm{b}}=0.2 \mathrm{~W} / \mathrm{m}-{ }^{\circ} \mathrm{C}$
$h_{A}=200 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}, \quad \mathrm{h}_{\mathrm{B}}=50 \mathrm{~W} / \mathrm{m}^{2} \mathrm{H}^{\circ} \mathrm{C}$
$\mathrm{Q}=1000 \mathrm{~W}$
$\mathrm{R}_{\mathrm{th}_{1}}=\frac{\delta_{1}}{\mathrm{~K}_{\mathrm{A}} \mathrm{A}}=\frac{0.02}{50 \times 0.15 \times 0.15}=0.0178 \mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th}_{2}}=\frac{1}{\mathrm{~h}_{\mathrm{A}} \mathrm{A}}=\frac{1}{200 \times 0.15 \times 0.15}=0.22 \mathrm{~K} / \mathrm{W}$
These resistances are in series and accordingly for slab $A$.
$\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{th}_{1}}+\mathrm{R}_{\mathrm{th}_{2}}=0.0178+0.22=0.24 \mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th}_{3}}=\frac{\delta_{2}}{\mathrm{k}_{\mathrm{B}} \mathrm{A}}=\frac{0.01}{0.2 \times 0.15 \times 0.15}=2.22 \mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th}_{4}}=\frac{1}{\mathrm{~h}_{\mathrm{B}} \mathrm{A}}=\frac{1}{50 \times 0.15 \times 0.15}=0.889 \mathrm{~K} / \mathrm{W}$
These resistances are in series and accordingly for slab $B$.
$R_{B}=R_{\mathrm{th}_{3}}+\mathrm{R}_{\mathrm{th}_{4}}=2.22+0.889=3.109 \mathrm{~K} / \mathrm{W}$
Rating of heater, $\mathrm{Q}=\mathrm{Q}_{\mathrm{A}}+\mathrm{Q}_{B}$

$$
Q=\frac{T_{\max }-T_{\infty}}{R_{A}}+\frac{T_{\max }-T_{\infty}}{R_{B}}
$$

$$
\begin{aligned}
\mathrm{Q} & =\left(\mathrm{T}_{\max }-\mathrm{T}_{\infty}\right)\left(\frac{1}{R_{A}}+\frac{1}{R_{\mathrm{B}}}\right) \\
1000 & =\left(\mathrm{T}_{\max }-25\right)\left(\frac{1}{0.24}+\frac{1}{3.109}\right) \\
T_{\max } & =247.8^{\circ} \mathrm{C}
\end{aligned}
$$

Considering left side branch of circuit (slab A)

$$
Q_{A}=\frac{T_{\max }-T_{\infty}}{R_{A}}=\frac{247.8-25}{0.24}=928.34 \mathrm{~W}
$$

If $T_{A}$ is the temperature at exposed surface of slab $A$, then,

$$
\begin{aligned}
Q_{A} & =\frac{T_{A}-T_{\infty}}{R_{t h_{2}}} \\
928.34 & =\frac{T_{A}-25}{0.22} \\
T_{A} & =229.23^{\circ} \mathrm{C}
\end{aligned}
$$

Considering right side branch of the circuit (slab B)

$$
\begin{aligned}
Q_{B} & =\frac{T_{B}-T_{\infty}}{R_{\mathrm{th}_{4}}} \\
Q-Q_{A} & =\frac{T_{B}-T_{\infty}}{R_{\mathrm{th}_{4}}} \\
1000-928.34 & =\frac{T_{B}-25}{0.889} \\
T_{B} & =88.71^{\circ} \mathrm{C}
\end{aligned}
$$

3. 

(a) A centrifugal pump discharges 2000 litres/s of water developing a head of 20 m when running at 300 rpm . The impeller diameter at the outlet and outlet flow velocity are 1.5 m and $3.0 \mathrm{~m} / \mathrm{s}$ respectively. If the blades are set back at an angle of $30^{\circ}$ at the outlet, determine the
(i) manometric efficiency.
(ii) power required by the pump.
(iii) minimum speed to start the pump if the inner diameter is 750 mm .
[20 Marks]
Sol. Given,
$\mathrm{Q}=2000 \mathrm{It} / \mathrm{s}=2 \mathrm{~m}^{3} / \mathrm{s}, \quad \mathrm{H}_{\mathrm{m}}=20 \mathrm{~m}, \quad \mathrm{~N}=300 \mathrm{rpm}$
$D_{2}=1.5 \mathrm{~m}, \quad \mathrm{~V}_{\mathrm{f} 2}=3 \mathrm{~m} / \mathrm{s}, \quad \beta_{2}=30^{\circ}$ (backward angle vanes)
Outlet velocity triangle


$$
\begin{aligned}
\mathrm{u}_{2} & =\frac{\pi \mathrm{D}_{2} \mathrm{~N}}{60}=\frac{\pi \times 1.5 \times 300}{60}=23.56 \mathrm{~m} / \mathrm{s} \\
\tan \beta_{2} & =\frac{\mathrm{V}_{\mathrm{f}_{2}}}{\mathrm{u}_{2}-\mathrm{V}_{\mathrm{w}_{2}}} \\
\tan 30^{\circ} & =\frac{3}{23.56-\mathrm{V}_{\mathrm{w}_{2}}} \\
\mathrm{~V}_{\mathrm{w}_{2}} & =18.36 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

i. Manometric efficiency (hydraulic efficiency)

$$
\begin{aligned}
& \eta_{\mathrm{h}}=\frac{\text { Hydraulic Power }}{\text { Rotor Power }}=\frac{\mathrm{mgH}_{\mathrm{m}}}{\mathrm{~m}\left(\mathrm{~V}_{\mathrm{w}_{2}} u_{2}\right)} \\
& \eta_{\mathrm{h}}=\frac{9.81 \times 20}{18.36 \times 23.56}=0.4535=45.35 \%
\end{aligned}
$$

ii. Power required by pump $=$ shaft power

SP $=T \times \omega=R P$ - Mechanical losses
Assuming mechanical losses as zero.

$$
\begin{aligned}
\mathrm{SP} & =\mathrm{RP}=\dot{\mathrm{m}}\left(\mathrm{~V}_{\mathrm{w} 2} \mathrm{U}_{2}\right)=\rho \mathrm{Q}\left(\mathrm{~V}_{\mathrm{w} 2} \mathrm{U}_{2}\right) \\
& =10^{3} \times 2 \times(18.36 \times 23.56)=865123.2 \mathrm{~W}=865.123 \mathrm{~kW}
\end{aligned}
$$

iii. Minimum speed to start the pump if $D_{1}=750 \mathrm{~mm}$

$$
\begin{aligned}
& \omega_{\min }=\sqrt{\frac{2 \mathrm{gH}_{\mathrm{m}}}{\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}^{2}\right)}}=\sqrt{\frac{2 \times 9.81 \times 20}{\left(\frac{1.5}{2}\right)^{2}-\left(\frac{0.75}{2}\right)^{2}}} \\
& \omega_{\min }=30.498 \mathrm{rad} / \mathrm{s}=\frac{2 \pi \mathrm{~N}_{\min }}{60} \\
& \mathrm{~N}_{\min }=291.23 \mathrm{rpm}
\end{aligned}
$$

(b) Air flows at $12 \mathrm{~m} / \mathrm{s}$ past a smooth rectangular flat plate 0.4 m wide and 3 m long. Assuming that the transition occurs at $\operatorname{Re}=5.5 \times 10^{5}$, calculate the total drag force when-
(i) the flow is parallel to the length of the plate.
(ii) the flow is parallel to the width of the plate.

Assume,
Density of air, $\rho=1.24 \mathrm{~kg} / \mathrm{m}^{3}$
Kinematic viscosity, v $=0.15$ stokes
[20 Marks]
Sol. Given,
$\mathrm{u}_{\infty}=12 \mathrm{~m} / \mathrm{s}, \rho_{\text {air }}=1.24 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{L}=3 \mathrm{~m}, v=0.15$ stokes $=0.15 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$
$B=0.4 \mathrm{~m}$
$R_{\text {cr }}=5.5 \times 10^{5}$
To find total drag force ( $\mathrm{F}_{\mathrm{D}}$ )
i. Flow parallel to length of plate


$$
\begin{aligned}
\operatorname{Re}_{\mathrm{L}} & =\frac{\rho u_{\infty} \mathrm{L}}{\mu}=\frac{u_{\infty} \mathrm{L}}{v} \\
\operatorname{Re}_{\mathrm{L}} & =\frac{12 \times 3}{0.15 \times 10^{-4}}=2.4 \times 10^{6} \\
\operatorname{Re}_{C r} & =\frac{\mathrm{u}_{\infty} \mathrm{x}_{\mathrm{Cr}}}{v}=5.5 \times 10^{5} \\
\mathrm{X}_{\mathrm{Cr}} & =\frac{5.5 \times 10^{5} \times 0.15 \times 10^{-4}}{12}=0.6875 \mathrm{~m}
\end{aligned}
$$

Up to $\mathrm{X}_{\mathrm{Cr}}=0.6875$, boundary layer will be laminar.

$$
\begin{aligned}
& C_{D}=2 C_{f, x_{C r}} \\
& C_{D}=\frac{2 \times 0.664}{\sqrt{R e_{C r}}}=\frac{1.328}{\sqrt{5.5 \times 10^{5}}}=1.79 \times 10^{-3} \\
& F_{D_{I}}=C_{D} A_{I}\left(\frac{\rho u_{\infty}^{2}}{2}\right) \\
& F_{D_{I}}=1.79 \times 10^{-3} \times(0.6875 \times 0.4) \times \frac{1.24 \times 12^{2}}{2} \\
& F_{D_{I}}=0.0439 \mathrm{~N}
\end{aligned}
$$

For II ${ }^{\text {nd }}$ Region (Turbulent BL region)

$$
C_{D}=\frac{5}{4} \times C_{f_{x=L}}=\frac{5}{4} \times \frac{0.059}{\left.(\operatorname{Re})_{L}\right)^{1 / 5}}
$$

$$
\begin{aligned}
& C_{D}=\frac{5}{4} \times \frac{0.059}{\left(2.4 \times 10^{6}\right)^{1 / 5}}=3.9 \times 10^{-3} \\
& F_{D_{I I}}=C_{D} A\left(\frac{\rho U_{\infty}^{2}}{2}\right) \\
& F_{D_{I I}}=3.9 \times 10^{-3} \times(3-0.6875) \times 0.4^{2} \times \frac{1.24 \times 12^{2}}{2} \\
& F_{D_{I I}}=0.322 \mathrm{~N} \\
& F_{\text {total }}=F D_{I}+F D_{\text {II }}=0.0439+0.322=0.366 \mathrm{~N}
\end{aligned}
$$

ii. Flow parallel to plate width


Laminar Boundary layer over the width plate
$C_{D}=2 \times C_{f, x=0.4}=\frac{2 \times 0.664}{\sqrt{R_{x}=0.4}}=\frac{2 \times 0.664}{\sqrt{3.2 \times 10^{5}}}$
$C_{D}=2.347 \times 10^{-3}$
$F_{D_{\text {totatal }}}=C_{D} A\left(\frac{\rho u_{\infty}^{2}}{2}\right)=2.347 \times 10^{-3} \times(0.4 \times 3) \times \frac{1.24 \times 12^{2}}{2}$
$\mathrm{F}_{\mathrm{D}_{\text {total }}}=0.2515 \mathrm{~N}$
(c) Two tanks, tank $A$ and tank $B$, are separated by a partition as shown in the figure. Tank $A$ contains 3 kg of steam at 1 MPa and $300^{\circ} \mathrm{C}$. Tank B contains 4 kg of saturated liquid-vapour mixture at $150^{\circ} \mathrm{C}$ with a dryness fraction of 0.5 . The partition is removed, and two fluids are allowed to mix until the thermal equilibrium and mechanical equilibrium are acquired. If the pressure of the final state is 300 kPa , determine-
(i) the temperature of the final state.
(ii) the quality of the steam at final state.
(iii) the amount of heat lost from the tanks.

Partition

[20 Marks]

## Steam Table

|  |  | Specific Volume, $\mathrm{m}^{3} / \mathrm{kg}$ |  | Internal Energy, kJ/kg |  |  | Enthalpy, kJ/kg |  |  | Entropy, kJ/kg-K |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. ${ }^{\circ} \mathrm{C}$ T | Pressure kPa, MPa P | Sat. <br> Liquid $v_{f}$ | Sat. Vapour $\mathrm{V}_{\mathrm{g}}$ | Sat. <br> Liquid $\mathrm{u}_{\mathrm{f}}$ | Evap. <br> $\mathrm{u}_{\mathrm{fg}}$ | Sat. Vapour $u_{g}$ | Sat. Liquid $h_{f}$ | Evap. $h_{f g}$ | Sat. Vapour $h_{g}$ | Sat. Liquid $\mathrm{S}_{\mathrm{f}}$ | Evap. <br> $\mathrm{S}_{\mathrm{fg}}$ | Sat. Vapour $\mathrm{S}_{\mathrm{g}}$ |
| 105 | 0.12082 | 0.001047 | 1.4194 | 440.00 | 2072.3 | 2512.3 | 440.13 | 2243.7 | 2683.8 | 1.3629 | 5.9328 | 7.2958 |
| 110 | 0.14328 | 0.001052 | 1.2102 | 461.12 | 2057.0 | 2518.1 | 461.27 | 2230.2 | 2691.5 | 1.4184 | 5.8202 | 7.2386 |
| 115 | 0.16906 | 0.001056 | 1.0366 | 482.28 | 2041.4 | 2523.7 | 482.46 | 2216.5 | 2699.0 | 1.4733 | 5.7100 | 7.1832 |
| 120 | 0.19853 | 0.001060 | 0.8919 | 503.48 | 2025.8 | 2529.2 | 503.69 | 2202.6 | 2706.3 | 1.5275 | 5.6020 | 7.1295 |
| 125 | 0.2321 | 0.001065 | 0.77059 | 524.72 | 2009.9 | 2534.6 | 524.96 | 2188.5 | 2713.5 | 1.5812 | 5.4962 | 7.0774 |
| 130 | 0.2701 | 0.001070 | 0.66850 | 546.00 | 1993.9 | 2539.9 | 546.29 | 2174.2 | 2720.5 | 1.6343 | 5.3925 | 7.0269 |
| 135 | 0.3130 | 0.001075 | 0.58217 | 567.34 | 1977.7 | 2545.0 | 567.67 | 2159.6 | 2727.3 | 1.6869 | 5.2907 | 6.9777 |
| 140 | 0.3613 | 0.001080 | 0.50885 | 588.72 | 1961.3 | 2550.0 | 589.11 | 2144.8 | 2733.9 | 1.7390 | 5.1908 | 6.9298 |
| 145 | 0.4154 | 0.001085 | 0.44632 | 610.16 | 1944.7 | 2554.9 | 610.61 | 2129.6 | 2740.3 | 1.7906 | 5.0926 | 6.8832 |
| 150 | 0.4759 | 0.001090 | 0.39278 | 631.66 | 1927.9 | 2559.5 | 632.18 | 2114.3 | 2746.4 | 1.8417 | 4.9960 | 6.8378 |
| 155 | 0.5431 | 0.001096 | 0.34676 | 653.23 | 1910.8 | 2564.0 | 653.82 | 2098.6 | 2752.4 | 1.8924 | 4.9010 | 6.7934 |
| 160 | 0.6178 | 0.001102 | 0.30706 | 674.85 | 1893.5 | 2568.4 | 675.53 | 2082.6 | 2758.1 | 1.9426 | 4.8075 | 6.7501 |
| 165 | 0.7005 | 0.001108 | 0.27269 | 696.55 | 1876.0 | 2572.5 | 697.32 | 2066.2 | 2763.5 | 1.9924 | 4.7153 | 6.7078 |
| 170 | 0.7917 | 0.001114 | 0.24283 | 718.31 | 1858.1 | 2576.5 | 719.20 | 204.5 | 2768.7 | 2.0415 | 4.6244 | 6.6663 |
| 175 | 0.8920 | 0.001121 | 0.21680 | 740.16 | 1840.0 | 2580.2 | 741.16 | 2032.4 | 2773.6 | 2.0909 | 4.5347 | 6.6256 |
| 180 | 1.0022 | 0.001127 | 0.19405 | 762.08 | 1821.6 | 2583.7 | 763.21 | 2015.0 | 2778.2 | 2.1395 | 4.4461 | 6.5857 |
| 185 | 1.1227 | 0.001134 | 0.17409 | 784.08 | 1802.9 | 2587.0 | 785.36 | 1997.1 | 2782.4 | 2.1878 | 4.3586 | 6.5464 |
| 190 | 1.2544 | 0.001141 | 0.15654 | 806.17 | 1783.8 | 2590.0 | 807.61 | 1978.8 | 2786.4 | 2.2358 | 4.2720 | 6.5078 |
| 195 | 1.3978 | 0.001149 | 0.14105 | 828.36 | 1764.4 | 2592.8 | 829.96 | 1960.0 | 2790.0 | 2.2835 | 4.1863 | 6.4697 |
| 200 | 1.5538 | 0.001156 | 0.12736 | 850.64 | 1744.7 | 2595.3 | 852.43 | 1940.7 | 2793.2 | 2.3308 | 4.1014 | 6.4322 |
| 205 | 1.7230 | 0.001164 | 0.11521 | 873.08 | 1724.5 | 2597.5 | 875.03 | 1921.0 | 2796.0 | 2.3779 | 4.0172 | 6.3951 |
| 210 | 1.9063 | 0.001173 | 0.10441 | 895.51 | 1703.9 | 2599.4 | 897.75 | 1900.7 | 2798.5 | 2.4247 | 3.9337 | 6.3584 |
| 215 | 2.1042 | 0.001181 | 0.09479 | 918.12 | 1682.9 | 2601.1 | 950.61 | 1879.9 | 2800.5 | 2.4713 | 3.8507 | 6.3221 |
| 220 | 2.3178 | 0.001190 | 0.08619 | 940.85 | 1661.5 | 2602.3 | 943.61 | 1858.5 | 2802.1 | 2.5177 | 3.7683 | 6.2860 |


| $\mathrm{P}=200 \mathrm{kPa}(120.23)$ |  |  |  |  | $\mathrm{P}=300 \mathrm{kPa}(133.55)$ |  |  |  | $\mathrm{P}=400 \mathrm{kPa}(143.63)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | V | u | h | S | V | u | h | S | V | u | h | S |
| 900 | 2.70643 | 3854.5 | 4395.8 | 9.4565 | 1.80406 | 3854.2 | 4395.4 | 9.2691 | 1.35288 | 3853.9 | 395.1 | 9.1361 |
| 1000 | 2.93740 | 4052.5 | 4640.0 | 9.6563 | 1.95812 | 4052.3 | 4639.7 | 9.4689 | 1.46847 | 4050.0 | 4639.4 | 9.3360 |
| 1100 | 3.16834 | 4257.0 | 4890.7 | 9.8458 | 2.11214 | 4256.8 | 4890.4 | 9.6585 | 1.58404 | 4256.5 | 4890.1 | 9.5255 |
| 1200 | 3.39927 | 4467.5 | 5147.3 | 10.0262 | 2.26614 | 4467.2 | 5147.1 | 9.8389 | 1.69958 | 4467.0 | 5146.8 | 9.7059 |
| 1300 | 3.63018 | 4683.2 | 5409.3 | 10.1982 | 2.42013 | 4683.0 | 5409.0 | 10.0109 | 1.81511 | 4682.8 | 5408.8 | 9.8780 |
| $\mathrm{P}=500 \mathrm{kPa}(151.86)$ |  |  |  |  | $\mathrm{P}=600 \mathrm{kPa}(158.85)$ |  |  |  | $\mathrm{P}=800 \mathrm{kPa}$ (170.43) |  |  |  |
| Sat. | 0.37489 | 2561.2 | 2748.7 | 6.8212 | 0.31567 | 2567.4 | 2756.8 | 6.7600 | 0.24043 | 2576.8 | 2769.1 | 6.6627 |
| 200 | 0.42492 | 2642.9 | 2855.4 | 7.0592 | 0.35202 | 2638.9 | 2850.1 | 6.9665 | 0.26080 | 2630.6 | 2839.2 | 6.8158 |
| 250 | 0.47436 | 2723.5 | 2960.7 | 7.2708 | 0.39383 | 2720.9 | 2957.2 | 7.1816 | 0.29314 | 2715.5 | 2950.0 | 7.0384 |
| 300 | 0.52256 | 2802.9 | 3064.2 | 7.4598 | 0.43437 | 2801.0 | 3061.6 | 7.3723 | 0.32411 | 2797.1 | 3056.4 | 7.2372 |
| 350 | 0.57012 | 2882.6 | 31.67 .6 | 7.6328 | 0.47424 | 2881.1 | 3165.7 | 7.5463 | 0.35439 | 2878.2 | 3161.7 | 7.4088 |
| 400 | 0.61728 | 2963.2 | 3271.8 | 7.7937 | 0.51372 | 2962.0 | 3270.2 | 7.7078 | 0.38426 | 2959.7 | 3267.1 | 7.5715 |
| 500 | 0.71093 | 3128.4 | 3483.8 | 8.0872 | 0.59199 | 3127.6 | 3482.7 | 8.0020 | 0.44331 | 3125.9 | 3480.6 | 7.8672 |
| 600 | 0.80406 | 3299.6 | 3701.7 | 8.3521 | 0.66974 | 3299.1 | 3700.9 | 8.2673 | 0.50184 | 3297.9 | 3699.4 | 8.1332 |
| 700 | 0.89691 | 3477.5 | 3926.0 | 8.5952 | 0.74720 | 3477.1 | 3925.4 | 8.5107 | 056007 | 3476.2 | 3924.3 | 8.3770 |
| 800 | 0.98959 | 3662.2 | 4157.0 | 8.8211 | 0.82450 | 3661.8 | 4156.5 | 8.7367 | 0.61813 | 3661.1 | 4155.7 | 8.6033 |
| 900 | 1.08217 | 3853.6 | 4394.7 | 9.0329 | 0.90169 | 3853.3 | 4394.4 | 8.9485 | 0.67610 | 3852.8 | 4393.6 | 8.8153 |
| 1000 | 1.17469 | 4051.8 | 4639.1 | 9.2328 | 0.97883 | 4051.5 | 4638.8 | 9.1484 | 0.73401 | 4051.0 | 4638.2 | 9.0153 |
| 1100 | 1.6718 | 4256.3 | 4889.9 | 9.4224 | 1.05594 | 4256.1 | 4889.6 | 9.3381 | 0.79188 | 4255.6 | 4889.1 | 9.2049 |
| 1200 | 1.35964 | 4466.8 | 5146.6 | 9.6028 | 1.13302 | 4466.5 | 5146.3 | 9.5185 | 0.84974 | 4466.1 | 5145.8 | 9.3854 |
| 1300 | 1.45210 | 4682.5 | 5408.6 | 9.7749 | 1.21009 | 4682.3 | 5408.3 | 9.6906 | 0.90758 | 4681.8 | 5407.9 | 9.5575 |
| $P=1.00 \mathrm{MPa}(179.91) \quad P=1.20$ |  |  |  |  |  |  |  |  | $\mathrm{P}=1.40 \mathrm{MPa}$ (195.07) |  |  |  |
| Sat. | 0.19444 | 2583.6 | 2778.1 | 6.5864 | 0.16333 | 2588.8 | 2784.8 | 6.5233 | 0.14084 | 2592.8 | 2790.0 | 6.4692 |
| 200 | 0.20596 | 2621.9 | 2827.9 | 6.6939 | 0.16932 | 2612.7 | 2815.9 | 6.5898 | 0.14302 | 2603.1 | 2803.3 | 6.4975 |
| 250 | 0.23268 | 2709.9 | 2942.6 | 6.9246 | 0.19235 | 2704.2 | 2935.0 | 6.8293 | 0.16350 | 2698.3 | 2927.2 | 6.7467 |
| 300 | 0.25794 | 2793.2 | 3051.2 | 7.1228 | 0.21382 | 2789.2 | 3045.8 | 7.0316 | 0.18228 | 2785.2 | 3040.4 | 6.9533 |
| 350 | 0.28247 | 2875.2 | 3157.7 | 7.3010 | 0.23452 | 2872.2 | 3153.6 | 7.2120 | 0.20026 | 2869.1 | 3149.5 | 7.1359 |
| 400 | 0.30659 | 2957.3 | 3263.9 | 7.4650 | 0.25480 | 2954.9 | 3260.7 | 7.3773 | 0.21780 | 2952.5 | 3257.4 | 7.3025 |
| 500 | 0.35411 | 3124.3 | 3478.4 | 7.7621 | 0.29463 | 3122.7 | 3476.3 | 7.6758 | 0.25215 | 3121.1 | 3474.1 | 7.6026 |


| Pressure MPa P | Temp.${ }^{\circ} \mathrm{C}$T | Specific Volume, $\mathrm{m}^{3} / \mathrm{kg}$ |  | Internal Energy, kJ/kg |  |  | Enthalpy, kJ/kg |  |  | Entropy, kJ/kg-K |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liquid $v_{f}$ | Sat. Vapour $v_{g}$ | Sat. <br> Liquid <br> $\mathrm{u}_{\mathrm{f}}$ | Evap. $\mathrm{u}_{\mathrm{fg}}$ | Sat. <br> Vapour <br> $u_{g}$ | Sat. <br> Liquid $h_{f}$ | Evap. $h_{f g}$ | Sat. Vapour $h_{g}$ | Sat. Liquid $\mathrm{S}_{\mathrm{f}}$ | $\begin{gathered} \text { Evap. } \\ \mathbf{s}_{\mathrm{fg}} \end{gathered}$ |  |
| 0.275 | 130.60 | 0.001070 | 0.6573 | 548.57 | 1992.0 | 2540.5 | 548.87 | 2172.4 | 2721.3 | 1.6407 | 5.3801 | 7.0208 |
| 0.300 | 133.55 | 0.001073 | 0.6058 | 561.31 | 1982.4 | 2543.6 | 56145 | 2163.9 | 2725.3 | 1.6717 | 5.3201 | 6.9918 |
| 0.325 | 136.30 | 0.001076 | 0.5620 | 572.88 | 1973.5 | 2546.3 | 573.23 | 2155.8 | 2729:0 | 1.7005 | 5.2646 | 6.9651 |
| 0.350 | 138.88 | 0.001079 | 0.5243 | 583.93 | 1965.0 | 2548.9 | 584.31 | 2148.1 | 2732.4 | 1.7274 | 5.2130 | 6.9404 |
| 0.375 | 141.32 | 0.001081 | 0.4914 | 594.38 | 1956.9 | 2255.13 | 594.79 | 2140.8 | 2735.6 | 1.7527 | 5.1647 | 6.9174 |
| 0.40 | 143.63 | 0.001084 | 0.4625 | 604.29 | 1949.3 | 2553.6 | 604.73 | 2133.8 | 2738.5 | 1.7766 | 5.1193 | 6.8958 |
| 0.45 | 147.93 | 0.001088 | 0.4140 | 622.75 | 1934.9 | 2557.6 | 623.24 | 2120.7 | 2743.9 | 1.8206 | 5.0359 | 6.8565 |
| 0.50 | 151.86 | 0.001093 | 0.3749 | 639.66 | 1921.6 | 2561.2 | 640.21 | 2108.5 | 2748.7 | 1.8606 | 4.9606 | 6.8212 |
| 0.55 | 155.48 | 0.001097 | 0.3427 | 655.30 | 1909.2 | 2564.3 | 655.91 | 2097.0 | 2752.9 | 1.8972 | 4.8920 | 5.7892 |
| 0.60 | 158.85 | 0:001101 | 0.3157 | 669.88 | 1897.5 | 2567.4 | 670.54 | 2086.3 | 2756.8 | 1.9311 | 4.8289 | 5.7600 |
| 0.65 | 162.01 | 0:001104 | 0.2927 | 683.55 | 1886.5 | 2570.1 | 684.26 | 2076.0 | 2760.3 | 1.9627 | 4.7704 | 6.7330 |
| 0.70 | 164.97 | 0:001108 | 0.2729 | 696.43 | 1876.1 | 2672.5 | 697.20 | 2066.3 | 2763.5 | 1.9922 | 4.7158 | 6.7080 |
| 0.75 | 167.77 | 0.001111 | 0.2556 | 708.62 | 1866.1 | 2574.7 | 709.45 | 2057:0 | 2766.4 | 2.0199 | 4:6647 | 6.6846 |
| 0.80 | 170.43 | 0.001115 | 0.2404 | 720.20 | 1856.6 | 2576.8 | 721.10 | 2048.0 | 2769.1 | 2.0461 | 4.6166 | 6.6627 |
| 0.85 | 172.96 | 0:001118 | 0.2270 | 731.25 | 1847.4 | 2578.7 | 732:20 | 2039.4 | 2771.6 | 2.0709 | 4.5711 | 6.6421 |
| 0.90 | 175.38 | 0.001121 | 0.2150 | 741.81 | 1838.7 | 2580.5 | 742.82 | 2031.1 | 2773.9 | 2.0946 | 4.5280 | 6.6225 |
| 0.95 | 177.69 | 0.001124 | 0.2042 | 751.94 | 1830.2 | 2582.1 | 753.00 | 2023.1 | 2776.1 | 2.1171 | 4.4869 | 6.6040 |
| 1.00 | 179.91 | 0.001127 | 0.19444 | 761.67 | 1822.0 | 2583.6 | 762.79 | 2015.3 | 2778.1 | 2.1386 | 4.4478 | 6.5864 |
| 1.10 | 184.09 | 0.001133 | 0.17753 | 780.08 | 1806.3 | 2586.4 | 781:32 | 2000.4 | 2781.7 | 2.1791 | 4.3744 | 6.5535 |
| 1.20 | 187.99 | 0.001139 | 0.16333 | 797.27 | 1791.6 | 2588.8 | 798.64 | 1986.2 | 2784.8 | 2.2165 | 4.3067 | 6.5233 |
| 1.30 | 191.64 | 0.001144 | 0.15125 | 813.42 | 1777.5 | 2590.9 | 814.91 | 1972.7 | 2787.6 | 2.2514 | 4.2438 | 6.4953 |
| 1.40 | 195.07 | 0.001149 | 0.14084 | 828.68 | 1764.1 | 2592.8 | 830.29 | 1959.7 | 2790.0 | 2.2842 | 4.1850 | 6.4692 |
| 1.50 | 198.32 | 0:001154 | 0.13177 | 843.14 | 1751.3 | 2594.5 | 844.87 | 1947.3 | 2792.1 | 2.3150 | 4.2198 | 6.4448 |
| 1.75 | 205.76 | 0.001166 | 0.11349 | 876.44 | 1721.4 | 2597.8 | 878.48 | 1918.0 | 2796.4 | 2.3851 | 4.0044 | 6.3895 |
| 2.00 | 212.42 | 0.001177 | 0.09963 | 906.42 | 1693.8 | 2600.3 | 908.77 | 1890.7 | 2799.5 | 2.4473 | 3.8935 | 6.3408 |
| 2.25 | 218.45 | 0.001187 | 0.08875 | 933.81 | 1668.2 | 2602.0 | 936.48 | 1865.2 | 2801.7 | 2.5034 | 3.7938 | 6.2971 |

Sol. Given,

```
m}=3\textrm{kg}(\mathrm{ steam), m
```

$P_{1 A}=1 \mathrm{MPa}, \quad \mathrm{T}_{1 \mathrm{~B}}=150^{\circ} \mathrm{C}, \quad \mathrm{T}_{1 \mathrm{~A}}=300^{\circ} \mathrm{C}, \quad \mathrm{x}_{1 \mathrm{~B}}=0.5$
After equilibrium: $P_{\text {mix }}=300 \mathrm{kPa}$
From steam table (For tank A)
$\mathrm{u}_{1 \mathrm{~A}}=2793.7 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{v}_{1 \mathrm{~A}}=0.25799 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{V}_{\mathrm{A}}=\mathrm{m}_{\mathrm{A}} \times \mathrm{V}_{1 \mathrm{~A}}=3 \times 0.25799=0.77397 \mathrm{~m}^{3}$
For Tank B (At $150^{\circ} \mathrm{C}$ )
$\mathrm{V}_{1 \mathrm{~B}}=\mathrm{V}_{\mathrm{f}}+\mathrm{x}_{1 \mathrm{~B}} \times\left(\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{f}}\right)$
$v_{1 B}=0.001090+0.5(0.39248-0.001090)$
$\mathrm{v}_{1 \mathrm{~B}}=0.196935 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{V}_{\mathrm{B}}=\mathrm{m}_{\mathrm{B}} \times \mathrm{V}_{1 \mathrm{~B}}=4 \times 0.196935=0.78774 \mathrm{~m}^{3}$
As $V_{\text {mix }}=V_{A}+V_{B}$
$V_{\text {mix }}=(0.77397+0.78774) \mathrm{m}^{3}$
$V_{\text {mix }}=1.562 \mathrm{~m}^{3}$
$m_{\text {mix }}=m_{A}+m_{B}=3+4=7 \mathrm{~kg}$
$\mathrm{v}_{\text {mix }}=\frac{\mathrm{V}_{\text {mix }}}{\mathrm{m}_{\text {mix }}}=\frac{1.562}{7} \mathrm{~m}^{3} / \mathrm{kg}$
$V_{\text {mix }}=0.2231 \mathrm{~m}^{3} / \mathrm{kg}$
At $P_{\text {mix }}=300 \mathrm{kPa}$
At $P_{\text {sat }}=300 \mathrm{kPa}, \mathrm{v}_{\mathrm{f}}=0.001073 \mathrm{~m}^{3} / \mathrm{kg} ; \mathrm{v}_{\mathrm{g}}=0.60582 \mathrm{~m}^{3} / \mathrm{kg}$
As $\mathrm{V}_{\mathrm{f}}<\mathrm{V}_{\text {mix }}<\mathrm{V}_{\mathrm{g}}$
Saturation mixture
$\mathrm{T}_{2}=\mathrm{T}_{\text {sat }}=133.52^{\circ} \mathrm{C} \quad\left(\right.$ At $\left.P_{\text {sat }}=300 \mathrm{kPa}\right)$
ii. $\quad V_{\text {mix }}=V_{f}+x_{\text {mix }}\left(V_{g}-v_{f}\right)$

$$
x_{\text {mix }}=\frac{v_{\text {mix }}-v_{f}}{v_{g}-v_{f}}=\frac{0.2231-0.001073}{0.60582-0.001073}
$$

$$
x_{\text {mix }}=0.367
$$

iii. $u_{\text {mix }}=u_{f}+X_{\text {mix }}\left(u_{g}-v_{f}\right)$
$u_{\text {mix }}=561.11+0.367(2543.21-561.11)$
$u_{\text {mix }}=1286.5 \mathrm{~kJ} / \mathrm{kg}$
First law of thermodynamic

$$
\begin{aligned}
\mathrm{Q} & =\Delta \mathrm{U}+\mathrm{W} \quad(\mathrm{~W}=0) \\
\mathrm{Q} & =\mathrm{U}_{\text {mix }}-\left(\mathrm{U}_{A}+\mathrm{U}_{\mathrm{B}}\right) \\
& =\mathrm{m}_{\text {mix }} \times \mathrm{u}_{\text {mix }}-\left(\mathrm{m}_{\mathrm{A}} \times \mathrm{u}_{1 \mathrm{~A}}+\mathrm{m}_{\mathrm{B}} \times \mathrm{u}_{1 \mathrm{~B}}\right) \\
& =(7 \times 1286.5)-[(3 \times 2793.7)+(4 \times 1595.36)] \\
& =9005.5-14762.54 \mathrm{~kJ} \\
\mathrm{Q} & =-5757.04 \mathrm{~kJ}
\end{aligned}
$$

Negative sign means heat loss.
4.
(a) A truncated cone has top and bottom diameters of 10 cm and 20 cm respectively, and a height of 10 cm . Calculate the shape factor between the top surface and the side, and also the shape factor between the side and itself. Use the figure showing the radiation shape factor for radiation between two parallel coaxial disks:

[20 Marks]

Sol.

The geometry has three surfaces,

Bottom surface (1), Top surface (2) and Side surface (3)

The shape factor for each surface is given by,

For surface 1,

$$
F_{1-1}+F_{1-2}+F_{1-3}=1
$$

Since bottom surface is flat, $\mathrm{F}_{1-1}=0$

$$
F_{1-2}+F_{1-3}=1
$$

For surface 2,

$$
F_{2-1}+F_{2-2}+F_{2-3}=1
$$

Since top surface is flat, $\mathrm{F}_{2-2}=0$

$$
F_{2-1}+F_{2-3}=1
$$

Also, $A_{1} F_{1-2}=A_{2} F_{2-1}$ this factor is given from the graph,
The radius of bottom surface $r_{1}=10 \mathrm{~cm}$, radius of top surface $r_{2}=5 \mathrm{~cm}$, and height $L$ is 10 cm.
$\frac{\mathrm{L}}{\mathrm{r}_{1}}=\frac{10}{10}=1$
$\frac{\mathrm{r}_{2}}{\mathrm{~L}}=\frac{5}{10}=0.5$
Based on these values, the shape factor $F_{1-2}$ is found out as shown in figure

$\mathrm{F}_{1-2}=0.1$
$\mathrm{A}_{1} \mathrm{~F}_{1-2}=\mathrm{A}_{2} \mathrm{~F}_{2-1}$
$\mathrm{F}_{2-1}=\frac{\mathrm{A}_{1} \mathrm{~F}_{1-2}}{\mathrm{~A}_{2}}=\frac{\pi r_{1}^{2} \times \mathrm{F}_{1-2}}{\pi r_{2}^{2}}=\frac{\pi \times 10^{2} \times 0.1}{\pi \times 5^{2}}=0.4$
Therefore, the shape factor for top surface is given by,
$F_{2-1}+F_{2-3}=1$
$F_{2-3}=1-F_{2-1}=1-0.4=0.6$
Therefore, the shape factor for top surface to side surface is 0.6 .
The shape factor for bottom surface is given by
$F_{1-2}+F_{1-3}=1$
$F_{1-3}=1-F_{1-2}=1-0.1=0.9$

Also
$\mathrm{A}_{1} \mathrm{~F}_{1-3}=\mathrm{A}_{3} \mathrm{~F}_{3-1}$
$F_{3-1}=\frac{A_{1} F_{1-3}}{A_{3}}$

Area of curved surface area is given by,
$A_{3}=\pi\left(r_{1}+r_{2}\right)\left[\left(r_{1}-r_{2}\right)^{2}+L^{2}\right]^{0.5}$
$A_{3}=\pi(10+5)\left[(10-5)^{2}+10^{2}\right]^{0.5}=526.86 \mathrm{~cm}^{2}$
$F_{3-1}=\frac{A_{1} F_{1-3}}{A_{3}}=\frac{\pi r_{1}^{2} F_{1-3}}{A_{3}}=\frac{\pi \times 10^{2} \times 0.9}{526.86}=0.54$

Also
$\mathrm{A}_{2} \mathrm{~F}_{2-3}=\mathrm{A}_{3} \mathrm{~F}_{3-2}$
$F_{3-2}=\frac{A_{2} F_{2-3}}{A_{3}}$
$F_{3-2}=\frac{\mathrm{A}_{2} \mathrm{~F}_{2-3}}{\mathrm{~A}_{3}}=\frac{\pi r_{2}^{2} \mathrm{~F}_{2-3}}{\mathrm{~A}_{3}}=\frac{\pi \times 5^{2} \times 0.6}{526.86}=0.09$

For surface 1 , side surface
$F_{3-1}+F_{3-2}+F_{3-3}=1$
$F_{3-3}=1-F_{3-1}-F_{3-2}=1-0.54-0.09=0.37$
Therefore, the shape factor for side surface to itself is 0.37 .
(b) A Francis turbine supplied through an 80 m diameter penstock has the following particulars :

Output power $=65000$ kW
Speed $=150$ rpm.
Hydraulic efficiency $=90 \%$
Flow rate $=120 \mathrm{~m}^{3} / \mathrm{s}$
Mean diameter of turbine at entry $=5 \mathrm{~m}$
Mean blade height at entry $=1.5 \mathrm{~m}$
Entry diameter of draft tube 4.5 m
Velocity in tailrace $=2.5 \mathrm{~m} / \mathrm{s}$

The static pressure head in the penstock measured just before entry to the runner is 60 m . The point of measurement is 3.2 m above the level of the tailrace. The loss in the draft tube is equivalent to $30 \%$ of the velocity head at entry to it. The exit plane of the runner is 2 m above the tailrace and the flow leaves the runner without swirl. Calculate:
(i) The overall efficiency
(ii) The direction of flow relative to the runner at inlet
(iii) The pressure head at entry to draft tube
[20 Marks]
Sol. Given,
Output power i.e., SP $=65000 \mathrm{~kW}$
$D_{p}=8 \mathrm{~m}$
$\mathrm{N}=150 \mathrm{rpm}$
$\frac{P_{1}}{\rho g}=60 \mathrm{~m}$
$\mathrm{Q}=120 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{Z}_{1}=3.2 \mathrm{~m}$
$D_{1}=5 \mathrm{~m}$
$h_{L D}=30 \% \times \frac{V_{i}^{2}}{2 g}$
$\mathrm{B}_{1}=1.5 \mathrm{~m}$
$Z=2 \mathrm{~m}$
$\mathrm{D}_{\mathrm{i}}=4.5 \mathrm{~m}$
$\alpha_{2}=90^{\circ}\left(\mathrm{V}_{\mathrm{w} 2}=0\right)$
$\mathrm{V}_{0}=2.5 \mathrm{~m} / \mathrm{s}$
i. Overall efficiency

$$
\begin{equation*}
\eta_{0}=\frac{S P}{H P}=\frac{P}{\rho Q g h} \tag{i}
\end{equation*}
$$

Gross head,

$$
H_{g}=\frac{P_{1}}{\rho g}+z_{1}+\frac{V_{1}^{2}}{2 g}
$$

Velocity of flow in penstock, $V_{1}=\frac{4 \times 120}{\pi \times 8^{2}}=2.387 \mathrm{~m} / \mathrm{s}$

$$
H_{g}=60+3.2+\frac{2.387^{2}}{2 \times 9.81}=63.49 \mathrm{~m}
$$

Net head at turbine inlet, $H=H_{g}-\frac{V^{2}}{2 g}$

$$
H=63.49-\frac{(2.5)^{2}}{2 \times 9.81}=63.17 \mathrm{~m}
$$

Put in equation (1)

$$
\begin{aligned}
& \eta_{0}=\frac{65000 \times 10^{3}}{10^{3} \times 120 \times 9.81 \times 63.17} \\
& \eta_{0}=0.874=87.4 \%
\end{aligned}
$$

ii. Direction of flow relative to runner at inlet

As

$$
\begin{aligned}
& \eta_{\mathrm{h}}=\frac{\mathrm{RP}}{\mathrm{HP}}=\frac{\mathrm{m}\left(\mathrm{~V}_{\mathrm{w}_{1}} \mathrm{u}_{1}-\mathrm{V}_{\mathrm{w}_{2}} \mathrm{u}_{2}\right)}{\mathrm{mgH}} \\
& \eta_{\mathrm{h}}=\frac{\mathrm{V}_{\mathrm{w}_{1}} \mathrm{u}_{1}}{\mathrm{gH}}=0.9
\end{aligned}
$$

Where, $\mathrm{u}_{1}=\frac{\pi \mathrm{D}_{1} \mathrm{~N}}{60}=\frac{\pi \times 5 \times 150}{60}=39.27 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& 0.9=\frac{V_{\mathrm{w}_{1}} \times 39.27}{9.81 \times 63.17} \\
& \mathrm{~V}_{\mathrm{w} 1}=14.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

As, $u_{1}>v_{w_{1}} \Rightarrow \beta_{1}>90^{\circ}$
Inlet velocity triangle


$$
\mathrm{Q}=\pi \mathrm{D}_{1} \mathrm{~B}_{1} \times \mathrm{V}_{\mathrm{f} 1}
$$

$$
V_{\mathrm{f}_{1}}=\frac{\mathrm{Q}}{\pi \mathrm{D}_{1} \mathrm{~B}_{1}}=\frac{120}{\pi \times 5 \times 1.5}=5.093 \mathrm{~m} / \mathrm{s}
$$

$$
\tan \left(180^{\circ}-\beta_{1}\right)=\frac{V_{\mathrm{f}_{1}}}{u_{1}-V_{w_{1}}}=\frac{5.093}{(39.27-14.2)}
$$

$$
180-\beta_{1}=\tan ^{-1}\left(\frac{5.093}{39.27-14.2}\right)
$$

$$
\begin{aligned}
180-\beta_{1} & =11.483^{\circ} \\
\beta_{1} & =168.52^{\circ}
\end{aligned}
$$

iii. Pressure head at entry to draft tube $\left(\frac{P_{i}}{\rho g}\right)$
$i \rightarrow$ Inlet to draft tube
$0 \rightarrow$ outlet to draft tube
Apply energy equation between inlet and outlet of draft tube,
$\frac{P_{i}}{\rho g}+z_{i}+\frac{V_{i}^{2}}{2 g}=\frac{P_{0}}{\rho g}+z_{0}+\frac{V_{0}^{2}}{2 g}+h_{L D}$
Where, $V_{i}=\frac{4 \mathrm{Q}}{\pi D_{i}^{2}}=\frac{4 \times 120}{\pi(4.5)^{2}}=7.545 \mathrm{~m} / \mathrm{s}$

$$
\frac{P_{i}}{\rho g}=\frac{V_{0}^{2}}{2 g}+h_{L D}-\frac{V_{i}^{2}}{2 g}-z_{i}
$$

$$
\begin{aligned}
& \frac{P_{i}}{\rho g}=\frac{V_{0}^{2}}{2 g}+0.3 \times \frac{V_{i}^{2}}{2 g}-\frac{V_{i}^{2}}{2 g}-z_{i} \\
& \frac{P_{i}}{\rho g}=\frac{V_{0}^{2}}{2 g}-0.7 \times \frac{V_{i}^{2}}{2 g}-z_{i} \\
& \frac{P_{i}}{\rho g}=\frac{(2.5)^{2}}{2 \times 9.81}-\frac{0.7 \times(7.545)^{2}}{2 \times 9.81}-2 \\
& \frac{P_{i}}{\rho g}=0.318-2.031-2=-3.713 \mathrm{~m}
\end{aligned}
$$

Pressure head at inlet of draft tube is -3.173 m .
(c) Two contains are connected with a pipe having a closed valve. One container contains a 5 kg mixture of $62.5 \% \mathrm{CO}_{2}$ and $37.5 \% \mathrm{O}_{2}$ on a mole basis at $30^{\circ} \mathrm{C}$ and 125 kPa . The second container contains 10 kg of $\mathrm{N}_{2}$ at $15{ }^{\circ} \mathrm{C}$ and 200 kPa . The valve in the pipe is opened and gases are allowed to mix. During the mixing process, 100 kJ of heat energy is supplied to the combined tank. Determine the volume of the mixture and write an energy balance equation. [Required property tables are attached]
[20 Marks]

Molar mass, gas constant, and critical-point properties

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  |  |  |  | Critical-point properties |  |
|  |  |  |  |  |  |

*The unit $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$ is equivalent to $\mathrm{kPa}-\mathrm{m}^{3} / \mathrm{kg}-\mathrm{K}$. The gas constant is calculated from $R=R_{u} / \mathrm{M}$, where $R_{u}=8.31447$ $\mathrm{kJ} / \mathrm{kmol}-\mathrm{K}$ and M is the molar mass.

Ideal-gas specific heat of varous common gases

| At 300 K |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Gas | Formula | Gas constant, R kJ/kg-K | $\begin{aligned} & \mathrm{c}_{\mathrm{p}} \\ & \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \end{aligned}$ | c. kJ/kg-K | k |
| Air | - | 0.2870 | 1.005 | 0.718 | 1.400 |
| Argon | Ar | 0.2081 | 0.5203 | 0.3122 | 1.667 |
| Butane | $\mathrm{C}_{4} \mathrm{H}_{10}$ | 0.1433 | 1.7164 | 1.5734 | 1.091 |
| Carbon dioxide | $\mathrm{CO}_{2}$ | 0.1889 | 0.846 | 0.657 | 1.289 |
| Carbon monoxide | CO | 0.2968 | 1.040 | 0.744 | 1.400 |
| Ethane | $\mathrm{C}_{2} \mathrm{H}_{6}$ | 0.2765 | 1.7662 | 1.4897 | 1.186 |
| Ethylene | $\mathrm{C}_{2} \mathrm{H}_{4}$ | 0.2964 | 1.5482 | 1.2518 | 1.237 |
| Helium | He | 2.0769 | 5.1926 | 3.1156 | 1.667 |
| Hydrogen | $\mathrm{H}_{2}$ | 4.1240 | 14.307 | 10.183 | 1.405 |
| Methane | $\mathrm{CH}_{4}$ | 0.5182 | 2.2537 | 1.7354 | 1.299 |
| Neon | Ne | 0.4119 | 1.0299 | 0.6179 | 1.667 |
| Nitrogen | $\mathrm{N}_{2}$ | 0.2968 | 1.039 | 0.743 | 1.400 |
| Octane | $\mathrm{C}_{8} \mathrm{H}_{18}$ | 0.0729 | 1.7113 | 1.6385 | 1.044 |
| Oxygen | $\mathrm{O}_{2}$ | 0.2598 | 0.918 | 0.658 | 1.395 |
| Propane | $\mathrm{C}_{3} \mathrm{H}_{8}$ | 0.1885 | 1.6794 | 1.4909 | 1.126 |
| Steamt | $\mathrm{H}_{2} \mathrm{O}$ | 0.4615 | 1.8723 | 1.4108 | 1.327 |

Note: The unit kJ/kg. K is equivalent to $\mathrm{kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$.

## Sol.

In contains 1: $\mathrm{CO}_{2}+\mathrm{O}_{2}$ Mixture
$m_{\text {mix }}=5 \mathrm{~kg}$
$\mathrm{P}_{1}=125 \mathrm{kPa}$
$\mathrm{T}_{1}=30^{\circ} \mathrm{C}$
For 1 mole of mixture $=0.625$ moles of $\mathrm{CO}_{2}+0.375$ moles of $\mathrm{O}_{2}$
Molar mass of mixture
$M_{1}=X_{\mathrm{CO}_{2}} \times M_{\mathrm{CO}_{2}}+\mathrm{X}_{\mathrm{O}_{2}} \times \mathrm{M}_{\mathrm{O}_{2}}$
$=(0.625 \times 44)+(0.375 \times 32)$
$\mathrm{M}_{1}=39.5 \frac{\mathrm{~kg}}{\mathrm{kmol}}$
Gas constant of mixture ( $\mathrm{R}_{1}$ )
$\mathrm{R}_{1}=\frac{\overline{\mathrm{R}}}{\mathrm{M}_{\text {mix }}}=\frac{8.314 \mathrm{~kJ} / \mathrm{kmol}-\mathrm{K}}{39.5 \mathrm{~kg} / \mathrm{kmol}}$
$R_{1}=0.2105 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}}$
Volume of mixture of tank 1
$\mathrm{V}_{1}=\frac{\mathrm{m}_{\text {mix }} \mathrm{R}_{1} \mathrm{~T}_{1}}{\mathrm{P}_{1}}=\frac{5 \times 0.2105 \times(273+30)}{125} \mathrm{~m}^{3}$
$\mathrm{V}_{1}=2.551 \mathrm{~m}^{3}$
In Tank 2: $\mathrm{N}_{2}$ at $15^{\circ} \mathrm{C}, 200 \mathrm{kPa}, 10 \mathrm{~kg}$
$V_{2}=\frac{m_{2} R_{2} T_{2}}{P_{2}}=\frac{10 \times 0.2968 \times(273+15)}{200}$
$\mathrm{V}_{2}=4.274 \mathrm{~m}^{3}$
Total volume after mixing
$\mathrm{V}_{\text {total }}=\mathrm{V}_{1}+\mathrm{V}_{2}=(2.551+4.274) \mathrm{m}^{3}$
$V_{\text {total }}=6.825 \mathrm{~m}^{3}$
Mass fraction of $\mathrm{CO}_{2}$
$\left(\mathrm{m}_{\mathrm{f}}\right)_{\mathrm{CO}_{2}}=\frac{\mathrm{m}_{\mathrm{CO}_{2}}}{\mathrm{~m}_{\text {mix }}}=\frac{\mathrm{n}_{\mathrm{CO}_{2}} \times \mathrm{M}_{\mathrm{CO}_{2}}}{\mathrm{n}_{\text {mix }} \times \mathrm{M}_{\text {mix }}}=\frac{0.625 \times 44}{39.5}=0.6962$
$\mathrm{m}_{\mathrm{CO}_{2}}=0.6962 \times \mathrm{m}_{\text {mix }}=0.6962 \times 5=3.481 \mathrm{~kg}$
$\left(\mathrm{m}_{\mathrm{f}}\right)_{\mathrm{O}_{2}}=\frac{\mathrm{m}_{\mathrm{O}_{2}}}{5}=\frac{0.375 \times 32}{39.5}=0.3038$
$\mathrm{m}_{\mathrm{O}_{2}}=0.3038 \times \mathrm{m}_{\text {mix }}=0.3038 \times 5=1.519 \mathrm{~kg}$
Mass fractions of combined mixture ( $m_{\text {total }}=15 \mathrm{~kg}$ )

$$
\begin{aligned}
& \left(\mathrm{m}_{\mathrm{f}}\right)_{\mathrm{CO}_{2}}=\frac{\mathrm{m}_{\mathrm{CO}_{2}}}{\mathrm{~m}_{\text {total }}}=\frac{3.481}{15}=0.232 \\
& \left(\mathrm{~m}_{\mathrm{f}}\right)_{\mathrm{O}_{2}}=\frac{\mathrm{m}_{\mathrm{O}_{2}}}{\mathrm{~m}_{\text {total }}}=\frac{1.519}{15}=0.1012 \\
& \left(\mathrm{~m}_{\mathrm{f}}\right)_{\mathrm{N}_{2}}=\frac{\mathrm{m}_{\text {total }}-\left(\mathrm{m}_{\mathrm{CO}_{2}}+\mathrm{m}_{\mathrm{O}_{2}}\right)}{\mathrm{m}_{\text {total }}}=\frac{10}{15}=0.6667 \\
& R_{\text {mix }}=\mathrm{m}_{\mathrm{f}_{\mathrm{CO}_{2}}} \times \mathrm{R}_{\mathrm{CO}_{2}}+\mathrm{m}_{\mathrm{f}_{\mathrm{O}_{2}}} \times \mathrm{R}_{\mathrm{O}_{2}}+\mathrm{m}_{\mathrm{f}_{\mathrm{N}_{2}}} \times \mathrm{R}_{\mathrm{N}_{2}} \\
& \mathrm{R}_{\text {mix }}=(0.232 \times 0.1889)+(0.1012 \times 0.2598)+(0.6667 \times 0.2969) \\
& R_{\text {mix }}=0.2680 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
\end{aligned}
$$

Energy balance equation ( $\mathrm{T}_{\mathrm{f}} \rightarrow$ Final temperature)

$$
\left.\mathrm{m}_{\mathrm{CO}_{2}} \times \mathrm{C}_{\mathrm{V}_{\mathrm{CO}_{2}}}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{1}\right)+\mathrm{m}_{\mathrm{O}_{2}} \mathrm{C}_{\mathrm{V}_{\mathrm{O}_{2}}}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{1}\right)+\mathrm{m}_{\mathrm{N}_{2}} \mathrm{C}_{\mathrm{V}_{\mathrm{N}_{2}}}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{2}\right)+100=\text { Final Energy (Efinal }\right)
$$

## 5.

(a) A six-cylinder SI engine operates on a four-stroke cycle. The bore of each cylinder is 75 mm and the stroke is 100 mm . The clearance volume per cylinder is 60 cc . At a speed of 4000 r.p.m., the fuel consumption is $18 \mathrm{~kg} / \mathrm{h}$ and the torque developed is $140 \mathrm{~N}-\mathrm{m}$. Calculate the-
(i) brake thermal efficiency
(ii) relative efficiency on the basis of brake power.

The calorific value of the fuel can be taken as $45000 \mathrm{~kJ} / \mathrm{kg}$.
[12 Marks]
Sol. Given,
No. of cylinders $(K)=6$
4-stroke cycle
$D=75 \mathrm{~mm}$
$\mathrm{L}=100 \mathrm{~mm}$
$\mathrm{V}_{\mathrm{c}}=60 \mathrm{~cm}^{3}$
$\mathrm{N}=4000 \mathrm{rpm}$

Fuel consumption $\left(\mathrm{m}_{\mathrm{f}}\right)=8 \mathrm{~kg} / \mathrm{hr}$
$\mathrm{T}=140 \mathrm{~N}-\mathrm{m}$
$C V=45000 \mathrm{~kJ} / \mathrm{kg}$
Brake power, $\mathrm{BP}=\mathrm{T} \times \omega=\mathrm{T} \times \frac{2 \pi \mathrm{~N}}{60}=\frac{140 \times 2 \pi \times 4000}{60}$

$$
\mathrm{BP}=58643.06 \mathrm{~W}=58.64 \mathrm{~kW}
$$

i. Brake thermal efficiency ( $\eta$ bth)

$$
\begin{aligned}
& \eta_{\text {bth }}=\frac{B P}{m_{f} \times C V} \\
& \eta_{\text {bth }}=\frac{58.64}{\frac{18}{3600} \times 45000}=0.2606 \text { or } 26.06 \%
\end{aligned}
$$

ii. Relative efficiency,

$$
\begin{equation*}
\eta_{\mathrm{r}}=\frac{\eta_{\text {bth }}}{h_{\text {airsta }}} \tag{i}
\end{equation*}
$$

Where, $\eta_{\text {airstd }}=1-\frac{1}{r^{\gamma-1}}$
And $r=\frac{V_{1}}{V_{2}}=\frac{V_{c}+V_{S}}{V_{c}}=1+\frac{V_{S}}{V_{c}}$
$r=1+\frac{\frac{\pi}{4} D^{2} \times L}{V_{c}}=\left\{1+\frac{\frac{\pi}{4} \times(0.075)^{2} \times 0.1}{60 \times 10^{-6}}\right\}$
$r=1+7.363=8.363$
$\eta_{\text {airstd }}=1-\frac{1}{(8.363)^{1.4-1}}=0.5724$
Put in equation (i)
$\eta_{\mathrm{r}}=\frac{\eta_{\text {bth }}}{\eta_{\text {dirstd }}}=\frac{0.2606}{0.5724}$
$\eta_{\mathrm{r}}=0.4553=45.53 \%$
(b) Draw the T-s and h-s diagrams for steam jet refrigeration system and write the expressions for the following:
(i) Nozzle efficiency
(ii) Entrainment efficiency
(iii) Compression efficiency
[12 Marks]

## Sol.

## Steam Jet Refrigeration System:

The working of the steam jet refrigeration system is represented on T -s and h-s chart as shown in figure below.
$\mathrm{P}_{\mathrm{D}}=$ Pressure of steam supplied from boiler

Pc $=$ Pressure in the condenser
$P_{e}=$ Pressure in the evaporator in the flash chamber
$a b=$ Isentropic expansion of steam through nozzle
$\mathrm{ab}^{\prime}=$ Actual expansion of steam through nozzle
a = Condition of steam supplied
$c=$ Condition of water vapour formed in the flash chamber


T-s diagram for steam jet refrigeration

h -s diagram for steam jet refrigeration
$\mathrm{b}^{\prime}=$ Condition of steam coming out of nozzle
d $=$ Condition of steam just before mixing with water vapour
$\mathrm{c}=$ Condition of water vapour formed in the evaporator chamber
$\mathrm{e}=$ Condition of mixture of steam at d and water vapour at c after mixing and just before starting the compression in the booster ejector
$\mathrm{f}^{\prime}=$ Condition of the mixture entering into the condenser
ef = Isentropic compression in booster ejector
ef' = Actual compression in booster ejector
The actual expansion through nozzle does not follow isentropic process, so that actual drop is taken into account by nozzle efficiency, and it is given by
$\eta_{n}($ Nozzle efficiency $)=\frac{\text { Actual enthalpy drop }}{\text { Isentropic enthalpy drop }}$

$$
\eta_{\mathrm{n}}=\frac{h_{\mathrm{a}}-h_{\mathrm{b}}^{\prime}}{\mathrm{h}_{\mathrm{a}}-h_{\mathrm{b}}}
$$

The water vapour formed in the flash-chamber has negligible velocity compared with the velocity of the steam coming out of nozzle which is equivalent to $\sqrt{2 g J\left(h_{a}-h_{b}^{\prime}\right)} \mathrm{m} / \mathrm{sec}$.

The quantity $\left(h_{a}-h_{b}^{\prime}\right)$ is equivalent to K.E. of motive steam, now available for entrainment of the vapour in the flash-chamber. (The process of giving the momentum of the water vapour formed in the flash-chamber by high velocity steam is known as entrainment of vapour). During the entrainment, steam will lose some energy. The process of entrainment is very inefficient and part of original motive force available for compression is reduced and it is taken into account by a factor known as entrainment efficiency and it is given by

$$
\eta_{e}=\frac{\left(h_{a}-h_{d}\right)}{\left(h_{a}-h_{b}^{\prime}\right)}
$$

The actual compression of the mixture does not follow the isentropic compression, so it is taken into account by a factor known as compression efficiency and it is given by

$$
\eta_{c} \text { (compression efficiency) }=\frac{h_{a}-h_{e}}{h_{f}^{\prime}-h_{e}}
$$

(c) Briefly describe a natural draught cooling tower. Explain why it is hyperbolic in shape.
[12 Marks]

## Sol.

In natural draught cooling towers, the flow of air occurs due to the natural pressure head caused by the difference in density between the cold outside air and the hot humid air inside. Thus, the pressure head developed is

$$
\Delta P_{d}=\left(\rho_{o}-\rho_{i}\right) g H
$$

where $\mathrm{H}=$ height of the tower above the fill, $\rho_{o}=$ density of outside air, and $\rho_{i}=$ density of inside air.

(a) Natural draught coding tower

(b) Counterflow hyperbolic natural draught cooling tower

Because of relatively small density difference, $\rho_{o}-\rho_{\mathrm{i}}, \mathrm{H}$ must be large so as to result in the desired $\Delta \mathrm{P}_{\mathrm{d}}$, which must balance the air pressure losses in the tower. Natural draught cooling towers are, therefore, very tall. The tower body, above the water distribution system and the fill, is an empty shell of circular cross-section, but with a hyperbolic vertical profile. The hyperbolic profile offers superior strength and the greatest resistance to outside wind loading compared to other forms. Natural draught cooling towers are, therefore, often termed as hyperbolic towers. Made of reinforced concrete, they are an imposing sight and are conspicuous from a distance.
Some additional advantages of natural draught cooling tower are:
(i) Power cost and auxiliary equipment are eliminated as fans are not needed. Resulting in operating and maintenance costs are consequently reduced.
(ii) Chimney shape creates its own draft, ensuring efficient operation even when the wind is absent.
(iii) Cooling capacity of this type of tower is quite comparable with that of multicell installation of induced draft-type towers.
(iv) Local fogging and warm air circulation, which is there in mechanical draft installations, are also avoided.
(d) Distinguish among the following:
(i) Renewable energy
(ii) Green energy
(iii) Clean energy

Also, mention the relative environmental effects of the above.

Sol. These three terms - green, renewable, and clean energy are often used interchangeably in eco-friendly content, but they don't always mean the same thing. While some overlap exists, the subtle differences and nuances can impact funding, allocation, and the creation of government credits during and after the production of these sustainable energy sources. Thus, it's important to understand that the true definitions of renewable, clean, and green energy depend upon how they're created, how they're refreshed, and their overall environmental impact.

## Creation

- Renewable energy comes from sources that occur naturally and can be replaced naturally and completely within the span of an average human life.
- Green energy comes from natural sources that meet current energy needs without compromising future generations. It is a subset of renewable energy representing resources with the smallest environmental footprint.
- Clean energy releases zero or minuscule amounts of carbon dioxide and chemical contaminants during production. Although not necessarily renewable by definition, clean energy doesn't create large amounts of greenhouse gases or air pollutants.


## Renewal

- Renewable energy sources never run out and are naturally replenished. However, renewable energy is flow-limited, meaning there is a limit to what can be captured over time (i.e. you can't make more wind than what already exists).
- Green energy comes from renewable energy resources that can be renewed naturally and have the least environmental impact.
- Clean energy is created without emitting greenhouse gases, though it isn't necessarily naturally renewable.


## Impact

- Renewable energy can have an ecological impact, depending upon the process used to create that electricity.
- Green energy is considered the most environmentally friendly resource available to us today, with little to no ongoing environmental impact.
- Clean energy is power generation without creating adverse environmental impacts like carbon dioxide or greenhouse gases. Most clean energy sources are also renewable, including hydro energy, solar power, and wind power.
(e) Describe the emission norms for Indian vehicles if they have to comply with Bharat Stage (BS) Emission Standards-VI. Mention the devices and technology introduced to meet the BS-VI norms.
[12 Marks]
Sol. To regulate the pollution emitted by cars and two-wheelers, the government has put forth regulations known as Bharat stage emission standard (BSES). The central government has mandated that all vehicle manufacturers, both two-wheelers and four-wheelers, should manufacture, sell and register only BS6 (BS-VI).


## Emission norms for BS6

- BS6 emission norms allow a motorcycle to emit not more than $60 \mathrm{mg} / \mathrm{km}$ of $\mathrm{NO}_{\mathrm{x}}$, (Nitrogen oxides).
- The particulate matter (PM) for petrol vehicles has been restricted to $4.5 \mathrm{mg} / \mathrm{km}$.
- The limit of $\mathrm{NO}_{x}$ for diesel engines is $80 \mathrm{mg} / \mathrm{km}$. The $\mathrm{HC}+\mathrm{NO}_{x}$ limit has been set to 170 $\mathrm{mg} / \mathrm{km}$ and PM level limit has been set to $4.5 \mathrm{mg} / \mathrm{km}$.
- The BS6 fuel has less sulphur and NOx. The content of sulphur in BS6 fuel is 10 ppm .


## Devices and technology introduced to meet BS-VI norms.

- Selective catalytic reduction technology: It reduces oxides of nitrogen by injecting an aqueous urea solution into the system. Hence, NOx from diesel cars can be brought down by nearly $70 \%$. In the petrol cars, they can be reduced by $25 \%$.
- Mandatory on-board diagnostics: Which inform the vehicle owner or the repair technician about how efficient the systems in the vehicles are.
- RDE (Real driving emission): It is introduced for the first time that will measure the emission in real-world conditions and not just under test conditions.


## 6.

(a) A gasoline engine has a stroke volume of $0.002 \mathrm{~m}^{3}$ and a compression ratio of 6. At the end of the compression stroke, the pressure is 10 bar and the temperature is $400^{\circ} \mathrm{C}$. Ignition is set so that the pressure rises along a straight line during combustion and attains its highest value of 30 bar after the piston has travelled (1/40) of the stroke. The charge consists of a gasoline-air mixture in proportion of $1: 18$ by mass. Calculate the heat lost per kg of charge during combustion. Take $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$, calorific value of the fuel $=45 \mathrm{MJ} / \mathrm{kg}, \mathrm{C}_{\mathrm{p}}=1 \mathrm{~kJ} / \mathrm{kg}$.

Sol.


Given,
$V_{s}=0.002 \mathrm{~m}^{3}$
$\mathrm{r}=6=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=1+\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{V}_{\mathrm{c}}}$
$P_{2}=10$ bar
$\mathrm{T}_{2}=400^{\circ} \mathrm{C}=673 \mathrm{~K}$
$P_{3}=30$ bar
$V_{C}=\frac{V_{S}}{r-1}=\frac{0.002}{6-1}$
$\Rightarrow V_{c}=4 \times 10^{-4} \mathrm{~m}^{3}=\mathrm{V}_{2}$
$V_{3}=V_{2}+\frac{V_{S}}{40}=4 \times 10^{-4}+\frac{0.002}{40}$
$\Rightarrow V_{3}=4.5 \times 10^{-4} \mathrm{~m}^{3}$
As $\frac{P_{2} V_{2}}{T_{2}}=\frac{P_{3} V_{3}}{T_{3}} \Rightarrow \frac{10 \times 4 \times 10^{-4}}{673}=\frac{30 \times 4.5 \times 10^{-4}}{T_{3}}$
$\Rightarrow \mathrm{T}_{3}=2271.375 \mathrm{~K}$
$\mathrm{W}_{23}=$ Area under $\mathrm{P}-\mathrm{V}$ curve on volume axis

$$
\begin{aligned}
& =\frac{1}{2}\left(P_{2}+P_{3}\right) \times\left(V_{3}-V_{2}\right) \\
& =\frac{1}{2}(10+30) \times 10^{5} \times(4.5-4) \times 10^{-4}
\end{aligned}
$$

$\mathrm{W}_{23}=100 \mathrm{~J}$
Mass of mixture at the end of compression point 2
$m_{2}=\frac{P_{2} V_{2}}{R T_{2}}=\frac{10 \times 10^{5} \times 4 \times 10^{-4}}{287 \times 673}$
$\Rightarrow \mathrm{m}_{2}=2.0709 \times 10^{-3} \mathrm{~kg}$
$(\Delta U)_{23}=m_{2} C_{V}\left(T_{3}-T_{2}\right)$
$C_{V}=C_{P}-R$
$\mathrm{C}_{\mathrm{V}}=0.713 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$(\Delta U)_{23}=2.0709 \times 10^{-3} \times 0.713 \times(2271.4-673)$
$(\Delta \mathrm{U})_{23}=2.3604 \mathrm{~kJ}$
$1^{\text {st }}$ law:
$\mathrm{Q}_{23}=\mathrm{W}_{23}+(\Delta \mathrm{U})_{23}$
$\Rightarrow \mathrm{Q}_{23}=\mathrm{Qs}=(0.1+2.3604) \mathrm{kJ}$
$\mathrm{Q}_{23}=\mathrm{Q}_{\mathrm{s}}=2.4604 \mathrm{~kJ}$ (Head supplied)
To find heat lost
$\frac{m_{a}}{m_{f}}=18 \Rightarrow \frac{m_{a}}{m_{f}}+1=18+1 \Rightarrow \frac{m_{a}+m_{f}}{m_{f}}=19$
$\mathrm{m}_{\mathrm{f}}=\frac{1}{19} \times \mathrm{m}_{\text {mix }}=\frac{1}{19} \times 2.0709 \times 10^{-3} \mathrm{~kg}$
$\mathrm{m}_{\mathrm{f}}=1.09 \times 10^{-4} \mathrm{~kg}$
Heat loss $=\mathrm{m}_{\mathrm{f}} \times \mathrm{CV}=1.09 \times 10^{-4} \times 45000 \mathrm{~kJ} / \mathrm{kg}$
Heat loss $=4.905 \mathrm{~kJ}$
Net heat loss $=(4.905-2.4604) \mathrm{kJ}$
Heat lost $/ \mathrm{kg}$ charge $=\frac{2.4446}{2.0709 \times 10^{-3}}=1180.45 \mathrm{~kJ} / \mathrm{kg}$ charge
(b) A room is designed for air conditioning as per the following data:

Room sensible heat gain 30 kW Room latent heat gain $=10 \mathrm{~kW}$
Inside design conditions are: $25^{\circ} \mathrm{C}$ DBT and $50 \% \mathrm{RH}$
Outside conditions are: $40^{\circ} \mathrm{C}$ DBT and $27^{\circ} \mathrm{C}$ WBT
Bypass factor of the cooling coil $=0.10$
The return air from the space is mixed with the outside air before entering the cooling coil in the ratio of $4: 1$ by weight. Determine the following:
(i) Apparatus dew point
(ii) Condition of air leaving the cooling
(iii) Quantity of dehumidified air coil
(iv) Mass of ventilation air
(v) Volume flow rate of fresh air
(vi) Total refrigeration load
[Psychrometric chart is attached]
[20 Marks]


Sol.
Given,
RSH $=30 \mathrm{~kW}$
RLH $=10 \mathrm{~kW}$
RSHF $=\frac{R S H}{R S H+R L H}=\frac{30}{30+10}=0.75$
Inside design conditions (DBT $=25^{\circ} \mathrm{C} ; \mathrm{R}_{H}=50 \%$ )
From psychrometric chart,
$\omega_{i}=0.01 \mathrm{~kg} \mathrm{vap} / \mathrm{kg}$ dry air
$h_{i}=50 \mathrm{~kJ} / \mathrm{kg}-\mathrm{da}$
$\mathrm{v}_{\mathrm{i}}=0.86 \mathrm{~m}^{3} / \mathrm{kg}-\mathrm{da}$
Outside conditions (DBT $=40^{\circ} \mathrm{C}, \mathrm{WBT}=27^{\circ} \mathrm{C}$ )
From psychrometric chart
$\omega_{0}=0.0172 \mathrm{~kg}$ vap $/ \mathrm{kg}-\mathrm{da}$
$\mathrm{h}_{0}=85 \mathrm{~kJ} / \mathrm{kg}-\mathrm{da}$
$\mathrm{v}_{0}=0.912 \mathrm{~m}^{3} / \mathrm{kg}-\mathrm{da}$
Draw points i and o on psychrometric chart,
$\frac{\text { Re circulated air }}{\text { Fresh outside air }}=\frac{4}{1}$
Divide $\mathbf{i}$ - o in ratio $4: 1$
Point 1 i.e., $\frac{i-1}{1-0}=\frac{4}{1}$
$\mathrm{t}_{1}=\frac{4 \mathrm{t}_{\mathrm{i}}+1 \mathrm{t}_{\mathrm{o}}}{5}=\frac{(4 \times 25)+(1 \times 40)}{5}=28^{\circ} \mathrm{C}$ DBT
$\omega_{1}=\frac{4 \omega_{\mathrm{i}}+1 \omega_{0}}{5}=\frac{(4 \times 0.01)+(1 \times 0.0172)}{5}=0.01144 \mathrm{~kg} \mathrm{vap} / \mathrm{kg}-\mathrm{da}$
$h_{1}=\frac{4 h_{i}+1 h_{o}}{5}=\frac{(4 \times 50)+(1 \times 85)}{5}=57 \mathrm{~kJ} / \mathrm{kg}-\mathrm{da}$
$\mathrm{v}_{1}=\frac{4 \mathrm{v}_{\mathrm{i}}+1 \mathrm{v}_{0}}{5}=\frac{(4 \times 0.86)+(1 \times 0.91)}{5}=0.8702 \mathrm{~m}^{3} / \mathrm{kg}-\mathrm{da}$
Draw RSHF line through point $i$ and 2 and the saturation curve,

Extend line 1 - i to point A such that
$\frac{\mathrm{A}-\mathrm{i}}{1-\mathrm{A}}=0.1$ (As BPF $=0.1$ for cooling coil)
From point A; draw a line parallel to RSHF intersecting saturation curve at point (s)


Now joint point 1 and S i.e., GSHF
Which intersects RSHF line through point i at point 2

$$
\begin{aligned}
\mathrm{t}_{\mathrm{ADP}} & =9.8^{\circ} \mathrm{C} \\
\omega_{\mathrm{ADP}} & =0.0078 \mathrm{~kg} \mathrm{vap} / \mathrm{kg}-\mathrm{da} \\
\mathrm{~h}_{\mathrm{ADP}} & =29.5 \mathrm{~kJ} / \mathrm{kg}-\mathrm{da} \\
\frac{\mathrm{t}_{2}-\mathrm{t}_{\mathrm{ADP}}}{\mathrm{t}_{1}-\mathrm{t}_{\mathrm{ADP}}} & =0.1=\mathrm{BPF}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{t}_{2}-9.8}{28-9.8}=0.1 \\
& \mathrm{t}_{2}=11.62^{\circ} \mathrm{C} \\
& \frac{\omega_{2}-\omega_{\mathrm{ADP}}}{\omega_{1}-\omega_{\mathrm{ADP}}}=0.1 \quad(\mathrm{BPF}) \\
& \frac{\omega_{2}-0.0078}{0.01144-0.0078}=0.1 \\
& \omega_{2}=0.00816 \mathrm{~kg} \mathrm{vap} / \mathrm{kg}-\mathrm{da}
\end{aligned}
$$

Finally
i. $\quad$ ADP temperature $=9.8^{\circ} \mathrm{C}$
ii. Condition of air leaving the cooling coil
$\mathrm{t}_{2}=11.62^{\circ} \mathrm{C} ; \omega_{2}=0.00816 \mathrm{~kg}$ vap/kg-da
iii. Quantity of Dehumidified air

$$
\begin{aligned}
& =\frac{R S H}{0.0204\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{2}\right)}=\frac{30}{0.0204(25-11.62)} \\
& =109.9 \mathrm{~m}^{3} / \mathrm{min} \text { Or }=109.9 \mathrm{cmm}
\end{aligned}
$$

Mass of ventilation air $=0.2 \times \mathrm{m}_{\text {supplied air }}$
Where $\mathrm{m}_{\text {supplied air }}=\frac{\mathrm{cmm}}{60 \times \mathrm{v}_{2}}=\frac{109.9}{60 \times 0.819}$
$\mathrm{m}_{\text {supplied air }}=2.23 \mathrm{~kg}-\mathrm{da} / \mathrm{sec}=\mathrm{m}_{\text {as }}$
$\mathrm{m}_{\mathrm{ao}}=0.2 \times 2.23=0.44 \mathrm{~kg}-\mathrm{da} / \mathrm{sec}$
iv. Volume flow rate of fresh air (outside air)

$$
\begin{aligned}
& =m_{\mathrm{ao}} \times 60 \times \mathrm{v}_{0} \\
& =0.44 \times 60 \times 0.912=24.47 \mathrm{cmm}
\end{aligned}
$$

v. Total refrigeration load (Grand total heat)

$$
\mathrm{GTH}=\mathrm{RSH}+\mathrm{RLH}+\mathrm{OATH}
$$

Where OATH (outside air total heat) $=\mathrm{m}_{\text {aoair }}\left(\mathrm{h}_{\mathrm{o}}-\mathrm{h}_{\mathrm{i}}\right)$

$$
\begin{aligned}
& =0.44(85-50)=15.4 \mathrm{~kJ} / \mathrm{sec} \\
\mathrm{GTH} & =30+10+15.4=55.4 \mathrm{~kW}
\end{aligned}
$$

(c) The angles at inlet and discharge of the blading of a $50 \%$ reaction turbine are $35^{\circ}$ and $20^{\circ}$ respectively. The speed of rotation is 1500 rpm and at a particular stage, the mean ring diameter is 0.67 m and the steam condition is at 1.5 bar, 0.96 dry. Determine
(i) the required height of blading to pass $3.6 \mathrm{~kg} / \mathrm{s}$ of steam;
(ii) the power developed by the ring.
[Saturated steam table is attached at the end of booklet]
[20 Marks]
Sol. Given,
$\beta_{1}=35^{\circ}, \quad \beta_{2}=20^{\circ}, \quad D_{m}=0.67 \mathrm{~m}, \quad \mathrm{~N}=150 \mathrm{rpm}$

Blade speed, $u=\frac{\pi D_{m} N}{60}$

$$
\mathrm{u}=\frac{\pi \times 0.67 \times 1500}{60}=52.62 \mathrm{~m} / \mathrm{s}
$$

For degree of reaction, $R=0.5$,

$$
\beta_{1}=\alpha_{1}=35^{\circ}, \beta_{2}=\alpha_{1}=20^{\circ}
$$

$\mathrm{V}_{2}=\mathrm{V}_{\mathrm{r} 1}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{r} 2}$


Using sine rule
$\frac{V_{1}}{\sin 145^{\circ}}=\frac{u}{\sin 15^{\circ}}=\frac{V_{r_{1}}}{\sin 20^{\circ}}$
$\mathrm{V}_{1}=\frac{\mathrm{u} \times \sin 145^{\circ}}{\sin 15^{\circ}}=\frac{52.62 \times \sin 145^{\circ}}{\sin 15^{\circ}}$
$V_{1}=116.61 \mathrm{~m} / \mathrm{s}=V_{r_{2}}$
$\mathrm{V}_{\mathrm{r}_{1}}=\frac{\mathrm{u} \times \sin 20^{\circ}}{\sin 15^{\circ}}$
$V_{r_{1}}=69.54 \mathrm{~m} / \mathrm{s}=V_{2}$
Also,
$\mathrm{V}_{\mathrm{w}_{1}}=\mathrm{V}_{1} \cos \alpha_{1}=116.61 \times \cos 20^{\circ}=109.58 \mathrm{~m} / \mathrm{s}$
$V_{w_{2}}=V_{2} \cos \alpha_{2}=65.54 \times \cos 35^{\circ}=56.96 \mathrm{~m} / \mathrm{s}$
As, $\alpha_{2}<90^{\circ} \Rightarrow V_{w_{2}}<0$
$\Delta \mathrm{V}_{\mathrm{w}}=\mathrm{V}_{\mathrm{w}_{1}}-\left(-\mathrm{V}_{\mathrm{w}_{2}}\right)=[109.58-(-56.96)] \mathrm{m} / \mathrm{s}$
$\Delta V_{w}=166.54 \mathrm{~m} / \mathrm{s}$
Specific volume of steam, $v=V_{f}+X V_{f g}$
From steam table
$v_{f}=0001053 \mathrm{~m}^{3} / \mathrm{kg} ; \quad \mathrm{v}_{\mathrm{g}}=1.159 \mathrm{~m}^{3} / \mathrm{kg}$
(At $P=1.5$ bar)
Put in equation (i)
$v=0.001053+0.96(1.159-0.001053)$
$v=1.1127 \mathrm{~m}^{3} / \mathrm{kg}$
Also, $\dot{m}_{s}=\rho Q=\frac{1}{\mathrm{~V}} \times\left(\pi \mathrm{D}_{\mathrm{m}} \mathrm{h}\right) \times \mathrm{V}_{\mathrm{f}_{1}}$
Or $3.6=\frac{1}{1.1127} \times \pi \times 0.67 \times h \times\left(\mathrm{V}_{1} \sin \alpha_{1}\right)$
Or $3.6=\frac{\pi \times 0.67 \times \mathrm{h} \times 116.61 \times \sin 20^{\circ}}{1.1127}$
Or $\mathrm{h}=0.04771 \mathrm{~m}=47.71 \mathrm{~mm}$

Power developed by the ring

$$
\begin{aligned}
\mathrm{P} & =\dot{\mathrm{m}}\left(\Delta \mathrm{~V}_{\mathrm{w}}\right) \mathrm{u} \\
& =3.6 \times 166.54 \times 52.67=31577.98 \mathrm{~W}=31.577 \mathrm{~kW}
\end{aligned}
$$

7. 

(a) The following data refer to a boiler unit consisting of an economizer, a boiler and a superheater:

Mass of water evaporated per hour $=5940 \mathrm{~kg}$
Mass of coal burnt per hour $=675 \mathrm{~kg}$
Lower calorific value of coal $=31600 \mathrm{~kJ} / \mathrm{kg}$
Pressure of steam at boiler stop valve = 14 bar
Temperature of feedwater entering economizer $=32{ }^{\circ} \mathrm{C}$
Temperature of feedwater leaving economizer $=115{ }^{\circ} \mathrm{C}$
Dryness fraction of steam leaving boiler and entering superheater $=0.96$
Temperature of steam leaving superheater $=260^{\circ} \mathrm{C}$
Specific heat of superheater steam $=2.3 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
Determine the following:
(i) Percentage of heat in coal utilized in economizer, boiler and superheater
(ii) Overall efficiency of the boiler unit

Assume specific heat of water $=4.187 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
[Saturated steam table is attached at the end of booklet]

## Sol.

Mass of water evaporated $=5940 \mathrm{~kg} / \mathrm{hr}$
Mass of coal burnt $=675 \mathrm{~kg} / \mathrm{hr}$
Lower calorific value of cool $=31600 \mathrm{~kJ} / \mathrm{kg}$
$P_{1}=14$ bar, $C_{p}$, water $=4.187 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, \quad \mathrm{t}_{\mathrm{e}_{1}}=32^{\circ} \mathrm{C}$
$t_{\mathrm{e}_{2}}=115^{\circ} \mathrm{C}, \mathrm{x}=0.96, \quad \mathrm{tsH}_{\mathrm{SH}}=260^{\circ} \mathrm{C}$
$C_{p}$, superheated steam $=2.3 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
Heat utilized by 1 kg of feed water,
(a) In Economizer, $\quad h_{f_{1}}=1 \times c_{p, \text { water }}\left(t_{e_{2}}-t_{e_{1}}\right)$

$$
\begin{aligned}
& h_{f 1}=1 \times 4.187(115-32) \\
& h_{f_{1}}=347.521 \mathrm{~kJ}
\end{aligned}
$$

(b) In boiler,

$$
\begin{equation*}
h_{\text {boiler }}=\left(h_{f}+x h_{f_{g}}\right)-h_{f_{1}} \tag{i}
\end{equation*}
$$

At, $P=14$ bar (use steam table)
$\mathrm{t}_{\mathrm{s}}=195^{\circ} \mathrm{C} ; \mathrm{hf}_{\mathrm{f}}=830.1 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{h}_{\mathrm{fg}}=1957.7 \mathrm{~kJ} / \mathrm{kg}$
Put in equation (i)

$$
\begin{aligned}
& h_{\text {boiler }}=[830.1+(0.96 \times 1957.7)]-347.521 \\
& h_{\text {boiler }}=2361.97 \mathrm{~kJ}
\end{aligned}
$$

(c) In superheater

$$
h_{\text {sup erheater }}=(1-x) h_{f g}+c_{p, S H}\left(T_{S H}-T_{s}\right)
$$

$$
\begin{aligned}
& =[(1-0.96) \times 1957.7]+2.3(260-195) \\
\text { hsuperheater } & =227.808 \mathrm{~kJ}
\end{aligned}
$$

Also, per kg of coal burnt; mass of water evaporated $=\frac{5940}{675}=8.8 \mathrm{~kg} / \mathrm{hr}$
(i) Percentage of heat utilized,
(a) In economizer $=\frac{347.521}{31600 \mathrm{~kJ} / \mathrm{kg}} \times 8.8 \times 100=9.678 \%$
(b) In boiler $=\frac{2361.97 \times 8.8}{31600} \times 100=65.77 \%$
(c) In superheater $=\frac{227.808 \times 8.8 \times 100}{31600}=6.344 \%$
(ii) Overall efficiency of boiler plant

$$
\begin{aligned}
\eta_{o} & =\frac{\text { Total heat absorbed }}{(C V)_{\text {fuel }}} \times 100 \\
& =\frac{(347.521+2361.97+227.808) \times 8.8}{31600} \times 100=81.798 \%
\end{aligned}
$$

(b) (i) Explain the various factors affecting anaerobic digestion process. Why do anaerobic microbes normally grow at a much lower rate than aerobic bacteria?
[10 Marks]
(ii) A family biogas plant is required to be designed to utilize the cow dung of five cows. The hydraulic retention time is 30 days. The temperature of the digester is to be maintained at 30 ${ }^{\circ} \mathrm{C}$. The dry matter consumption per day is 2 kg . The biogas yield is $0.25 \mathrm{~m}^{3} / \mathrm{kg}$. The efficiency of the burner is $60 \%$. The heat of combustion of methane is $26 \mathrm{MJ} / \mathrm{m}^{3}$. The methane proportion is $70 \%$. The density of feedstock material may be taken as $50 \mathrm{~kg} / \mathrm{m}^{3}$. Find (1) the volume of biogas digester and (2) its thermal power.
[10 Marks]

## Sol.

(i) Anaerobic digestion is the breakdown of organic matter by microbes without oxygen. It comprises four stages: Hydrolysis, acidogenesis, Acetogenesis, and methanogenesis. The syntropic nature of this process makes each stage uniquely important. For example, acidogenesis is a prerequisite for methanogenesis, but if high amounts of acids are formed during the acidogenesis stage, it will affect the methanogens and hinder digestion. Biogas is produced as a by-product, with methane and carbon dioxide as major constituents during the process. Due to the high energy potential of methane, anaerobic digestion of solid wastes is widely studied by researchers all over the world. Various factors affecting anaerobic digestion were identified over the years during the studies. The main factors are $\mathrm{C} / \mathrm{N}$ ratio, $\mathrm{F} / \mathrm{M}$ ratio, pH , temperature, Organic loading rate, hydraulic loading rate, and presence of toxins (inherent components or a byproduct of the metabolism). Each of these nevertheless depends heavily on the type of substrate and inoculum employed. In field conditions, it is seldom practical to maintain all these factors, a few of these being uncontrollable in nature. Hence, the trade-off between the factors could often
be brought within the desirable range. C/N ratio, OLR, and Detention time belong to this group. Mixing of the feedstock is yet another aspect that affects the efficacy of the digestion process. Anaerobes tend to grow slower than obligate aerobes because their energy yield from oxidizing organic molecules is smaller than that of aerobes.
(ii) Given data,

No. of cows $=5$
Hydraulic retention time, HRT $=30$ days
Temperature of digester $=30^{\circ} \mathrm{C}$
Dry matter consumption $=2 \mathrm{~kg} /$ day $/$ cow
$\eta$ burner $=60 \%$
Biogas yield $=0.25 \mathrm{~m}^{2} / \mathrm{kg}$
Heat consumption of methane $=26 \mathrm{MJ} / \mathrm{m}^{3}$
Methane proportion $=70 \%$
$\rho$ feedstock $=50 \mathrm{~kg} / \mathrm{m}^{3}$
Volume of biogas digester $=$ Daily feed ( $\mathrm{m}^{3} /$ day $) \times$ Rotational time (days)
Total mass of dry matter per day $=2 \mathrm{~kg} /$ day $\times 5$ cows $=10 \mathrm{~kg} /$ day
Equal amount of water is added to make the slurry,
Mass of slurry $=(10 \mathrm{~kg} / \text { day })_{\text {dry methane }}+(10 \mathrm{~kg} / \text { day })_{\text {water }}$
Mass of slurry $=20 \mathrm{~kg} /$ day
Volume of slurry $=\frac{\text { mass }}{\rho_{\text {feedstock }}}=\frac{20}{50} \frac{\mathrm{~m}^{3}}{\text { day }}=0.4 \mathrm{~m}^{3} / \mathrm{kg}$
With rotational time of 30 days
Total slurry in digester $=0.4 \times 30=12 \mathrm{~m}^{3}$
Volume of biogas digester $=12 \mathrm{~m}^{3}$
Biogas produced $=0.25 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \times 10 \mathrm{~kg} /$ day $=2.5 \mathrm{~m}^{3} /$ day
Thermal energy available $=2.5 \frac{\mathrm{~m}^{3}}{\text { day }} \times 26 \times 0.6 \times 0.7$

$$
=2.5 \times 26 \times 0.6 \times 0.7 \mathrm{MJ} / \text { day }
$$

Thermal power $=\frac{2.5 \times 26 \times 0.6 \times 0.7}{24 \times 3600} \mathrm{MJ} / \mathrm{s}$ or MW

$$
=3.159 \times 10^{-4} \mathrm{MJ} / \mathrm{s}
$$

Thermal power $=0.3159 \mathrm{~kJ} / \mathrm{s}$ or kW
(c)
(i) A refrigeration system with R-22 as refrigerant operates with an evaporating temperature of $10{ }^{\circ} \mathrm{C}$ and a condensing temperature of $35^{\circ} \mathrm{C}$. If the vapour leaves the evaporator saturated and is compressed isentropically, what is the COP of the cycle- (1) if saturated liquid enters
the expansion device and (2) if the refrigerant entering the expansion device is with $10 \%$ vapour?
[ $\mathrm{R}-22$ refrigerant chart is attached]

i.

Case 1: If saturated liquid enters the expansion device,
From chart (Approximate values)
$\mathrm{h}_{1}=400 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{2}=440 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}=\mathrm{h}_{4}=250 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{COP}=\frac{\mathrm{h}_{1}-\mathrm{h}_{4}}{\mathrm{~h}_{2}-\mathrm{h}_{1}}=\frac{400-250}{440-400} \approx 3.75$


Case 2: Entry to expansion device is $10 \%$ vapour and $90 \%$ liquid.
From chart (Approximate values)

$$
\begin{aligned}
& \mathrm{h}_{1}=400 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~h}_{2}=440 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~h}_{3}=\mathrm{h}_{4}=265 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$


h

$$
\mathrm{COP}=\frac{\mathrm{h}_{1}-\mathrm{h}_{4}}{\mathrm{~h}_{2}-\mathrm{h}_{1}}=\frac{400-250}{440-400}=3.375
$$

(ii) What is a liquid-to-suction heat exchanger in refrigeration and air conditioning? Illustrate the benefits of liquid-to-suction heat exchanger.

## Sol.

If we combine superheating of vapour with liquid subcooling, we have a liquid vapour regenerative heat exchanger.

A liquid-vapour heat exchanger may be installed as shown in Figure. In this, the refrigerant vapour from the evaporator is superheated in the regenerative heat exchanger with consequent subcooling of the liquid from the condenser. The effect on the thermodynamic cycle is shown in Figure. Since the mass flow rate of the liquid and vapour is the same, we have from energy balance of the heat exchanger $=h^{\prime}{ }_{1}-h_{1}=h_{3}-h_{3}^{\prime}$


Vapour compression cycle with liquid-vapour regenerative heat exchange
The degree of superheat $\left(t_{1}^{\prime}-t_{0}\right)$ and the degree of subcooling ( $\left.t_{k}-t_{3}^{\prime}\right)$ need not be the same as the specific heats of the vapour and liquid phases are different. The effect on the capacity, power requirement per unit refrigeration and COP is expressed as follows:

$$
\begin{aligned}
& \frac{Q_{0}^{\prime}}{Q_{0}^{\prime}}=\frac{h_{1}-h_{4}^{\prime}}{h_{1}-h_{4}} \cdot \frac{u_{1}}{u_{1}} \\
& \frac{W^{*}}{W^{*}}=\frac{h_{1}-h_{4}}{h_{1}-h_{4}^{\prime}} \cdot \frac{h_{2}^{\prime}-h_{1}^{\prime}}{h_{2}-h_{1}} \\
& E_{c}^{\prime}=\frac{\left(h_{1}-h_{4}\right)+\left(h_{1}^{\prime}-h_{1}\right)}{\left(h_{2}-h_{1}\right)+\left[\left(h_{2}^{\prime}-h_{1}^{\prime}\right)-\left(h_{2}-h_{1}\right)\right]}
\end{aligned}
$$

In all the above expressions, both numerators and denominators increase. The net effect, whether positive, negative or zero, depends on the refrigerant used and the operating conditions. In practice, the suction volume per ton and horsepower per ton are reduced for Freon 12 and R134a. Calculations show a slight increase in the suction volume and horsepower per ton for Freon 22 and ammonia. Experiments show, however, that the volumetric efficiency of most reciprocating compressors improves with superheat.

In particular, it must be stated that superheating of the vapour in a liquid-vapour regenerative heat exchanger is preferable to superheating in the evaporator itself, as the increased refrigerating effect $\left(h_{1}^{\prime}-h_{1}\right)$ due to superheating taking place from temperature $t_{0}$ to $t_{1}^{\prime}$ is transferred as $\left(h_{4}-h_{4}^{\prime}\right)$ at temperature $t 0$, which lowers mean refrigeration temperature. Thus,
we obtain the same increase in refrigerating effect at a lower temperature by the use of a liquid-vapour regenerative heat exchanger.
8.
(a) (i) Describe the working principle of hydrogen fuel cell. Also, comment on the reversible energy conversion efficiency of fuel cells.
[10 Marks]
(ii) A flat plate solar collector measuring $2 \mathrm{~m} \times 1.2 \mathrm{~m}$ has a loss resistance of $0.13 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$ and a plate transfer efficiency of 0.85 . The glass cover has transmittance of 0.9 and the absorptance of the plate is also 0.9. Water enters at a temperature of $35^{\circ} \mathrm{C}$. The ambient temperature is $20^{\circ} \mathrm{C}$ and the irradiance in the plane of the collector is $750 \mathrm{~W} / \mathrm{m}^{2}$. Calculate the flow rate needed to produce a temperature rise of $10{ }^{\circ} \mathrm{C}$. The density of water and its specific heat at mean film temperature may be taken as $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and $4.2 \mathrm{~J} / \mathrm{g}-{ }^{\circ} \mathrm{C}$ respectively.
[10 Marks]
Sol.
(i) A hydrogen fuel cell has two electrodes where the reactions take place and an electrolyte which carries the charged particles from one electrode to the other. In order for a fuel cell to work, it needs hydrogen $\left(\mathrm{H}_{2}\right)$ and oxygen $\left(\mathrm{O}_{2}\right)$. The hydrogen enters the fuel cell at the anode. A chemical reaction strips the hydrogen molecules of their electrons and the atoms become ionized to form $\mathrm{H}^{+}$. The electrons travel through wires to provide a current to do work. The oxygen enters at the cathode, usually from the air. The oxygen picks up the electrons that have completed their circuit. The oxygen then combines with the ionized hydrogen atoms $\left(\mathrm{H}^{+}\right)$, and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is formed as the waste product which exits the fuel cell. The electrolyte plays an essential role as well. It only allows the appropriate ions to pass between the anode and cathode. If other ions were allowed to flow between the anode and cathode, the chemical reactions within the cell would be disrupted.


The reaction in a single fuel cell typically produces only about 0.7 volts. Therefore, fuel cells are usually stacked or connected in some way to form a fuel cell system that can be used in cars, generators, or other products that require power.
The reactions involved in a fuel cell are as follows:

Anode side (an oxidation reaction): $2 \mathrm{H}_{2} \rightarrow 4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
Cathode side (a reduction reaction): $\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
Net reaction (the "redox" reaction): $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

## EFFICIENCY OF A FUEL CELL

In a fuel cell, electrochemical reactions occur whereby reactants are converted to products in a steady flow process. If the temperature and pressure of the flow stream from the entrance to the exit (during the reaction) remain unchanged, from the first law of thermodynamics:

$$
\Delta \mathrm{Q}-\Delta \mathrm{W}=\Delta \mathrm{H}+\Delta(\mathrm{KE})+\Delta(\mathrm{PE})
$$

Where
$\Delta Q=$ Heat transferred to the steady flow stream from the surrounding
$\Delta \mathrm{W}=$ Net work done by the flow stream on the surrounding
$\Delta H=$ Change in enthalpy of the flow stream from the entrance to exit (of the cell)
The change in KE and PE of the stream is usually negligible. Thus:

$$
\Delta \mathrm{W}=\Delta \mathrm{Q}-\Delta \mathrm{H}
$$

For $\Delta \mathrm{W}$ to be the maximum, the process must be reversible.
Entropy is an indicator of heat per kelvin temperature ( $T$ ). For a reversible process, from the second law of thermodynamics, we have,

$$
\Delta \mathrm{Q}=\int \mathrm{Tds}
$$

But the surrounding temperature is constant. Thus, reversible heat transfer occurs at temperature $T$, the prevailing temperature at the inlet and exit. Thus,

$$
\begin{equation*}
\Delta \mathrm{Q}_{\mathrm{rev}}=\mathrm{T} \Delta \mathrm{~S} \tag{1}
\end{equation*}
$$

where $T$ is the temperature of the process, and it remains constant, $\Delta \mathrm{S}$ in the change in entropy.
Thus,

$$
\Delta \mathrm{W}_{\max }=-(\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S})
$$

The energy available to perform useful work is called 'Gibbs Free Energy' G. It is given by:

$$
\begin{aligned}
& G=H-T S \\
& \Delta G=\Delta H-(T \Delta S-S \Delta T)
\end{aligned}
$$

As there is no change in temperature, $\Delta T=0$, and thus

$$
\begin{equation*}
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \tag{2}
\end{equation*}
$$

Therefore:

$$
\Delta W_{\max }=-\Delta G
$$

Combining Eq. (1) and Eq. (2), we can write :

$$
\begin{aligned}
\Delta \mathrm{G} & =\Delta \mathrm{H}-\Delta \mathrm{Q} \\
\text { or } & \Delta \mathrm{Q}
\end{aligned}=\Delta \mathrm{H}-\Delta \mathrm{G}
$$

The efficiency of energy conversion of a fuel cell:

$$
\eta=\frac{\Delta W}{-\Delta H}
$$

Maximum efficiency,

$$
\eta_{\max }=\frac{\Delta \mathrm{W}_{\max }}{-\Delta \mathrm{H}}=\frac{\Delta \mathrm{G}}{\Delta \mathrm{H}}
$$

(ii) Given

Plate area $\left(A_{p}\right)=2 \times 1.2 \mathrm{~m}^{2}=2.4 \mathrm{~m}^{2}$
Loss resistance $=0.13 \mathrm{~m}^{2}-\mathrm{K} / \mathrm{W}=\mathrm{R}_{\mathrm{I}}$
Transmittance of plate glass cover $(\tau)=0.9$
Plate transfer efficiency $\left(\eta_{p}\right)=0.85$
Absorptance $(\alpha)=0.9$
Inlet temperature of water $\left(T_{s}\right)=35^{\circ} \mathrm{C}$
Ambient temperature $\left(T_{a}\right)=20^{\circ} \mathrm{C}$
Irradiance $(\mathrm{G})=750 \mathrm{~W} / \mathrm{m}^{2}$
$\Delta \mathrm{T}=10^{\circ} \mathrm{C}$
Radiant heat flux striking the plate,
$\mathrm{Q}_{\mathrm{r}}=\tau \times \mathrm{A}_{\mathrm{p}} \times \mathrm{G}=0.9 \times 2.4 \times 750$
$\mathrm{Q}_{\mathrm{r}}=1620 \mathrm{~W} / \mathrm{m}^{2}$
Net heat flow into the plate
$\mathrm{Q}_{\mathrm{n}}=\left(\alpha \times \mathrm{Q}_{\mathrm{r}}\right)-\left[\frac{\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{a}}}{\mathrm{R}_{\mathrm{t}}} \times \mathrm{A}_{\mathrm{p}}\right]$
$\mathrm{Q}_{\mathrm{n}}=(0.9 \times 1620)-\left[\frac{35-20}{0.13} \times 2.4\right] \mathrm{W}=[1458-276.92]$
$Q_{n}=1181.08 \mathrm{~W}$
Useful power from the collector
$\mathrm{Q}_{\mathrm{u}}=\eta_{\mathrm{p}} \times \mathrm{Q}_{\mathrm{n}}=0.85 \times 1181.08=1003.91 \mathrm{~W}$
Now $Q_{u}=\dot{m}_{p} \Delta T \Rightarrow 1003.91=\dot{m} \times 4.2 \times 10^{3} \times 10$
$\dot{m}_{\text {water }}=0.0239 \mathrm{~kg} / \mathrm{s}$
Volume flow rate $V=\frac{\dot{\mathrm{m}}}{\rho}=\frac{0.0239}{1000}=2.39 \times 10^{-5} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
(b) A two-pass surface condenser is required to handle the exhaust from a turbine developing 15 MW with specific steam consumption of $5 \mathrm{~kg} / \mathrm{kWh}$. The condenser vacuum is 660 mm of mercury when the barometer reads 760 mm of mercury. The mean velocity of water is $3 \mathrm{~m} / \mathrm{s}$ and the water inlet temperature is $24^{\circ} \mathrm{C}$. The condensate is saturated water and the outlet temperature of cooling water is $4^{\circ} \mathrm{C}$ less than the condensate temperature. The quality of exhaust steam is 0.9 dry. The overall heat transfer coefficient based on outer area of tubes is $4000 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$. The water tubes are 38.4 mm in outer diameter and 29.6 mm in inner diameter. Calculate the following:
(i) Mass of cooling water circulated in $\mathrm{kg} / \mathrm{min}$
(ii) Condenser surface area
(iii) Number of tubes required per pass
(iv) Tube length

Assume atmospheric pressure to be 760 mm of mercury or 1.01325 bar and specific heat of water $=4.187 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.
[Saturated steam table is attached at the end of booklet]
[20 Marks]
Sol. Given,
A two tube pass surface
Power $(P)=15 \mathrm{MW}=15 \times 10^{3} \mathrm{~kW}$
Specific steam consumption, $\dot{m}_{s}=5 \mathrm{~kg} / \mathrm{kWh}$
Barometer reads, Patm $=760 \mathrm{~mm}$ of Hg
Condenser vacuum, $\mathrm{Pg}=-660 \mathrm{~mm}$ of Hg
Mean velocity, $\mathrm{Vm}_{\mathrm{m}}=3 \mathrm{~m} / \mathrm{s}$
Water inlet temperature, $\mathrm{T}_{\mathrm{ci}}=24^{\circ} \mathrm{C}$
Condensate is saturated water and outlet temperature of cooling water is $4^{\circ} \mathrm{C}$ less than the condensate temperature, $\mathrm{T}_{\text {co }}=\mathrm{T}_{\text {ho }}-4^{\circ} \mathrm{C}$

Quality of exhaust steam $x=0.9$
Overall heat transfer coefficient, $\mathrm{U}_{0}=400 \mathrm{~W} / \mathrm{m}^{2} \mathrm{C}$
Outer diameter of water tube, $\mathrm{d}_{0}=38.4 \mathrm{~mm}$
Inner diameter of water tube, $d_{i}=29.6 \mathrm{~mm}$
The absolute pressure, $\quad P_{a b s}=P a t m+P_{g}$

$$
=760-660 \mathrm{~mm} \text { of } \mathrm{Hg}
$$

$$
=100 \mathrm{~mm} \text { of } \mathrm{Hg}
$$

$\therefore \mathrm{h}=100 \mathrm{~mm}$

$$
P_{a b s}=\rho g h
$$

$$
=13.6 \times 10^{3} \times 9.81 \times \frac{100}{100}
$$

$$
P_{\mathrm{abs}}=133416 \mathrm{~Pa}=0.133 \mathrm{bar}(\text { or })=13.34 \mathrm{kPa}
$$

At, $P=0.133$ bar

$$
\begin{aligned}
\mathrm{T}_{\mathrm{h}} & =\mathrm{T}_{\text {sat }}=51^{\circ} \mathrm{C} \\
\mathrm{~h}_{\mathrm{fg}} & =2592 \mathrm{~kJ} / \mathrm{kg} \\
\therefore \mathrm{~T}_{\mathrm{co}} & =51-4=47^{\circ} \mathrm{C}
\end{aligned}
$$

(i) Mass of steam condensed per minute

$$
\begin{aligned}
\mathrm{m}_{\mathrm{h}} & =P \times \dot{\mathrm{m}}_{\mathrm{s}} \\
& =15 \times 10^{3} \times 5=75000 \mathrm{~kg} / \mathrm{h} \\
& =\frac{75000}{60}=1250 \mathrm{~kg} / \mathrm{min} \approx 20.83 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Heat rejected by steam per minute,

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{m}_{\mathrm{h}} \times x . \mathrm{h}_{\mathrm{fg}} \\
& =20.83 \times(0.9 \times 2592)=48600 \mathrm{~kW}
\end{aligned}
$$

By energy balance

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{m}_{\mathrm{c}} \mathrm{Cpc}\left(\mathrm{~T}_{\mathrm{co}}-\mathrm{T}_{\mathrm{ci}}\right) \\
48600 & =\mathrm{m}_{\mathrm{c}} \times 4.187 \times(47-24)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{m}_{\mathrm{c}} & =\frac{48600}{4.187 \times(47-24)}=504.67 \mathrm{~kg} / \mathrm{s} \\
\mathrm{~m}_{\mathrm{c}} & \approx 30280 \mathrm{~kg} / \mathrm{min}
\end{aligned}
$$

(ii) Condenser surface area

It operates in counter flow, so

$$
\begin{aligned}
& \Delta \mathrm{T}_{1}=\mathrm{T}_{\mathrm{h}}-\mathrm{T}_{\mathrm{co}}=51-47=4^{\circ} \mathrm{C} \\
& \Delta \mathrm{~T}_{2}=\mathrm{T}_{\mathrm{h}}-\mathrm{T}_{\mathrm{ci}}=51-24=27^{\circ} \mathrm{C}
\end{aligned}
$$

Logarithmic mean temperature difference (LMTD)

$$
\Delta \mathrm{T}_{\mathrm{ln}}=\frac{\Delta \mathrm{T}_{1}-\Delta \mathrm{T}_{2}}{\ln \left(\frac{\Delta \mathrm{~T}_{1}}{\Delta \mathrm{~T}_{2}}\right)}=\frac{4-27}{\ln \left(\frac{4}{27}\right)}=12.04^{\circ} \mathrm{C}
$$

We know, $\quad \mathrm{Q}=\mathrm{U}_{0} \mathrm{~A}_{\circ} \Delta \mathrm{T}_{\mathrm{In}}$

$$
48600 \times 10^{3}=4000 \times A_{\circ} \times 12.04
$$

$$
A_{\circ}=\frac{48600 \times 10^{3}}{4000 \times 12.04}=1009.136 \mathrm{~m}^{2}
$$

(iii) By continuity equation

$$
\begin{array}{rl} 
& \\
& m_{c}=\left(\frac{\pi}{4}\right) d_{i}^{2} \rho V_{m} n \\
\text { Where, } & \rho \\
& =1000 \mathrm{~kg} / \mathrm{m}^{3} \\
& n=\text { Number of pass of tubes } \\
\therefore \quad 504.69 & =\frac{\pi}{4} \times(0.0296)^{2} \times 1000 \times 3 \times n \\
n & =\frac{504.67}{2.064}=244.46 \\
n & n \approx 244 \text { tubes }
\end{array}
$$

(iv) Length of tube per pass

$$
A_{o}=\pi d_{0} L \times n \times 2 \text { passes }
$$

Because it is 2 tube pass surface,

$$
\begin{aligned}
& A_{0}=2 \pi d_{0} L n \\
& L=\frac{A_{o}}{2 \pi d_{o} n}=\frac{1009.136}{\pi \times 0.0384 \times 244 \times 2}=17.14 \mathrm{~m}
\end{aligned}
$$

(c) The total pressure maintained in an Electrolux refrigerator is 15 bar. The temperature obtained in the evaporator is $-15^{\circ} \mathrm{C}$. The quantities of heat supplied to the generator are (i) 420 kJ to dissociate one kg of vapour and (ii) $1460 \mathrm{~kJ} / \mathrm{kg}$ for increasing the total enthalpy of $\mathrm{NH}_{3}$. The enthalpy of $\mathrm{NH}_{3}$ entering the evaporator is $330 \mathrm{~kJ} / \mathrm{kg}$. Take the following properties of $\mathrm{NH}_{3}$ at $-15^{\circ} \mathrm{C}$ :

Pressure $=2.45$ bar
Enthalpy of vapour $=1666 \mathrm{~kJ} / \mathrm{kg}$
Specific volume $=0.5 \mathrm{~m}^{3} / \mathrm{kg}$
The hydrogen enters the evaporator at $25^{\circ} \mathrm{C}$
Gas constant for $\mathrm{H}_{2}=4218 \mathrm{~kJ} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\mathrm{p}}\left(\right.$ for $\left.\mathrm{H}_{2}\right)=12.77 \mathrm{~kJ} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$
Find the COP of the system assuming $\mathrm{NH}_{3}$ leaves the evaporator in saturated condition．
［20 Marks］
Saturated Steam Pressure Table

| $\begin{aligned} & \text { P } \\ & \text { bar } \end{aligned}$ | $\begin{aligned} & \mathrm{t} \\ & { }^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} v_{f} \\ \mathrm{~m}^{3} / \mathrm{kg} \\ \hline \end{gathered}$ | $\begin{gathered} \begin{array}{c} v_{g} \\ \mathrm{~m}^{3} / \mathrm{kg} \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 贝{ }^{2} \end{gathered}$ | $\begin{gathered} \mathrm{h}_{\mathrm{f}} \\ \mathrm{~kJ} / \mathrm{kg} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{h}_{9} \\ \mathrm{~kJ} / \mathrm{kg} \end{gathered}$ | $\begin{gathered} \mathrm{h}_{\mathrm{fg}} \\ \mathrm{~kJ} / \mathrm{kg} \\ \hline \end{gathered}$ | $\begin{gathered} \mathbf{S}_{\mathrm{f}} \\ \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \end{gathered}$ | $\underset{\mathrm{kJ} / \mathrm{kg}-\mathrm{K}}{\mathrm{~s}_{\mathrm{g}}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.010 | 6.9828 | ． 0010001 | 129.21 | 29.34 | 2514.4 | 2485.0 | ． 1060 | 8.9767 |
| 0.015 | 13.036 | ． 0010006 | 67.982 | 54.71 | 2525.5 | 2470.7 | ． 1957 | 8.8288 |
| 0.020 | 17.513 | ． 0010012 | 67.006 | 73.46 | 2533.6 | 2460.2 | ． 2607 | 8.7246 |
| 0.025 | 21.096 | ． 0010020 | 54.256 | 88.45 | 2540.2 | 2451.7 | ． 3119 | 8.6440 |
| 0.030 | 24.100 | ． 0010027 | 45.667 | 101.00 | 2545.6 | 2444.6 | ． 3544 | 8.5785 |
| 0.035 | 26.694 | ． 0010033 | 39.479 | 111.85 | 2550.4 | 2438.5 | ． 3907 | 8.5232 |
| 0.040 | 28.963 | ． 0010040 | 34.802 | 121.41 | 2554.5 | 2433.1 | ． 4225 | 8.4755 |
| 0.045 | 31.035 | ． 0010046 | 31.141 | 129.99 | 2558.2 | 2428.2 | ． 4507 | 8.4335 |
| 0.050 | 32.896 | ． 0010052 | 28.194 | 137.77 | 2561.6 | 2423.8 | ． 4763 | 8.3960 |
| 0.055 | 34.605 | ． 0010058 | 25.771 | 144.91 | 2564.7 | 2419.8 | ． 4995 | 8.3621 |
| 0.060 | 36.183 | ． 0010064 | 23.741 | 151.50 | 2567.5 | 2416.0 | ． 5209 | 8.3312 |
| 0.065 | 37.651 | ． 0010069 | 22.016 | 157.64 | 2570.2 | 2412.5 | ． 5407 | 8.3029 |
| 0.070 | 39.025 | ． 0010074 | 20.531 | 163.38 | 2572.6 | 2409.2 | ． 5591 | 8.2767 |
| 0.075 | 40.316 | ． 0010079 | 19.239 | 168.77 | 2574.9 | 2406.2 | ． 5763 | 8.2523 |
| 0.080 | 41.534 | ． 0010084 | 18.105 | 173.86 | 2577.1 | 2403.2 | ． 5925 | 8.2296 |
| 0.085 | 42.689 | ． 0010089 | 17.100 | 178.69 | 2579.2 | 2400.5 | ． 6079 | 8.2082 |
| 0.090 | 43.787 | ． 0010094 | 16.204 | 183.28 | 2581.1 | 2397.9 | ． 6224 | 8.1881 |
| 0.095 | 44.833 | ． 0010098 | 15.400 | 187.65 | 2583.0 | 2395.3 | ． 6361 | 8.1691 |
| 0.100 | 45.833 | ． 0010102 | 14.675 | 191.83 | 2584.8 | 2392.9 | ． 6493 | 8.1511 |
| 0.11 | 47.710 | ． 0010111 | 13.416 | 199.68 | 2588.1 | 2388.4 | ． 6738 | 8.1177 |
| 0.12 | 49.446 | ． 0010119 | 12.362 | 206.94 | 2591.2 | 2384.3 | ． 6963 | 8.0872 |
| 0.13 | 51.062 | ． 0010126 | 11.466 | 213.70 | 2594.0 | 2380.3 | ． 7172 | 8.0592 |
| 0.14 | 52.574 | ． 0010133 | 10.694 | 220.02 | 2596.7 | 2376.7 | ． 7367 | 8.0334 |
| 0.15 | 53.997 | ． 0010140 | 10.023 | 225.97 | 2599.2 | 2373.2 | ． 7549 | 8.0093 |
| 0.16 | 55.341 | ． 0010147 | 9.4331 | 231.59 | 2601.6 | 2370.0 | ． 7721 | 7.9869 |
| 0.17 | 56.615 | ． 0010154 | 8.9110 | 236.92 | 2603.8 | 2366.9 | ． 7883 | 7.9658 |
| 0.18 | 57.826 | ． 0010160 | 8.4452 | 241.99 | 2605.9 | 2363.9 | ． 8036 | 7.9460 |
| 0.19 | 58.982 | ． 0010166 | 8.0272 | 246.83 | 2607.9 | 2361.1 | ． 8182 | 7.9272 |
| 0.20 | 60.086 | ． 0010172 | 7.6498 | 251.45 | 2609.9 | 2358.4 | ． 8321 | 7.9094 |
| 0.21 | 61.145 | ． 0010178 | 7.3073 | 255.88 | 2611.7 | 2355.8 | ． 8453 | 7.8925 |
| 0.22 | 62.162 | ． 0010183 | 6.9951 | 260.14 | 2613.5 | 2353.3 | ． 8581 | 7.8764 |
| 0.23 | 63.139 | ． 0010189 | 6.7093 | 264.23 | 2615.2 | 2350.9 | ． 8702 | 7.8611 |
| 0.24 | 64.082 | ． 0010194 | 6.4467 | 268.18 | 2616.8 | 2348.6 | ． 8820 | 7.8464 |
| 0.25 | 64.992 | ． 0010199 | 6.2045 | 271.99 | 2618.3 | 2346.4 | ． 8932 | 7.8323 |
| 0.26 | 65.871 | ． 0010204 | 5.9803 | 275.67 | 2619.9 | 2344.2 | ． 9041 | 7.8188 |
| 0.27 | 66.722 | ． 0010209 | 5.7724 | 279.24 | 2621.3 | 2342.1 | ． 9146 | 7.8058 |
| 0.28 | 67.547 | ． 0010214 | 5.5788 | 282.69 | 2622.7 | 2340.0 | ． 9248 | 7.7933 |
| 0.29 | 68.347 | ． 0010219 | 5.3982 | 286.05 | 2624.1 | 2338.1 | ． 9346 | 7.7812 |
| 0.30 | 69.124 | ． 0010223 | 4.2293 | 289.30 | 2625.4 | 2336.1 | ． 9441 | 7.7695 |
| 0.32 | 70.615 | ． 0010232 | 4.9223 | 295.55 | 2628.0 | 2332.4 | ． 9623 | 7.7474 |
| 0.34 | 72.029 | ． 0010241 | 4.6504 | 301.48 | 2630.4 | 2328.9 | ． 9795 | 7.7266 |
| 0.36 | 73.374 | ． 0010249 | 4.4078 | 307.12 | 2632.6 | 2325.5 | ． 9958 | 7.7070 |
| 0.38 | 74.658 | ． 0010257 | 4.1900 | 312.50 | 2634.8 | 2322.3 | 1.0113 | 7.6884 |
| 0.40 | 75.886 | ． 0010265 | 3.9934 | 317.65 | 2636.9 | 2319.2 | 1.0261 | 7.6709 |
| 0.45 | 78.743 | ． 0010284 | 3.5762 | 329.64 | 2641.7 | 2312.0 | 1.0603 | 7.6307 |
| 0.50 | 81.345 | ． 0010301 | 3.2402 | 340.56 | 2646.0 | 2305.4 | 1.0912 | 7.5947 |
| 0.55 | 83.737 | ． 0010317 | 2.9636 | 350.61 | 2649.9 | 2299.3 | 1.1194 | 7.5623 |
| 0.60 | 85.954 | ． 0010333 | 2.7318 | 359.93 | 2653.6 | 2293.6 | 1.1454 | 7.5327 |
| 0.65 | 88，021 | ． 0010347 | 2.5346 | 368.62 | 2656.9 | 2288.3 | 1.1696 | 7.5055 |
| 0.70 | 89.959 | ． 0010361 | 2.3647 | 376.77 | 2660.1 | 2283.3 | 1.1921 | 7.4804 |
| 0.75 | 91.785 | ． 0010375 | 2.2169 | 384.45 | 2663.0 | 2278.6 | 1.2131 | 7.4570 |
| 0.80 | 93.512 | ． 0010387 | 2.0870 | 391.72 | 2665.8 | 2274.1 | 1.2330 | 7.4352 |
| 0.85 | 95.152 | ． 0010400 | 1.9719 | 396.63 | 2668.4 | 2269.8 | 1.2518 | 7.4147 |
| 0.90 | 96.713 | ． 0010412 | 1.8692 | 405.21 | 2670.9 | 2265.6 | 1.2696 | 7.3954 |
| 0.95 | 98.204 | ． 0010423 | 1.7770 | 411.49 | 2673.2 | 2261.7 | 1.2865 | 7.3771 |
| 1.0 | 99.632 | ． 0010434 | 1.6937 | 417.51 | 2675.4 | 2257.9 | 1.3027 | 7.3598 |
| 1.1 | 102.32 | ． 0010455 | 1.5492 | 428.84 | 2679.6 | 2250.8 | 1.3330 | 7.3277 |
| 1.2 | 104.81 | ． 0010476 | 1.4281 | 439.36 | 2683.4 | 2244.1 | 1.3609 | 7.2984 |
| 1.3 | 107.13 | ． 0010495 | 1.3251 | 449.19 | 2687.0 | 2237.8 | 1.3868 | 7.2715 |
| 1.4 | 109.32 | ． 0010513 | 1.2363 | 458.42 | 2690.3 | 2231.9 | 1.4109 | 7.2465 |
| 1.5 | 111.37 | ． 0010530 | 1.1590 | 467.13 | 2693.4 | 2226.2 | 1.4336 | 7.2234 |
| 1.6 | 113.32 | ． 0010547 | 1.0911 | 475.38 | 2696.2 | 2220，9 | 1.4550 | 7.2017 |
| 1.7 | 115.17 | ． 0010563 | 1.0309 | 483.22 | 2699.0 | 2215.7 | 1.4752 | 7.1813 |
| 1.8 | 116.93 | ． 0010579 | ． 97723 | 490.70 | 2701.5 | 2210.8 | 1.4944 | 7.1622 |
| 1.9 | 118.62 | ． 0010594 | ． 92900 | 497.85 | 2704.0 | 2206.1 | 1.5127 | 7.1440 |

Saturated Steam Pressure Table

| P bar | $\begin{aligned} & \mathrm{t} \\ & { }^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} v_{f} \\ \mathrm{~m}^{3} / \mathrm{kg} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{v}_{\mathrm{g}} \\ \mathrm{~m}^{3} / \mathrm{kg} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{h}_{\mathrm{f}} \\ \mathrm{~kJ} / \mathrm{kg} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{h}_{\mathrm{g}} \\ \mathrm{~kJ} / \mathrm{kg} \end{gathered}$ | $\begin{gathered} \mathrm{h}_{\mathrm{fg}} \\ \mathrm{~kJ} / \mathrm{kg} \end{gathered}$ | $\begin{gathered} \mathbf{s}_{f} \\ \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{g}} \\ \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.0 | 120.23 | . 0010608 | . 88544 | 504.70 | 2706.3 | 2201.6 | 1.5301 | 7.1268 |
| 2.1 | 121.78 | . 0010623 | . 84500 | 511.28 | 2708.5 | 2197.2 | 1.5468 | 7.1105 |
| 2.2 | 123.27 | . 0010636 | . 80964 | 517.62 | 2710.6 | 2193.0 | 1.5627 | 7.0949 |
| 2.3 | 124.71 | . 0010650 | . 77681 | 523.73 | 2712.6 | 2188.9 | 1.5781 | 7.0800 |
| 2.4 | 126.09 | . 0010683 | . 74845 | 529.63 | 2714.5 | 2184.9 | 1.5929 | 7.0667 |
| 2.5 | 127.43 | . 0010675 | . 71844 | 535.34 | 2716.4 | 2181.0 | 1.6071 | 7.0620 |
| 2.6 | 128.73 | . 0010888 | . 09251 | 540.87 | 2718.2 | 2177.3 | 1.6209 | 7.0380 |
| 2.7 | 129.98 | . 0010700 | . 66844 | 546.24 | 2719.9 | 2173.8 | 1.6342 | 7.0282 |
| 2.8 | 131.20 | . 0010712 | . 64604 | 551.44 | 2721.5 | 2170.1 | 1.6471 | 7.0140 |
| 2.9 | 132.39 | . 0010724 | . 62513 | 556.50 | 2723.1 | 2166.8 | 1.6695 | 7.0023 |
| 3.0 | 133.54 | . 0010735 | . 60556 | 561.43 | 2724.7 | 2163.2 | 1.6716 | 6.9909 |
| 3.1 | 134.66 | . 0010748 | . 58722 | 566.23 | 2726.1 | 2159.9 | 1.8834 | 6.9799 |
| 3.2 | 135.75 | . 0010757 | . 56999 | 570.90 | 2727.8 | 2156.7 | 1.6948 | 6.9603 |
| 3.3 | 136.82 | . 0010768 | . 55376 | 575.46 | 2729.0 | 2153.5 | 1.7069 | 6.9689 |
| 3.4 | 137.86 | . 0010779 | . 53846 | 579.92 | 2730.3 | 2150.4 | 1.7168 | 6.9489 |
| 3.5 | 138.87 | . 0010789 | . 52400 | 584.27 | 2731.6 | 2147.4 | 1.7273 | 6.9392 |
| 3.6 | 139.86 | . 0010799 | . 51032 | 588.53 | 2732.9 | 2144.4 | 1.7376 | 6.9297 |
| 3.7 | 140.83 | . 0010809 | . 49736 | 592.69 | 2734.1 | 2141.4 | 1.7476 | 6.9206 |
| 3.8 | 141.78 | . 0010819 | . 48506 | 596.76 | 2735.3 | 2138.6 | 1.7674 | 6.9116 |
| 3.9 | 142.71 | . 0010829 | . 47336 | 600.76 | 2736.5 | 2135.7 | 1.7670 | 6.9028 |
| 4.0 | 143.62 | . 0010839 | . 46222 | 604.67 | 2737.6 | 2133.0 | 1.7764 | 6.8943 |
| 4.1 | 144.52 | . 0010848 | . 45162 | 608.51 | 2738.7 | 2130.2 | 1.7856 | 6.8860 |
| 4.2 | 145.39 | . 0010658 | . 44150 | 612.27 | 2739.8 | 2127.5 | 1.7945 | 6.8779 |
| 4.3 | 146.25 | . 0010867 | . 43184 | 615.97 | 2740.9 | 2124.9 | 1.8033 | 6.8700 |
| 4.4 | 147.09 | . 0010876 | . 42260 | 619.60 | 2741.9 | 2122.3 | 1.8120 | 6.8623 |
| 4.5 | 147.92 | . 0010885 | . 41375 | 623.16 | 2742.9 | 2119.7 | 1.8204 | 6.8547 |
| 4.6 | 148.73 | . 0010894 | . 40528 | 626.67 | 2743.9 | 2117.2 | 1.8287 | 6.8473 |
| 4.7 | 149.53 | . 0010903 | . 39716 | 630.11 | 2744.8 | 2114.7 | 1.8388 | 6.8401 |
| 4.8 | 150.31 | . 0010911 | . 38936 | 633.50 | 2745.7 | 2112.2 | 1.8448 | 6.8330 |
| 4.9 | 151.08 | . 0010920 | . 38188 | 636.83 | 2746.6 | 2109.8 | 1.5227 | 6.8260 |
| 5.0 | 151.84 | . 0010928 | . 37468 | 640.12 | 2747.5 | 2107.4 | 1.8604 | 6.8192 |
| 5.2 | 153.33 | . 0010945 | . 36108 | 646.53 | 2749.3 | 2102.7 | 1.8754 | 6.8069 |
| 5.4 | 154.76 | . 0010961 | . 34846 | 652.76 | 2750.9 | 2098.1 | 1.8899 | 6.7932 |
| 5.6 | 156.16 | . 0010977 | . 33671 | 658.81 | 2752.8 | 2093.7 | 1.9040 | 6.7809 |
| 5.8 | 157.52 | . 0010993 | . 32574 | 664.69 | 2754.0 | 2089.3 | 1.9176 | 6.7600 |
| 6.0 | 158.84 | . 0011009 | . 31547 | 670.42 | 2755.5 | 2085.0 | 1.9308 | 6.7575 |
| 6.2 | 160.12 | . 0011024 | . 30585 | 676.01 | 2756.9 | 2080.9 | 1.9437 | 6.7464 |
| 6.4 | 161.38 | . 0011039 | . 29681 | 681.46 | 2758.2 | 2076.8 | 1.9562 | 6.7357 |
| 6.6 | 162.60 | . 0011063 | . 28830 | 688.78 | 2759.5 | 2072.7 | 1.9684 | 6.7252 |
| 6.8 | 163.79 | . 0011068 | . 28027 | 691.98 | 2760.8 | 2068.8 | 1.9802 | 6.7150 |
| 7.0 | 164.96 | . 0011082 | . 27268 | 607.06 | 2762.0 | 2064.9 | 1.9918 | 6.7062 |
| 7.2 | 166.10 | . 0011096 | . 26550 | 702.03 | 2763.2 | 2061.1 | 2.0031 | 6.8956 |
| 7.4 | 167.21 | . 0011110 | . 25870 | 708.90 | 2764.3 | 2037.4 | 2.1041 | 6.6862 |
| 7.6 | 168.30 | . 0011123 | . 25224 | 711.67 | 2765.4 | 2053.7 | 2.0249 | 6.6771 |
| 7.8 | 169.37 | . 0011137 | . 24610 | 716.36 | 2766.4 | 2050.1 | 2.0354 | 6.6683 |
| 8.0 | 170.41 | . 0011150 | . 24026 | 720.94 | 2767.5 | 2046.5 | 2.0457 | 6.6506 |
| 8.2 | 171.44 | . 0011163 | . 23469 | 725.43 | 2768.5 | 2043.0 | 2.0558 | 6.6511 |
| 8.4 | 172.45 | . 0011176 | . 22938 | 729.85 | 2769.4 | 2039.6 | 2.0657 | 6.6429 |
| 8.6 | 173.44 | . 0011188 | . 22430 | 734.19 | 2770.4 | 2036.2 | 2.0753 | 6.6348 |
| 8.8 | 174.41 | . 0011201 | . 21945 | 738.45 | 2771.3 | 2032.8 | 2.0848 | 6.6269 |
| 9.0 | 175.36 | . 0011213 | . 21481 | 742.64 | 2772.1 | 2029.5 | 2.0941 | 6.6192 |
| 9.2 | 176.29 | . 0011226 | . 21036 | 746.76 | 2773.0 | 2026.2 | 2.1033 | 6.6116 |
| 9.4 | 177.21 | . 0011238 | . 20610 | 750.82 | 2773.8 | 2023.0 | 2.1122 | 6.6042 |
| 9.6 | 178.12 | . 0011250 | . 20201 | 754.81 | 2774.8 | 2019.8 | 2.1210 | 6.5969 |
| 9.8 | 179.01 | . 0011262 | . 19807 | 758.74 | 2775.4 | 2016.7 | 2.1297 | 6.5898 |
| 10.0 | 179.88 | . 0011274 | . 19429 | 762.61 | 2776.2 | 2013.6 | 2.1382 | 6.5828 |
| 10.5 | 182.02 | . 0011303 | . 18545 | 772.03 | 2778.0 | 2005.9 | 2.1588 | 6.5650 |
| 11.0 | 184.07 | . 0011331 | . 17738 | 781.12 | 2779.7 | 1998.5 | 2.1786 | 6.5497 |
| 11.5 | 186.05 | . 0011350 | . 16909 | 789.92 | 2781.3 | 1991.3 | 2.1977 | 6.5342 |
| 12.0 | 187.96 | . 0011386 | . 16320 | 798.43 | 2782.7 | 1964.3 | 2.2161 | 6.5194 |
| 12.5 | 189.81 | . 0011412 | . 15693 | 806.69 | 2784.1 | 1977.4 | 2.2338 | 6.5061 |
| 13.0 | 191.61 | . 0011433 | . 15113 | 814.70 | 2785.4 | 1970.7 | 2.2510 | 6.4913 |
| 13.5 | 193.35 | . 0011464 | . 14574 | 822.40 | 2786.6 | 1964.2 | 2.2676 | 6.4780 |
| 14.0 | 195.04 | . 0011489 | . 14072 | 830.07 | 2787.8 | 1957.7 | 2.2837 | 6.4651 |
| 14.5 | 196.69 | . 0011514 | . 13604 | 837.46 | 2788.9 | 1951.4 | 2.2902 | 6.4526 |

Saturated Steam Pressure Table

| $\begin{aligned} & \text { P } \\ & \text { bar } \end{aligned}$ | $\begin{aligned} & \mathrm{t} \\ & { }^{\circ} \mathrm{C} \end{aligned}$ | $\begin{array}{r} v_{f} \\ \mathrm{~m}^{3} / \mathrm{kg} \\ \hline \end{array}$ | $\begin{gathered} v_{g} \\ \mathrm{~m}^{3} / \mathrm{kg} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{h}_{\mathrm{f}} \\ \mathrm{~kJ} / \mathrm{kg} \end{gathered}$ | $\begin{gathered} \mathrm{h}_{\mathrm{g}} \\ \mathrm{~kJ} / \mathrm{kg} \end{gathered}$ | $\begin{gathered} \mathrm{h}_{\mathrm{fg}^{\prime}} \\ \mathrm{kJ} / \mathrm{kg} \\ \hline \end{gathered}$ | $\begin{gathered} \mathbf{s}_{f} \\ \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \end{gathered}$ | $\begin{gathered} \mathrm{s}_{9} \\ \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15.0 | 198.29 | . 0011539 | . 13166 | 844.66 | 2789.9 | 1945.2 | 2.3145 | 6.4406 |
| 15.5 | 199.85 | . 0011563 | . 12755 | 851.69 | 2790.8 | 1939.2 | 2.3292 | 6.4289 |
| 16.0 | 201.37 | . 0011586 | . 12369 | 858.56 | 2791.7 | 1933.2 | 2.3436 | 6.4175 |
| 16.5 | 202.86 | . 0011610 | . 12005 | 865.28 | 2792.6 | 1927.3 | 2.3576 | 6.4065 |
| 17.0 | 204.31 | . 0011633 | . 11662 | 871.84 | 2793.4 | 1921:5 | 2.3713 | 6.3957 |
| 17.5 | 205.72 | . 0011656 | . 11338 | 878.27 | 2794.1 | 1915.9 | 2.3846 | 6.3853 |
| 18.0 | 207.11 | . 0011678 | . 11032 | 884.57 | 2794.8 | 1910.9 | 2.3976 | 6.3751 |
| 18:5 | 208.47 | . 0011701 | . 10741 | 890.75 | 2795.5 | 1904.7 | 2.4103 | 6.3651 |
| 19.0 | 209.80 | . 0011723 | . 10465 | 896.81 | 2796.1 | 1899.3 | 2.4228 | 6.3554 |
| 19.5 | 211.10 | . 011744 | . 10203 | 902.75 | 2796.7 | 1893.9 | 2.4349 | 6.3459 |
| 20,0 | 212.37 | . 011766 | . 099536 | 908.59 | 2797.2 | 1888.6 | 2.4469 | 6.3367 |
| 20.5 | 213.63 | . 0011787 | . 097158 | 914.32 | 2797:7 | 1883.4 | 2.4585 | 6.3276 |
| 21.0 | 214.85 | . 0011809 | . 094890 | 919.96 | 2798.2 | 1878.2 | 2.4700 | 6.3187 |
| 21.5 | 216.06 | . 0011830 | . 092723 | 925.50 | 2798.6 | 1873.1 | 2.4812 | 6.3100 |
| 22.0 | 217.24 | . 0011850 | . 090652 | 930.95 | 2799.1 | 1868.1 | 2.4922 | 6.3015 |
| 22.5 | 218.41 | . 0011871 | . 088669 | 936.32 | 2799.4 | 1863.1 | 2.5030 | 6.2931 |
| 23.0 | 219.55 | . 0011892 | . 086769 | 941.60 | 2799.8 | 1858.2 | 2.5136 | 6.2849 |
| 23.5 | 220.68 | . 0011912 | . 084048 | 946.80 | 2800.1 | 1853.3 | 2.5241 | 6.2769 |
| 24.0 | 221.78 | . 011932 | . 083199 | 951.93 | 2800.4 | 1848.5 | 2.5343 | 6.2600 |
| 24.5 | 222.87 | . 0011962 | . 081520 | 956.98 | 2800.7 | 1843.7 | 2.5444 | 6.2612 |
| 25.0 | 223.94 | . 0011972 | . 079905 | 961.96 | 2800.9 | 1839.0 | 2.5543 | 6.2536 |
| 25.5 | 225.00 | . 0011991 | . 078352 | 966.87 | 2801.2 | 1834.3 | 2.5640 | 6.2461 |
| 26.0 | 226.04 | . 0012011 | . 076856 | 971.72 | 2801.4 | 1829.6 | 2.5736 | 6.2387 |
| 26.5 | 227.06 | . 0012031 | . 075415 | 976.50 | 2801.6 | 1825.1 | 2.5831 | 6.2315 |
| 27.0 | 228.07 | . 0012050 | . 074025 | 981.22 | 2801.7 | 1820.5 | 2.5924 | 6.2244 |
| 27.5 | 229.07 | . 0012069 | . 072684 | 985.88 | 2801.9 | 1816.0 | 2.6016 | 6.2173 |
| 28.0 | 230.05 | . 0012088 | . 071389 | 990.48 | 2802.0 | 1811.5 | 2.6106 | 6.2104 |
| 28.5 | 231.01 | . 0012107 | . 070138 | 995.03 | 2802.1 | 1807.1 | 2.6195 | 6.2036 |
| 29.0 | 231.97 | . 0012126 | . 068928 | 999.52 | 2802.2 | 1802.6 | 2.6283 | 6.1969 |
| 29.5 | 232.91 | . 0012145 | . 067758 | 1003.96 | 2802.2 | 1798.3 | 2.6370 | 6.1903 |
| 30.0 | 233.84 | . 0012163 | . 066626 | 1008.35 | 2802.3 | 1793.9 | 2.6455 | 6.1837 |
| 31.0 | 235.67 | . 0012200 | . 064467 | 1016.99 | 2802.3 | 1785.4 | 2.6623 | 6.1709 |
| 32.0 | 237.45 | . 0012237 | . 062439 | 1025.43 | 2802.3 | 1776.9 | 2.6786 | 6.1585 |
| 33.0 | 239.18 | . 0012274 | . 060629 | 1033.70 | 2802.3 | 1768.6 | 2.6945 | 6.1463 |
| 34.0 | 240.88 | . 0012310 | . 058728 | 1041.81 | 2802.1 | 1760.3 | 2.7101 | 6.1344 |
| 35.0 | 242.54 | . 0012345 | . 057025 | 1049.76 | 2802.0 | 1752.2 | 2.7253 | 6.1228 |
| 36.0 | 244.16 | . 0012381 | . 055415 | 1067.56 | 2801.7 | 1744.2 | 2.7401 | 6.1115 |
| 37.0 | 245.75 | . 0012416 | . 053881 | 1065.21 | 2801.4 | 1736.2 | 2.7547 | 6.1004 |
| 38.0 | 247.31 | . 0012451 | . 052438 | 1072.74 | 2801.1 | 1728.4 | 2.7689 | 6.0896 |
| 39.0 | 248.84 | . 0012486 | . 051061 | 1080.13 | 2800.8 | 1720.6 | 2.7829 | 6.0789 |
| 40.0 | 250.33 | . 0012521 | . 049749 | 1087.40 | 2800.3 | 1712.9 | 2.7965 | 6.0685 |
| 40.1 | 251.80 | . 0012565 | . 048500 | 1094.56 | 2799.9 | 1705.3 | 2.8099 | 6.0583 |
| 42.0 | 253.24 | . 0012589 | . 047307 | 1101.60 | 2799.4 | 1697.8 | 2.8231 | 6.0482 |
| 43.0 | 254.86 | . 0012623 | . 046168 | 1108.54 | 2798.9 | 1690.3 | 2.8360 | 6.0383 |
| 44.0 | 256.05 | . 0012657 | . 045079 | 1116.38 | 2798.3 | 1682.9 | 2.8487 | 6.0286 |
| 45.0 | 257.41 | . 0012691 | . 044037 | 1122.11 | 2797.7 | 1675.6 | 2.8612 | 6.0191 |
| 46.0 | 258.75 | . 0012725 | . 043038 | 1128.76 | 2797.0 | 1668.3 | 2.8735 | 6.0007 |
| 47:0 | 260.07 | . 0012758 | . 042081 | 1135.31 | 2796.4 | 1661.1 | 2.8855 | 6.0004 |
| 48.0 | 261.37 | . 0012792 | . 041161 | 1141.78 | 2795.7 | 1653.9 | 2.8974 | 5.9913 |
| 49.0 | 262.65 | . 012825 | . 040278 | 1148.16 | 2794.9 | 1646.8 | 2.9091 | 5.9824 |
| 50.0 | 263.91 | . 0012858 | . 039429 | 1154.47 | 2794.2 | 1639.7 | 2.9206 | 5.9735 |
| 51.0 | 265.15 | . 0012891 | . 038611 | 1160.69 | 2793.4 | 1632.7 | 2.9313 | 5.9648 |
| 52.0 | 266.37 | . 0012924 | . 037824 | 1166.85 | 2792.6 | 1625.7 | 2.9431 | 5.9561 |
| 53.0 | 267.58 | . 0012957 | . 037068 | 1172.93 | 2791.7 | 1618.8 | 2.9541 | 5.9476 |
| 54.0 | 268.76 | . 0012990 | . 036334 | 1178.94 | 2790.8 | 1611.9 | 2.9650 | 5.9392 |
| 55.0 | 269.93 | . 0013023 | . 035628 | 1184.89 | 2789.9 | 1605.0 | 2.9757 | 5.9309 |
| 56.0 | 271.09 | . 0013056 | . 034946 | 1190.77 | 2789.0 | 1598.2 | 2.9863 | 5.9227 |
| 57.0 | 272.22 | . 0013089 | . 034288 | 1196.59 | 2788.0 | 1591.4 | 2.9968 | 5.9146 |
| 58.0 | 273.35 | . 0013121 | . 033661 | 1202.35 | 2787.0 | 1584.7 | 3.0071 | 5.9066 |
| 59.0 | 274.46 | . 0013154 | . 033034 | 1208.05 | 2786.0 | 1578.0 | 3.0172 | 5.8986 |
| 60.0 | 275.55 | . 0013187 | . 032438 | 1213.69 | 2785.0 | 1571.3 | 3.0273 | 5.8908 |
| 61.0 | 276.63 | . 0013219 | . 031860 | 1219.28 | 2784.0 | 1564.7 | 3.0372 | 5.8830 |
| 62.0 | 277.70 | . 0013252 | . 031300 | 1224.82 | 2782.9 | 1558.0 | 3.0471 | 5.8753 |
| 63.0 | 278.75 | . 0013285 | . 030757 | 1230.31 | 2781.8 | 1551.5 | 3.0568 | 5.8677 |
| 64.0 | 279.79 | . 0013317 | . 030230 | 1235.75 | 2780.6 | 1544.9 | 3.0664 | 5.8601 |

Sol.
Given,
Total pressure of Electrolux Refrigerator $\left(\mathrm{P}_{\mathrm{T}}\right)=15 \mathrm{bar}$
Evaporator temperature $\left(\mathrm{T}_{\mathrm{e}}\right)=15^{\circ} \mathrm{C}=285 \mathrm{~K}$

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{G}_{1}}=420 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{Q}_{\mathrm{G}_{2}}=1460 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

For $\mathrm{NH}_{3} ; \mathrm{h}_{1}=330 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{P}_{2}=2.45 \mathrm{bar}$
$\mathrm{h}_{2}=1666 \mathrm{~kJ} / \mathrm{kg}$
$v=0.5 \mathrm{~m}^{3} / \mathrm{kg}$
For hydrogen $\left(\mathrm{H}_{2}\right): \mathrm{T}_{3}=25^{\circ} \mathrm{C}=298 \mathrm{~K}$
$\mathrm{R}=4.218 \mathrm{~kJ} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\mathrm{p}}=12.77 \mathrm{~kJ} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$
Electrolux Refrigerator


Total heat given to generator,

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{G}}=\mathrm{Q}_{\mathrm{G}_{1}}+\mathrm{Q}_{\mathrm{G}_{2}}=(420+1460) \mathrm{kJ} / \mathrm{kg} \\
& \mathrm{Q}_{\mathrm{G}}=1880 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Since in evaporator ( $\mathrm{P}_{\mathrm{T}}=15 \mathrm{bar}$ ) and $\mathrm{P}_{2}\left(\mathrm{P}_{\mathrm{NH}_{3}}\right)=2.45 \mathrm{bar}$

$$
\begin{aligned}
\Rightarrow \quad & P_{\mathrm{H}_{2}}
\end{aligned}=P_{\mathrm{T}}-P_{2}=15-2.450 \text { bar } \quad P_{\mathrm{H}_{2}}=12.55 \text { bat }
$$

For $\mathrm{m} \mathrm{kg} \mathrm{H} \mathrm{H}_{2}$ flow per kg of $\mathrm{NH}_{3}$
$v_{\mathrm{NH}_{3}}=0.5 \mathrm{~m}^{3} / \mathrm{kg}=v_{\mathrm{H}_{2}}$ at $-15^{\circ} \mathrm{C}(258 \mathrm{~K})$
$m_{\mathrm{H}_{2}}=\frac{\mathrm{P}_{\mathrm{H}_{2}} \times v_{\mathrm{H}_{2}}}{R_{\mathrm{H}_{2}} \times \mathrm{T}_{\mathrm{H}_{2}}}=\frac{1255 \times 0.5}{4.218 \times 285}$
$\Rightarrow \mathrm{m}_{\mathrm{H}_{2}}=0.5766 \mathrm{~kg}$
Using energy balance equation for evaporator
$1 \times\left(h_{2}-h_{1}\right)=m_{H_{2}} \cdot C_{P_{H_{2}}}\left(T_{3}-T_{2}\right)+Q_{e}$
$1 \times(1666-330)=0.576 \times 12.77[25-(-15)]+Q_{e}$
byjusexamprep.com

$$
\begin{aligned}
& \Rightarrow \mathrm{Q}_{\mathrm{e}}=1041.47 \mathrm{~kJ} / \mathrm{kg} \text { of } \mathrm{NH}_{3} \\
& \mathrm{COP}=\frac{\mathrm{Q}_{\mathrm{e}}}{\mathrm{Q}_{\mathrm{G}}}=\frac{1041.47}{1880} \\
& \mathrm{COP}=0.554
\end{aligned}
$$



## Outstanding performance by our students in GATE 2021




Poojasree (ECE)


Harshit (IN)


Munish (ME)


Amit (CE)


Divakar (IN)


Vatsal (ME)


Parag (ECE)


Hemant (EE)


Rajat (ME)


Abhishek (ECE)

