ESE Mains 2023

Electronics \&

 Telecom. EngineeringQuestions \& Solutions
PAPER-2

Electronics and Telecommunication Engineering Paper 2: Marks Distribution					
S. No.	Subjects	Difficulty Level 2023	2023 Marks	2022 Marks	2021 Marks
1	Analog and Digital Communication Systems	Easy	70	100	120
2	Control Systems	Easy	60	80	70
3	Computer Organization and Architecture	Moderate	90	80	110
4	Electro Magnetics	Moderate	90	80	80
5	Advanced Electronics	Moderate	80	80	60
6	Advanced Communication	Moderate	90	60	40
	Total	480	480	480	

ELECTRONICS \& TELECOMMUNICATION ENGINEERING
 Paper-2

SECTION-'A'

1.(a) A band limited random signal $X(t)$ has two-sided power spectral density $S_{x}(f)$ (PSD) given by

$$
S_{X}(f)= \begin{cases}10^{-6}(3000-|f|) \text { watts } / \mathrm{Hz} \text { for }|\mathrm{f}| \leq 3 \mathrm{kHz} \\ 0, & \text { otherwise }\end{cases}
$$

where f is frequency expressed in Hz .
This signal modulates a carrier cos 16000 tt and resultant signal is passed through an ideal band pass filter of unit gain with central frequency of 8 kHz and bandwidth of 2 kHz . Draw two-sided power spectral density diagram for the given signal, modulated carrier and the output of filter.
[10 Marks]
Sol. $\quad S_{x}(f)=\left\{\begin{array}{cc}10^{-6}(3000-|\mathrm{f}|) \text { Watts } / \mathrm{Hz} & ; \quad \text { for }|\mathrm{f}| \leq 3 \mathrm{kHz} \\ 0, & ; \quad \text { otherwise }\end{array}\right.$
$S_{x}(f)=3 \times 10^{-3}\left[1-\frac{|f|}{3000}\right]$
$S_{x}(f)=A\left[1-\frac{|t|}{\tau}\right]$

Power of $y(t)=$ Area under output PSD
Power of $\mathrm{y}(\mathrm{t})=2\left[\frac{2 \times 10^{3} \times 2 \times 10^{-3}}{4}+\frac{1}{2} \times 2 \times 10^{3} \times \frac{1}{4} \times 10^{-3}\right]$
Power of $y(t)=2\left[1+\frac{1}{4}\right]=\frac{10}{4}=2.5$
1.(b) Convert the given block diagram to equivalent signal flow graph. Find the transfer function using Mason's Gain Formula.

Sol. The equivalent signal flow graph is as follows,

The forward paths are:
$\mathrm{P}_{1} \Rightarrow \mathrm{R}-\mathrm{x}_{1}-\mathrm{x}_{2}-\mathrm{x}_{3}-\mathrm{x}_{4}-\mathrm{x}_{5}-\mathrm{C}$
$\mathrm{P}_{1}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}$
$\mathrm{P}_{2} \Rightarrow \mathrm{R}-\mathrm{x}_{1}-\mathrm{X}_{2}-\mathrm{X}_{3}-\mathrm{x}_{5}-\mathrm{C}$
$P_{2}=G_{1} G_{4}$
The closed loops are:
$\mathrm{L}_{1}: \mathrm{X}_{2}-\mathrm{X}_{3}-\mathrm{X}_{4}-\mathrm{X}_{2}$
$\mathrm{L}_{1}=\mathrm{G}_{1} \mathrm{G}_{2}\left(-\mathrm{H}_{1}\right)=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{H}_{1}$
$L_{2}: x_{1}-X_{2}-X_{3}-X_{4}-X_{5}-x_{1}$
$\mathrm{L}_{2}=1 \times \mathrm{G}_{1} \times \mathrm{G}_{2} \times \mathrm{G}_{3} \times(-1)=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}$
$L_{3}: x_{1}-x_{2}-X_{3}-X_{5}-x_{1}$
$\mathrm{L}_{3}=1 \times \mathrm{G}_{1} \times \mathrm{G}_{4} \times(-1)=-\mathrm{G}_{1} \mathrm{G}_{4}$
$L_{4}: X_{3}-X_{4}-X_{5}-X_{3}$
$\mathrm{L}_{4}=\mathrm{G}_{2} \mathrm{G}_{3}\left(-\mathrm{H}_{2}\right)=-\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{2}$
$L_{5}: X_{3}-X_{5}-X_{3}$
$\mathrm{L}_{5}=\mathrm{G}_{4}\left(-\mathrm{H}_{2}\right)=-\mathrm{G}_{4} \mathrm{H}_{2}$
All loops are touching each other. Also, if any of the forward paths is erased, all loops are open. So, path factors are: $\Delta_{1}=1, \Delta_{2}=1$
Graph determinant:
$\Delta=1-\left(\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+\mathrm{L}_{4}+\mathrm{L}_{5}\right)=1+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{H}_{1}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}+\mathrm{G}_{1} \mathrm{G}_{4}+\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{2}+\mathrm{G}_{4} \mathrm{H}_{2}$

By Mason's gain formula,

$\frac{\mathrm{C}}{\mathrm{R}}=\frac{\sum \mathrm{P}_{\mathrm{k}} \Delta_{\mathrm{k}}}{\Delta}=\frac{\mathrm{P}_{1} \Delta_{1}+\mathrm{P}_{2} \Delta_{2}}{\Delta}$
$\frac{\mathrm{C}}{\mathrm{R}}=\frac{\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \times 1+\mathrm{G}_{1} \mathrm{G}_{4} \times 1}{\Delta}$
$\frac{C}{R}=\frac{G_{1}\left(G_{2} G_{3}+G_{4}\right)}{1+G_{1} G_{2} H_{1}+G_{1} G_{2} G_{3}+G_{1} G_{4}+G_{2} G_{3} H_{2}+G_{4} H_{2}}$
1.(c) What do cores mean in a processor? Differentiate between Multi-core and Many -core architectures.

Sol. Core means, the pathways made up of billions of microscopic transistors within a processor that help to make it work.

- Multi-core typically refers to devices with 2-8 or so cores in them.
- Many cores typically refer to devices with dozens or hundreds of cores.
- Many core processors provide a higher degree of explicit parallelism when compared to multi-core processors.
- Many core processors are special kinds of multi-core processors designed for a higher throughput.
- Cache coherency is an issue limiting the scaling of multi-care processors.
- Many core processors bypass the issue of cache coherency by using methods such as message passing, DMA, scratchpad memory etc.
- Multi-core processor implements the multi-processing in a single physical package. Here cores may or may not share caches.
1.(d) The electric field intensity of a linearly polarized uniform plane wave propagating in the $+z$ direction in sea water is
$\overrightarrow{\mathrm{E}}=\hat{a}_{\mathrm{x}} 100 \cos \left(10^{7} \pi \mathrm{t}\right) \mathrm{V} / \mathrm{m}$ at $\mathrm{z}=0$.
The constitutive parameters of sea water are
$\varepsilon_{r}=72, \mu_{r}=1$, and $\sigma=4(\mathrm{~S} / \mathrm{m})$.

Determine the intrinsic impedance, wavelength and skin depth. The value of ε_{0} may be taken as $8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$, and $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$.
[10 Marks]
Sol. Given, $\vec{E}(0, t)=100 \cos \left(10^{7} \pi t\right) \hat{a}_{x} V / m$
In general,
$\vec{E}(z, t)=100 e^{-\alpha z} \cos \left(10^{7} \pi t-\beta z\right) \hat{\alpha}_{x} V / m$
The loss tangent of the medium is:
$\tan \theta=\frac{\sigma}{\omega \varepsilon}=\frac{4}{\left(10^{7} \pi\right)\left(72 \times \frac{1}{36 \pi} \times 10^{-9}\right)}$
$\tan \theta=2 \times 10^{2}=200 \rightarrow$ high
$\& \theta=89.71^{\circ} \approx 90^{\circ}$
So, medium can be considered as a good conductor.
Intrinsic impedance will be,
$\eta=\sqrt{\frac{\omega \mu_{0}}{\sigma}} \mathrm{e}^{\mathrm{j} / 4}$
$\eta=\sqrt{\frac{10^{7} \pi \times 4 \pi \times 10^{-7}}{4}} \mathrm{e}^{\mathrm{j} \pi / 4}=\pi \mathrm{e}^{\mathrm{j} \pi / 4} \Omega$
For a good conductor,
$\alpha=\beta=\sqrt{\pi f \mu \sigma}=\sqrt{\frac{\omega \mu \sigma}{2}}=\sqrt{\frac{\left(10^{7} \pi\right)\left(4 \pi \times 10^{-7}\right) \times 4}{2}}$
$\alpha=\beta=2 \sqrt{2} \pi$
So, wavelength is,
$\lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{2 \sqrt{2} \pi}=\frac{1}{\sqrt{2}}$
$\lambda=0.707 \mathrm{~m}$
Skin depth is, $\delta=\frac{1}{\alpha}=\frac{1}{2 \sqrt{2} \pi}=0.113 \mathrm{~m}$
1.(e) An electron beam exposure system operates at 20 kV accelerating voltage. Column length is 70 cm . Spot current is 500 nA , and numerical aperture of the final lens is 10^{-2} rad. The energy spread at the cathode is 0.2 V . If the coefficients of spherical and chromatic aberration are 10 cm and 62.5 cm respectively, determine the resolution limit at the centre of the exposure field.
[10 Marks]
Sol. $V_{0}=20 \mathrm{kV}=20 \times 10^{3}$ Volts
Mass of electron, $\mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}$
Charge of electron, $\mathrm{q}=1.6 \times 10^{-19}$ Coulomb
Plank's constant, $\mathrm{h}=6.67 \times 10^{-34} \mathrm{~J}-\mathrm{sec}$

Wavelength,
$\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mqV}_{0}}}=\frac{6.67 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-19} \times 20 \times 10^{3}}}$
$\lambda=8.68 \times 10^{-12} \mathrm{~m}$
Resolution limit,
$\mathrm{d}=\frac{0.612 \lambda}{\mathrm{n} \sin \alpha}=\frac{0.612 \lambda}{\mathrm{NA}}$
Where, NA = Numerical aperture
$\mathrm{d}=\frac{0.612 \times 8.68 \times 10^{-12}}{10^{-2}}=5.31 \times 10^{-10} \mathrm{~m}$
1.(f) Between direct modulation and external modulation, which approach would you prefer as a dispersion management solution in case of optical fiber communication and why?

Sol. The figure given below shows the basic concept of direct modulation of laser diode being used as an optical source.

Basic concept of direct modulation
In direct modulation, the laser diode's bias current is modulated with signal input to produce modulated optical output. This approach is straightforward and low cost but is susceptible to chirp (spectral broadening) thus exposing the signal to higher dispersion.
The given figure below shows the basic concept of external modulation of laser diode being used as an optical source.

In external modulation, the laser diode's bias current is stable. This approach yields low chirp and better dispersion performance but is a more expensive solution for dispersion management.
2.(a) A band limited analog signal of 5 kHz is sampled at twice the Nyquist rate. Each sample is quantized into 1024 equally likely levels that are statistically independent.
(i) Calculate information rate.
(ii) Can output of the source be transmitted without error over a Gaussian channel with a bandwidth of 50 kHz and signal to noise ratio of 30 dB ?
(iii) What minimum bandwidth is needed to transmit the generated signal without error if a signal to noise ratio of 10 dB is needed to be maintained?
[20 Marks]
Sol. $f_{m}=5 \mathrm{kHz}$,
$\mathrm{f}_{\mathrm{s}}=2 \times$ Nyquist rate
$\mathrm{f}_{\mathrm{s}}=2 \times\left(2 \mathrm{f}_{\mathrm{m}}\right)=4 \mathrm{f}_{\mathrm{m}}=20 \mathrm{kHz}$
$L=1024$
$H=\log _{2} L=\log _{2} 1024=10 \mathrm{bits} /$ sample
$r=20 \times 10^{3}$ samples/sec
(i) Information rate R of the source is,

$$
\mathrm{R}=\mathrm{rH}=20 \times 10^{3} \times 10=200 \mathrm{kbps}
$$

(ii) For errorfree transmission, $\mathrm{C} \geq \mathrm{R}$
$\mathrm{C}=\mathrm{B} \log _{2}\left(1+\frac{\mathrm{S}}{\mathrm{N}}\right)$
$C=50 \times 10^{3} \log _{2}\left(1+10^{3}\right)$
$C=498.36 \mathrm{kbps}$
Since, $C>R$, errorfree transmission is possible.
(iii) For errorfree transmission,
$C \geq R$
$B \log _{2}\left(1+\frac{S}{N}\right) \geq R$
$B \geq \frac{R}{\log _{2}\left(1+\frac{S}{N}\right)}=\frac{200 \times 10^{3}}{\log _{2}\left(1+10^{1}\right)}$
$\mathrm{B} \geq 57.81 \mathrm{kHz}$
The minimum bandwidth $(B)=57.8 \mathrm{kHz}$
2.(b) Consider the block diagram of an LTI system shown below:

Block A has impulse response $h_{A}(t)=e^{-2 t} u(t)$.
Block B has impulse response $h_{B}(t)=e^{-t} u(t)$.
Block K is an ideal amplifier of gain ' K '.
(i) Calculate transfer function of the system when $\mathrm{K}=1$.
(ii) Find impulse response of the system when $\mathrm{K}=0$.
(iii) Find the value of K for which the system becomes unstable.
[20 Marks]
Sol. The block gain in terms of s-domain is,

The transfer for function is,
$\frac{C(s)}{R(s)}=\frac{\frac{1}{(s+1)(s+2)}}{1+\frac{1}{(s+1)(s+2)} \times \frac{K}{s}}$
$\frac{C(s)}{R(s)}=\frac{s}{s^{3}+3 s^{2}+2 s+K}$
(i) $\mathrm{K}=1$

The transfer function is,
$T(s)=\frac{C(s)}{R(s)}=\frac{G(s)}{1+G(s) H(s)}=\frac{\frac{1}{(s+1)(s+2)}}{1+\frac{1}{(s+1)(s+2)} \times \frac{1}{s}}$
$T(s)=\frac{s}{s(s+1)(s+2)+1}=\frac{s}{s^{3}+3 s^{2}+2 s+1}$
(ii) $\mathrm{K}=0$

Transfer function will be,
$T(s)=\frac{1}{(s+1)(s+2)}$
$T(s)=\frac{1}{s+1}-\frac{1}{s+2}$
So, impulse response will be inverse Laplace transform,
$\Rightarrow e^{-t} u(t)-e^{-2 t} u(t)$
(iii) The characteristic equation of the system is, $s^{3}+3 s^{2}+2 s+K=0$
forming Routh array, $\begin{array}{lll}\mathrm{s}^{3} & 1 & 2\end{array}$

$$
\begin{aligned}
& s^{2} \quad 3 \\
& s^{1} \quad \frac{6-K}{3} \quad 0 \\
& s^{0} \quad \mathrm{~K} \\
& \text { For system to be unstable, } \\
& \frac{6-K}{3}<0 \\
& 6-K<0 \\
& K>6
\end{aligned}
$$

2.(c) (i) Write a code or pseudocode (in any standard programming language) to swap two numbers without using third variable.
(ii) Write a code or pseudocode (in any standard programming language) to swap two numbers using pointers.
[20 Marks]
Sol. (i) $/ *$ Code to swap two numbers without $3^{\text {rd }}$ variable */
\# included < stdio.h >
Void main ()
\{
int $a, b ;$
printf ("Enter a and b values:");
scanf (" \%d \%d, \&a, \&b);
printf ("a, b values before swapping are: $\backslash n$ ");
printf ("a = \%d, b = \%d", a, b);
$a=a+b ;$
$b=a-b ;$
$a=a-b ;$
printf ("a, b values after swapping are: \n");
printf ("a = \%d, b = \%d", a, b;
\}
Sample output: Enter a and b values: 46
a, b values before swapping are
$a=4, b=6$
a, b values after swapping are
$a=6, b=4$
(ii) void swap (int *, int *);

Void main ()
\{
int $a, b ;$
printf ("Enter a, b values:");
scanf ("\%d \%d", \&a, \&b);
printf ("a, b values before swapping $a=\% d, b=\% d$ ', a, b);
swap (\&a, \&b);
printf ("a, b values after swapping : $a=\% d, b=\% d ", a, b)$;
\}
void swap (int *p, int * q)
\{
int temp;
temp $=* p ;$
p $={ }^{} \mathrm{q}$;
*q = temp;
\}
Sample output: Enter a, b values: 57
a, b values before swapping $a=5, b=7$
a, b values after swapping $a=7, b=5$
3.(a) (i) The AM envelope observed on a CRO is shown below:

Determine the following parameters:
(I) Peak amplitude of upper and lower sideband
(II) Peak amplitude of the carrier
(III) Peak change in amplitude of modulated carrier
(IV) Modulation index and Modulation efficiency
(V) Power in sideband and total power
[10 Marks]
(ii) For a PCM system, determine:
(I) Minimum sampling rate
(II) Minimum number of bits used in PCM code
(III) Resolution
(IV) Maximum quantization error
(V) Coding efficiency

Assume:
Maximum analog input frequency $=4 \mathrm{kHz}$

Maximum decoded voltage at $\mathrm{Rx}_{\mathrm{x}}= \pm 2.55 \mathrm{~V}$
Minimum dynamic rate $=46 \mathrm{~dB}$
[2×5 = 10 Marks]
Sol. (i) Modulation index, $m_{a}=\frac{E_{\max }-E_{\min }}{E_{\max }+E_{\min }}=\frac{20-4}{20+4}=\frac{16}{24}=0.667$
$\mathrm{m}_{\mathrm{a}}=\frac{2}{3}=0.667$
Carrier amplitude, $A_{C}=\frac{\mathrm{E}_{\max }+\mathrm{E}_{\min }}{2}=\frac{20+4}{2}=12 \mathrm{~V}$
(I) Peak amplitude of upper \& lower sideband $=\frac{A_{C} m_{a}}{2}=12 \times \frac{2}{3} \times \frac{1}{2}=4 \mathrm{~V}$
(II) Peak amplitude of the carrier $=12 \mathrm{~V}$
(III) Peak amplitude of carrier after modulation $=A_{C}\left(1+m_{a}\right)=12\left(1+\frac{2}{3}\right)=20 \mathrm{~V}$

Changing amplitude of carrier before and after modulation $=20-12=8 \mathrm{~V}$
(IV) Modulation index $=\mathrm{m}_{\mathrm{a}}=\frac{2}{3}=0.667$

Percentage modulation index $=0.667 \times 100=66.7 \%$
Modulation efficiency $=\frac{m_{a}^{2}}{2+m_{a}^{2}}=\frac{(0.667)^{2}}{2+(0.667)^{2}}=0.182$ or 18.2%
(IV) Power in sideband, $P_{S B}=\frac{P_{C} m_{a}^{2}}{2}=\frac{A_{c}^{2}}{2} \frac{m_{a}^{2}}{2}=(12)^{2} \times\left(\frac{2}{3}\right)^{2} \times \frac{1}{4}=16 \mathrm{~W}$

Total power, $P_{t}=P_{c}\left(1+\frac{m_{a}^{2}}{2}\right)=\frac{(12)^{2}}{2}\left[1+\left(\frac{2}{3}\right)^{2} \frac{1}{2}\right]=87.8 \mathrm{~W}$
(ii) Formulae:

Minimum sample rate:
$\mathrm{f}_{\mathrm{s}}=2 \mathrm{ff}_{\mathrm{m}}$
Minimum number of bits used in the PCM code:
$2^{n}-1 \geq$ DR
Resolution:
$V_{\text {min }}=\frac{V_{\text {max }}}{D R}=\frac{V_{\text {max }}}{2^{n}-1}$
Quantization error:
$\mathrm{Q}_{\mathrm{e}}=\frac{\text { Resolution }}{2}$
Coding efficiency:
$\eta=\frac{\text { Minimum no. of bits (including sign bit) }}{\text { Actual no. of bits (including sign bit) }} \times 100 \%$
(I) Minimum sample rate $=f_{s}$
$\mathrm{f}_{\mathrm{s}}=2 \mathrm{f}_{\mathrm{m}}=2(4 \mathrm{kHz})=8 \mathrm{kHz}$
(II) Minimum number of bits used in the PCM code $=n$

The number of bits used in the PCM system depends on the dynamic range (DR).
Dynamic range (DR) in terms of dB .
$D R(d B)=20 \log \left(2^{n}-1\right)$
$46=20 \log \left(2^{n}-1\right)$
$\frac{46}{20}=\log \left(2^{n}-1\right)$
$2.3=\log \left(2^{n}-1\right)$
$10^{2.3}=2^{n}-1$
$199.53=2^{n}-1$
$2^{n}=199.53+1$
$\mathrm{n}=\frac{\log 200.53}{\log 2}=7.64$
$n \geq 7.64$ (Exchange sign bit)
Since the maximum decoded voltage at the receiver side is $\pm 2.55 \mathrm{~V}$.
Therefore, one more bit is needed to represent the + ve and - ve voltage.
Hence, a minimum of 8.64 bits must be used for the magnitude along with 1 additional sign bit representation.
Minimum number of bits $=n=7.64$ (Excluding sign bit)
Minimum number of bits $=n=8.64$ (Including sign bit)
Actual number of bits $=8.64 \approx 9$ (Including sign bit).
(III) Resolution $=V_{\text {min }}$
$V_{\text {min }}=\frac{V_{\text {max }}}{D R}=\frac{V_{\text {max }}}{2^{\text {m }}-1}=\frac{2.55}{2^{8}-1}=0.01 \mathrm{~V}$
Where $\mathrm{n}=$ maximum number of bits (Excluding sign bit)
Therefore, $n=7.64 \approx 8$
(IV) Quantization error $=\mathrm{Q}_{\mathrm{e}}$

$$
\mathrm{Q}_{\mathrm{e}}=\frac{\text { Re solution }}{2}=\frac{0.01}{2}=0.005 \mathrm{~V}
$$

(V) Coding efficiency $=\eta$
$\eta=\frac{\text { Minimum no. of bits (Including sign bit) }}{\text { Actual no. of bits (Including sign bit) }} \times 100 \%$
$\eta=\frac{8.64}{9} \times 100 \%=96 \%$
Final Summarization of the above Findings
(I) Minimum sample rate $=\mathrm{f}_{\mathrm{s}}=8 \mathrm{kHz}$
(II) Minimum number of bits used in the PCM code $=\mathrm{n}=7.64 \approx 8$ (Excluding sign bit)
(III) Resolution $=\mathrm{V}_{\text {min }} \approx 0.01 \mathrm{~V}$
(IV) Quantization error $=\mathrm{Q}_{\mathrm{e}}=0.005 \mathrm{~V}$
(IV) Coding efficiency $=\eta=96 \%$
3.(b) (i) A unity feedback system having forward transfer function
$G(s)=\frac{K}{s(T s+1)}$
is subjected to a unit-step input. Determine the values of K and T from the output response $\mathrm{C}(\mathrm{t})$ curve shown below:

Also find the settling time of this system for 2% criterion.
[10 Marks]
(ii) Design a PD controller so that the system having open loop function $G(s) H(s)=\frac{1}{s(s+1)}$ will have a phase margin of 40° at $2 \mathrm{rad} / \mathrm{sec}$.
[10 Marks]
Sol. (i) From the given curve,
\% peak overshoots:

$$
\begin{aligned}
& \%_{\mathrm{p}}=\frac{\mathrm{C}(\mathrm{t})_{\max }-\mathrm{C}(\mathrm{t})_{\text {desired }}}{\mathrm{C}(\mathrm{t})_{\text {desired }}} \times 100 \\
& \% \mathrm{M}_{\mathrm{p}}=\frac{1.254-1}{1} \times 100=25.4 \% \\
& \text { Also, peak time, } \mathrm{t}_{\mathrm{p}}=3 \mathrm{sec} \\
& \text { Now, } \% \mathrm{M}_{\mathrm{p}}=25.4 \%
\end{aligned}
$$

Or, $M_{p}=0.254=e^{-\frac{\xi \pi}{1-\xi^{2}}}$
Let, $\xi=\cos \phi$
So, $M_{p}=e^{-\pi \cot \phi}=0.254$
$-п \cot \varphi=\ln (0.254)=-1.37$
$\Rightarrow \tan \phi=\frac{\pi}{1.37}=2.29$
Or, $\quad \Phi=66.44^{\circ}$
So, $\quad \xi=\cos \phi \simeq 0.4$

Also, $\quad t_{p}=\frac{\pi}{\omega_{d}}=\frac{\pi}{\omega_{n} \sqrt{1-\xi^{2}}}=3$

$$
\omega_{n} \sqrt{1-0.4^{2}}=\frac{\pi}{3}
$$

$\Rightarrow \omega_{\mathrm{n}}=1.14 \mathrm{rad} / \mathrm{sec}$
Now, characteristic equation of system is:
$1+G(s) H(s)=0$
$1+\frac{K}{s(1+s T)} \times 1=0$
$\infty, s^{2} T+s+K=0$
$\Rightarrow \mathrm{s}^{2}+\frac{1}{\mathrm{~T}} \mathrm{~s}+\frac{\mathrm{K}}{\mathrm{T}}=0$
So, $\frac{K}{T}=\omega_{n}^{2}=(1.14)^{2} \approx 1.3$
$\Rightarrow \mathrm{K}=1.3 \mathrm{~T}$
$2 \xi \omega_{\mathrm{n}}=\frac{1}{\mathrm{~T}}$
$2(0.4)(1.14)=\frac{1}{T}$
$\Rightarrow \mathrm{T}=1.096$
Hence, $T=1.096$
$K=1.4$
(ii) Let PD controller gain be:
$\mathrm{G}_{\mathrm{C}}(\mathrm{s})=\mathrm{K}_{\mathrm{P}}+\mathrm{s} \mathrm{K}_{\mathrm{D}}$

Overall open loop transfer function becomes:
$\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{\mathrm{K}_{\mathrm{p}}+\mathrm{sK}_{\mathrm{D}}}{\mathrm{s}(\mathrm{s}+1)}$
Or, $G(j \omega) H(j \omega)=\frac{K_{P}+j \omega K_{D}}{j \omega(1+j \omega)}$
Given, gain crossover frequency, $\omega_{g}=2$ rad $/ \mathrm{sec}$
\& phase margin, $\mathrm{PM}=40^{\circ}$
$P M=180^{\circ}+\angle G\left(j \omega_{g}\right) H\left(j \omega_{g}\right)=40^{\circ}$
So, $\angle G\left(j \omega_{g}\right) H\left(j \omega_{g}\right)=-140^{\circ}$
$\Rightarrow \tan ^{-1}\left(\frac{\omega_{\mathrm{g}} \mathrm{K}_{\mathrm{D}}}{\mathrm{K}_{\mathrm{p}}}\right)-90^{\circ}-\tan ^{-1}\left(\omega_{\mathrm{g}}\right)=-140^{\circ}$

$$
\begin{aligned}
& \Rightarrow \tan ^{-1}\left(\frac{2 \mathrm{~K}_{\mathrm{D}}}{\mathrm{~K}_{\mathrm{p}}}\right)-90^{\circ}-\tan ^{-1}(2)=-140^{\circ} \\
& \Rightarrow \tan ^{-1}\left(\frac{2 \mathrm{~K}_{\mathrm{D}}}{\mathrm{~K}_{\mathrm{p}}}\right)=13.43^{\circ} \\
& \frac{2 \mathrm{~K}_{\mathrm{D}}}{\mathrm{~K}_{\mathrm{p}}}=0.24 \\
& \text { Or, } K_{D}=0.12 \mathrm{~K} P \\
& \text { Also, at } \omega_{g}=2 \text {, } \\
& |G(j \omega) H(j \omega)|=1 \\
& \frac{\sqrt{K_{p}^{2}+\left(2 K_{D}\right)^{2}}}{2 \sqrt{1+2^{2}}}=1 \\
& \Rightarrow K_{p}^{2}+4 K_{D}^{2}=4(1+4)=20 \\
& \text { Put, } K_{D}=0.12 \mathrm{KP} \\
& K_{p}^{2}+4\left(0.12 K_{p}\right)^{2}=20 \\
& 1.0576 \mathrm{~K}_{\mathrm{p}}^{2}=20 \\
& K_{P}=4.35 \\
& K_{D}=0.12 K_{P} \\
& K_{D}=0.552
\end{aligned}
$$

So, PD controller transfer function is $\mathrm{Gc}(\mathrm{s})=4.35+0.522 \mathrm{~s}$
3.(c) Consider a set of 5 processes for which arrival time, CPU time needed and the priority are given below:

Process \downarrow	Arrival time (ms)	CPU time needed (ms)	Priority
P_{1}	0	10	$5^{\text {th }}$
P_{2}	0	5	$2^{\text {nd }}$
P_{3}	2	3	$1^{\text {st }}$
P_{4}	5	20	$4^{\text {th }}$
P_{5}	10	2	$3^{\text {rd }}$

(i) What will be the average waiting time if the CPU scheduling policy is SJF (without preemption)?
[5 Mark]
(ii) What will be the average waiting time if the CPU scheduling policy is SJF (with preemption)?
[5 Mark]
(iii) What will be the average waiting time if the CPU scheduling policy is priority scheduling (without pre-emption)?
[5 Mark]
(iv) What will be the average waiting time if the CPU scheduling policy is priority scheduling (with pre-emption)?
[5 Mark]
Sol. (i) SJF without Preemption

Process	Arrival Time	CPU Time AT	TAT - BT	
P_{1}	0	10	$18-0=18$	$18-10=8$
P_{2}	0	5	$5-0=5$	$5-5=0$
P_{3}	2	3	$8-2=6$	$6-3=3$
P_{4}	5	20	$40-5=35$	$35-20=15$
P_{5}	10	2	$20-10=10$	$10-2=8$

Gantt chart : | P_{2} | P_{3} | P_{1} | P_{5} | P_{4} |
| :--- | :--- | :--- | :--- | :--- |

$$
\begin{array}{llllll}
\hline 0 & 5 & 8 & 18 & 20 & 40
\end{array}
$$

Average waiting time $=\frac{(8+0+3+15+8)}{5}=\frac{34}{5}=6.8 \mathrm{~ms}$
(ii) SJF with Preemption

Gantt chart : | P_{2} | P_{3} | P_{1} | P_{5} | P_{1} | P_{4} |
| :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{array}{lllllll}
\hline 0 & 5 & 8 & 10 & 12 & 20 & 40
\end{array}
$$

Process	AT	BT	TAT	WT
P_{1}	0	10	$20-0=28$	$20-10=10$
P_{2}	0	5	$5-0=5$	$5-5=0$
P_{3}	2	3	$8-2=6$	$6-3=3$
P_{4}	5	20	$40-5=35$	$35-20=15$
P_{5}	10	2	$20-10=2$	$2-2=0$

Average waiting Time $=\frac{10+0+3+15+0}{5}=\frac{28}{5}=5.6 \mathrm{~ms}$
(iii) Priority scheduling without Preemption

Gantt chart : | P_{2} | P_{3} | P_{4} | P_{5} | P_{1} |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllll}0 & 5 & 8 & 28 & 30 & 40\end{array}$

Process	AT	BT	Priority	TAT	WT
P_{1}	0	10	$5^{\text {th }}$	$40-0=40$	$40-10=30$
P_{2}	0	5	$2^{\text {nd }}$	$5-0=5$	$5-5=0$
P_{3}	2	3	$1^{\text {st }}$	$8-2=6$	$6-3=3$
P_{4}	5	20	$4^{\text {th }}$	$28-5=23$	$23-20=3$
P_{5}	10	2	$3^{\text {rd }}$	$30-10=20$	$20-2=18$

Average waiting time $=\frac{30+0+3+3+18}{5}=\frac{54}{5}=10.8 \mathrm{~ms}$
(iv) Priority scheduling without Preemption

Gantt chart : | P_{2} | P_{3} | P_{2} | P_{4} | P_{5} | P_{4} | P_{1} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 5 | 8 | 10 | 12 | 30 | 40 |

Process	AT	BT	Priority	TAT	WT
P_{1}	0	10	$5^{\text {th }}$	$40-0=40$	$40-10=30$
P_{2}	0	5	$2^{\text {nd }}$	$8-0=8$	$8-5=3$
P_{3}	2	3	$1^{\text {st }}$	$5-2=3$	$3-3=0$
P_{4}	5	20	$4^{\text {th }}$	$30-5=25$	$25-20=5$
P_{5}	10	2	$3^{\text {rd }}$	$12-10=2$	$2-2=0$

Average waiting Time $=\frac{30+3+0+5+0}{5}=\frac{38}{5}=7.6 \mathrm{~ms}$
4.(a) A discrete memoryless source generates either 0 or 1 at a rate of 160 kbps ; 0 is generated three times more frequently than 1. A coherent binary PSK modulator is employed to transmit these bits over a noisy channel. The received bits are detected in a correlator fed with the basis function of unit energy (for this BPSK scheme) as the reference signal. The receiver makes a decision in favour of 1 if the correlator output is positive, else decides in favour of 0 . If 0 and 1 are represented as
$0: \rightarrow-\left(6 \sqrt{2} \cos 640 \pi \times 10^{3} t\right) V$
$1: \rightarrow+\left(6 \sqrt{2} \cos 640 \pi \times 10^{3} \mathrm{t}\right) \mathrm{V}$
(i) Determine transmitted signal energy per bit.
(ii) Determine basis function of unit energy for this binary PSK scheme.

Sol. (i) Two pair of signals as,

$$
\begin{align*}
& s_{1}(t)=\sqrt{\frac{2 E_{b}}{T_{b}}} \cdot \cos \left(2 \pi f_{c} t\right)[\text { represent } 1] \tag{i}\\
& s_{2}(t)=\sqrt{\frac{2 E_{b}}{T_{b}}} \cdot \cos \left(2 \pi f_{c} t\right)[\text { represent } 0] \tag{ii}
\end{align*}
$$

Comparing with given,

$$
\sqrt{\frac{2 \mathrm{E}_{\mathrm{b}}}{\mathrm{~T}_{\mathrm{b}}}}=6 \sqrt{2}
$$

Or, Transmitted energy/bit, $\mathrm{E}_{\mathrm{b}}=6 \mathrm{~T}_{\mathrm{b}}$
Transmitted energy per bit $E_{b}=36 \mathrm{~T}_{\mathrm{b}}$

$$
E_{b}=36 / R=36 /\left(160 \times 10^{3}\right)=2.25 \times 10^{-4}
$$

(ii) From equation (i) and (ii), there is only one basis function, i.e.,

$$
\begin{aligned}
& \phi(\mathrm{t})=\sqrt{\frac{2}{T_{b}}} \cdot \cos \left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}\right) \\
& \text { Where, } \mathrm{T}_{\mathrm{b}}=\frac{1}{160 \times 10^{3}} \mathrm{sec} \\
& \text { And, } \omega_{\mathrm{c}}=640 \pi \times 10^{3} \\
& \therefore \mathrm{P}_{\mathrm{e}}=\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{\mathrm{E}_{\mathrm{b}}}{\mathrm{~N}_{0}}}\right) \\
& \mathrm{P}_{\mathrm{e}}=\frac{1}{2}\left(1-\operatorname{erf}\left(\sqrt{\frac{\mathrm{E}_{\mathrm{b}}}{\mathrm{~N}_{\mathrm{o}}}}\right)\right) \\
& \mathrm{Pe}^{2}=\frac{1}{2}[1-\operatorname{erf}(0.25)] \\
& \text { Since, erf }(0.25)=0.276 \\
& \therefore \mathrm{P}_{\mathrm{e}}=\frac{1}{2}(1-0.276)=0.362
\end{aligned}
$$

4.(b) For the system shown below,

Draw the root-locus with $K_{h}=0$ and K as variable. Obtain the value of K so that the system damping ratio is 0.158 .
For the obtained value of K, draw the root-locus with K_{h} as variable.
Find the value of K_{h} that improves the system damping ratio to 0.5 .
[20 Marks]
Sol. $K_{h}=0$

OLTF \Rightarrow open loop transfer function is,
$\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{\mathrm{K}}{\mathrm{s}(\mathrm{s}+1)}$
Open loop zeros: NIL
$Z=$ No. of open loop zeros $=0$
Open loop poles: s=0,-1
$\mathrm{P}=$ No. of open loop poles $=2$
Name of branches, $N=\max .(P, Z)=\max (2,0)=2$
Starting point ($K=0$)
Root locus branches starts from open loop poles
i.e., s = 0, - 1

Ending points ($\mathrm{K} \rightarrow \infty$)

Root locus branches terminates at ∞

Number of asymptotes

$\mathrm{n}=\mathrm{P}-\mathrm{Z}=2-0=2$

Angle of asymptotes with real axis

$\theta=(2 k+1) \times \frac{180^{\circ}}{n}, k=0,1, \ldots \ldots, n-1$
$\Rightarrow \theta=(2 \mathrm{k}+1) \times \frac{180^{\circ}}{2}=90^{\circ}, 270^{\circ}$

Centroid: Intersection of asymptotes on real axis

$x=\frac{\sum \text { poles }-\sum \text { zeros }}{P-Z}$
$x=\frac{(0-1)-(0)}{2-0}=\frac{-1}{2}$
Existence of root locus on real axis:
Root locus will exist on section of real axis if total number of poles and zeroes to the right of that section is an odd number i.e., between $s=0$ and $s=-1$

Breakaway points:

Characteristic equation is $1+\frac{K}{S(S+1)}=0$
$s^{2}+s+K=0$
So, $\quad K=-\left(s^{2}+s\right)$
Solve $\frac{d K}{d s}=0$
$\Rightarrow \quad-(2 s+1)=0$
$s=-1 / 2=-0.5 \Rightarrow$ it lies on root locus
So, $s=-0.5$ is a valid breakaway point.
As per above calculations, root locus plot is plotted below"

Now, given, $\xi=0.158=\cos \phi$
$\Rightarrow \varphi=80.9^{\circ}$

$\tan \phi=\frac{y}{x}$
$\tan 80.9^{\circ}=\frac{y}{1 / 2}$
$y=3.12$
So, point A is $(-0.5,3.12)$ and it lies on root locus
So, at $A,|G(s) H(s)|=1$
$\left|\frac{K}{s(s+1)}\right|=1$
Put $s=-0.5+j 3.12$
$\left|\frac{K}{(-0.5+j 3.12)(0.5+j 3.12)}\right|=1$
$K=9.9844 \simeq 10$
So, $K \simeq 10$
Now, with $K=10$ and K_{h} as variable, characteristics equation is,
$1+\frac{10\left(1+K_{h} s\right)}{s(s+1)}=0$
$\Rightarrow\left(s^{2}+s+10\right)+10 K_{h} s=0$
$\Rightarrow 1+\left(\frac{10 \mathrm{~s}}{\mathrm{~s}^{2}+\mathrm{s}+10}\right) \mathrm{K}_{\mathrm{h}}=0$
Let open loop transfer function is,
$G(s) H(s)=\left(\frac{10 s}{s^{2}+s+10}\right) K_{h}=0$
$\mathrm{OLZ} \Rightarrow \mathrm{s}=0$
$Z=1$
$\mathrm{OLP} \Rightarrow \mathrm{s}=\frac{-1 \pm \sqrt{1-40}}{2 \times 1}$
$s=-0.5 \pm j 3.122$
The pole zero plot is shown below:

Poles, $\mathrm{P}=2$
Zeros, Z = 1
Angle of asymptote $=\frac{(2 \mathrm{k}+1) 180^{\circ}}{\mathrm{P}-\mathrm{Z}}$
Where $k=0,1, \ldots \ldots . P-Z-1$
$\therefore \quad \mathrm{k}=0$
$\therefore \quad \phi_{\mathrm{A}}=180^{\circ}$
Now finding breakaway point by solving $\frac{d K_{h}}{d s}=0$
The characteristic equation is given by,
$1+G(s) H(s)=0$
$s(s+1)+10+10 K h s=0$
$K_{h}=\frac{-[s(s+1)+10]}{10 s}$
$\frac{d K_{h}}{d s}=\frac{d}{d s}\left[-\left[\frac{s(s+1)+10}{10 s}\right]\right]$
$\frac{10 s[2 s+1]-\left(s^{2}+s+10\right) 10}{(10 s)^{2}}=0$
$s[2 s+1]-\left(s^{2}+s+10\right)=0$
$s^{2}=10$
$s= \pm 3.162$
So, $s=-3.162$ is valid breakaway point.
There are complex poles, so we will find angle of departure ϕ_{D} at complex pole.
$\phi_{D}= \pm[180+\phi]$
Where, $\phi=\Sigma \phi_{z}-\Sigma \phi_{\mathrm{p}}$

$\phi=\phi_{1}-\phi_{2}=99.09-90=9.09$
$\therefore \quad \phi_{\mathrm{D}}= \pm[180+9.09]= \pm 189.09$
The root locus will be

For finding K_{h} by given damping ratio $=0.5$
Characteristic equation is,
$1+G(s) H(s)=0$
$s^{2}+s+10+10 K_{h S}=0$
$s^{2}+\left(1+10 K_{h}\right) s+10=0$
Comparing with standard $2^{\text {nd }}$ order system
$2 \xi \omega_{\mathrm{n}}=1+10 \mathrm{~K}_{\mathrm{h}}$
$\omega_{\mathrm{n}}^{2}=10$
$\omega_{\mathrm{n}}=\sqrt{10} \mathrm{rad} / \mathrm{sec}$
$K_{h}=\frac{(2 \times 0.5 \times \sqrt{10}-1)}{10}$
$K_{h}=0.216$
4.(c) (i) A processor array has 512 processors. Each processor is capable of adding a pair of integers in 1μ second. What is the performance (operations per second) of this processor array adding two integer vectors of length 1000, assuming each vector is allocated to the processors in a balanced fashion?
[10 Marks]
(ii) A processor array has 512 processors. Each processor is capable of adding a pair of integers in 1μ second. What is the performance (operations per second) of this processor array adding two integer vectors of length 512, assuming each vector is allocated to the processors in a balanced fashion?
[10 Marks]
Sol. (i) Processor array of size 512.

P_{0}	P_{1}	P_{2}	----	P_{509}	P_{510}	P_{511}

Each processor can add two integers in $1 \mu \mathrm{sec}$.
To add 2 vectors of length 1000.
$\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)$

| P_{0} | P_{1} | P_{2} | $-\cdots--$ | P_{509} | P_{510} | P_{511} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $+$

$\mathrm{V}_{2}[0] \mathrm{V}_{2}[1] \mathrm{V}_{2}[2] \quad \ldots . . \quad \mathrm{V}_{2}[509] \mathrm{V}_{2}[510] \mathrm{V}_{2}[511]$
(Perform the operation in parallel) requires $1 \mu \mathrm{sec}$.
To add remaining $1000-512=488$ pairs of integers.
It can be done parallelly by 488 processors in $1 \mu \mathrm{sec}$.
Performance $=\frac{\text { No. of operations }}{\text { Time taken }}$
Performance $=\frac{1000 \text { Additions }}{2 \mu \mathrm{sec}}$
Performance $=\frac{1000}{2 \times 10^{-6}}=500 \times 10^{6}$ operations $/ \mathrm{sec}$
(ii) Similarly, to add vector of size 512.

P_{0}	P_{1}	P_{2}	----	P_{510}
P_{511}				

$V_{1}[0] \mathrm{V}_{1}[1] \mathrm{V}_{1}[2]$
$V_{2}[0] \mathrm{V}_{2}[1] \mathrm{V}_{2}[2]$

Perform the addition operation in parallel manner.
\Rightarrow It requires $1 \mu \mathrm{sec}$
Performance $=\frac{512 \text { addtions }}{1 \mu \mathrm{sec}}$
Performance $=512 \times 10^{6}$ operations/sec

SECTION-'B'

5.(a) What are the causes of attenuation of light signal through the optical fiber? A certain optical fiber has an attenuation of $0.6 \mathrm{~dB} / \mathrm{km}$ at 1300 nm and $0.3 \mathrm{~dB} / \mathrm{km}$ at 1550 nm . Suppose the following two optical signals are launched simultaneously into the fiber: an optical power of 150 $\mu \mathrm{W}$ at 1300 nm , and an optical power $100 \mu \mathrm{~W}$ at 1550 nm . What are the power levels in $\mu \mathrm{W}$ of these two signals at (i) 8 km , and (ii) 20 km ?
[10 Marks]
Sol. The attenuation of light signals through optical fibers can occur due to several factors. Here are some common causes of attenuation:

1. Absorption: Optical fibers can absorb a portion of the light signal as it propagates through the material. This absorption can be caused by impurities in the fiber material or by the transmission medium itself. Different materials have different absorption characteristics at various wavelengths.
2. Scattering: Scattering refers to the phenomenon where light is redirected in different directions due to irregularities or impurities in the fiber. There are two main types of scattering: Rayleigh scattering and Mie scattering. Rayleigh scattering occurs when the size of the scattering particles or irregularities in the fiber is smaller than the wavelength of light, while Mie scattering occurs when the scattering particles are larger than the wavelength.
3. Bending losses: When an optical fiber is bent or curved, some of the light can escape due to bending losses. This occurs because the light rays experience different propagation paths within the fiber, causing them to interact with the fiber material differently. Bending losses can be minimized by using fibers with larger core diameters or by carefully designing the fiber's curvature.
4. Dispersion: Dispersion refers to the spreading or separation of light pulses as they propagate through the fiber. There are two main types of dispersion: chromatic dispersion and modal dispersion. Chromatic dispersion occurs because different wavelengths of light travel at slightly different speeds, causing the pulse to spread. Modal dispersion occurs in multimode fibers where different propagation paths (modes) have different speeds, resulting in pulse spreading.
5. Connector losses: When connecting two optical fibers, there can be losses at the interface between them. These losses can occur due to misalignment, reflections, or imperfections in the connector surfaces. Connector losses can be reduced by using high-quality connectors and ensuring proper alignment during installation.
Loss $_{\mathrm{dB}}=$ Attenuation \times Distance
$\operatorname{Lossab}_{\mathrm{dB}}=10 \log \left(\frac{\text { Power }_{R}}{\text { Power }_{T}}\right)$
Substituting equation (i) into equation (ii) we get the following:

Attenuation $(\mathrm{dB} / \mathrm{km}) \times$ Distance $(\mathrm{km})=10 \times \log \left(\frac{\operatorname{Power}_{\mathrm{R}}(\mathrm{W})}{\operatorname{Power}_{\mathrm{T}}(\mathrm{W})}\right)$
$\log \left(\frac{\text { Power }_{R}}{\text { Power }_{T}}\right)=\frac{\text { Attenuation } \times \text { Distance }}{10}$
$\frac{\text { Power }_{R}}{\text { Power }_{T}}=10 \frac{\text { Attenuation } \times \text { Distance }}{10}$
Power $_{R}=$ Power $_{T} \times 10^{\frac{\text { Attenuation } \times \text { Distance }}{10}}$
At 1500 nm after 20 km :

$$
\text { Power }_{R}=100 \times 10^{-6} \times 10^{\frac{-0.3 \times 20}{10}}
$$

Power $_{R}=25.1189 \mu \mathrm{~W}$
The combined power at the input and output ends will be:
The combined power at the input:

$$
\begin{aligned}
& P_{\text {Total }}=P_{1300}+P_{1550} \\
& P_{\text {Total }}=150 \mu \mathrm{~W}+100 \mu \mathrm{~W} \\
& P_{\text {Total }}=250 \mu \mathrm{~W}
\end{aligned}
$$

(i) The combined power at the output after 8 km :

$$
\begin{aligned}
& P_{\text {Total }}=P_{1300}+P_{1550} \\
& P_{\text {Total }}=49.6697 \mu \mathrm{~W}+57.594 \mu \mathrm{~W} \\
& P_{\text {Total }}=107.264 \mu \mathrm{~W}
\end{aligned}
$$

(ii) The combined power at the output after 20 km :

$$
\begin{aligned}
& P_{\text {Total }}=P_{1300}+P_{1550} \\
& P_{\text {Total }}=9.46436 \mu \mathrm{~W}+25.1189 \mu \mathrm{~W} \\
& P_{\text {Total }}=34.5833 \mu \mathrm{~W}
\end{aligned}
$$

Substituting equation (i) into equation (ii) we get the following:

$$
\begin{align*}
& \text { Loss }_{\mathrm{dB}}=10 \times \log (1-\text { Loss }) \tag{iii}\\
& \text { Attenuation }=\frac{\text { Loss }_{\mathrm{dB}}}{\text { Distance }} \tag{iv}
\end{align*}
$$

Substituting equation (iii) into equation (iv) we get the following:

$$
\begin{aligned}
& \text { Attenuation }=\frac{10 \times \log (1-\text { Loss })}{\text { Distance }} \\
& \text { Attenuation }=\frac{10 \times \log (1-0.55)}{3.5}
\end{aligned}
$$

Attenuation $=-0.990821 \mathrm{~dB} / \mathrm{km}$
Since the name attenuation implies loss then we could take out the negative sign:
Attenuation $=0.99021 \mathrm{~dB} / \mathrm{km} \approx 1 \mathrm{~dB} / \mathrm{km}$
5.(b) Consider the unity-feedback system having forward transfer function

$$
\mathrm{G}(\mathrm{~s})=\frac{\mathrm{K}}{\mathrm{~s}(\mathrm{Js}+\mathrm{F})}
$$

The Bode plot of $\mathrm{G}(\mathrm{s})$ is shown below as asymptotic approximation:

Express the relation between ω_{1}, ω_{2} and ω_{3}. Also find the static velocity error coefficient K_{v} of this system. You assume $\omega_{2} \ll \omega_{3}$.
[10 Marks]

Sol.

Corner frequencies: $\omega=\omega_{2}=\frac{1}{J / F}=\frac{F}{J}$
Initial part formula: (for $\omega \leq \omega_{2}$)
$M=-20 n \log \omega+20 \log (K / F)$
Here, $\mathrm{n}=1$
So, at $\omega=\omega_{2} \Rightarrow M=-20 \log \omega_{2}+20 \log (K / F)$
Put, $\omega_{2}=\frac{F}{J}$
$M=-20 \log \left(\frac{F}{J}\right)+20 \log \left(\frac{K}{F}\right)=20 \log \left(\frac{K / F}{F / J}\right)$
$M=20 \log \left(\frac{K J}{F^{2}}\right)$
Now, use slope formula between A and B:
Slope $=-40=\frac{0-20 \log \left(\frac{\mathrm{KJ}}{\mathrm{F}^{2}}\right)}{\log \left(\frac{\omega_{3}}{\omega_{2}}\right)}$
$\log \left(\frac{\omega_{3}}{\omega_{2}}\right)=\frac{1}{2} \log \left(\frac{\mathrm{KJ}}{\mathrm{F}^{2}}\right)=\log \left(\frac{\sqrt{\mathrm{KJ}}}{\mathrm{F}}\right)$
$\Rightarrow \frac{\omega_{3}}{\omega_{2}}=\frac{\sqrt{\mathrm{KJ}}}{\mathrm{F}}$
Now, ω_{1} is the frequency at which initial part cuts 0 dB axis.

$$
\text { So, } \omega_{1}=\left(\frac{K}{F}\right)^{\frac{1}{n}}=\left(\frac{K}{F}\right)^{1}
$$

Now, use slope formula between A and C :
Slope $=-20=\frac{0-20 \log \left(\frac{\mathrm{KJ}}{\mathrm{F}^{2}}\right)}{\log \omega_{1}-\log \omega_{2}}$
$\log \left(\frac{\omega_{1}}{\omega_{2}}\right)=\log \left(\frac{\mathrm{KJ}}{\mathrm{F}^{2}}\right)$
$\frac{\omega_{1}}{\omega_{2}}=\frac{\mathrm{KJ}}{\mathrm{F}^{2}}$
So, $\omega_{2}=\frac{F^{2}}{K J} \times \frac{K}{F}=\frac{F}{J}$
So, from (ii), $\omega_{3}=\frac{\sqrt{K J}}{F} \times \frac{F}{J}=\sqrt{\frac{K}{J}}$
So, $\omega_{1}=\frac{K}{F}$

$$
\begin{aligned}
& \omega_{2}=\frac{F}{J} \\
& \omega_{3}=\sqrt{\frac{K}{J}}
\end{aligned}
$$

So, $\omega_{1} \omega_{2}=\omega_{3}{ }^{2}$
So, ω_{3} is the G.M. of $\omega_{1} \& \omega_{2}$.
Now, $K_{v}=\lim _{s \rightarrow 0} s G(s)=\lim _{s \rightarrow 0} s \frac{K}{s(J s+F)}=\frac{K}{F}$
Or, $K_{v}=\frac{K}{F}=\omega_{1}$
5.(c) The seek time of a disk is 30 ms . It rotates at the rate of 30 rotations per second. Each track has a capacity of 300 words. What will be the access time?
[10 Marks]
Sol. Seek time $=30 \mathrm{msec}$
1 second $=30$ rotations
1 rotation takes $\frac{1}{30}$ seconds
Avg. rotation delay $=\frac{1}{60} \mathrm{sec}=16.66 \mathrm{msec}$
Access time $=$ Seek time + Avg. rotation delay
Access time $=30+16.66=46.66 \mathrm{msec}$
(Transfer time is neglected here)
5.(d) A wave at 10 GHz propagates in a rectangular waveguide with inner dimensions $\mathrm{a}=1.5 \mathrm{~cm}$ and $b=0.6 \mathrm{~cm}$. The conductivity of the waveguide walls is $\sigma=1.57 \times 10^{7} \mathrm{~S} / \mathrm{m}$. The waveguide is filled with polyethylene with $\varepsilon_{r}=2.25$ and $\mu_{r}=1$.
Calculate the guide wavelength and the wave impedance of the waveguide. Assume that dominant mode is propagating. Also determine the attenuation constant due to loss in the dielectric. The loss tangent of the polyethylene may be taken as 4×10^{-4} and the value of ε_{0} is $8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$.
[10 Marks]
Sol. $\mathrm{a}=1.5 \mathrm{~cm}$
$\mathrm{b}=0.6 \mathrm{~cm}$
$a>b$, dominant mode is TE_{10}
Cut-off frequency for TE_{10} mode is,
$\mathrm{f}_{\mathrm{c}}=\frac{\mathrm{u}^{\prime}}{2 \mathrm{a}}$
$u^{\prime}=\frac{1}{\sqrt{\mu \varepsilon}}=\frac{1}{\sqrt{\mu_{0} \times 2.25 \varepsilon_{0}}}=2 \times 10^{8}$
$\mathrm{f}_{\mathrm{c}}=\frac{2 \times 10^{8}}{2\left(1.5 \times 10^{-2}\right)}=6.67 \mathrm{GHz}$
Guide wavelength, $\lambda_{\mathrm{g}}=\frac{\lambda^{\prime}}{\sqrt{1-\left(\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}}\right)^{2}}}$
$\lambda^{\prime}=\frac{u^{\prime}}{f}=\frac{2 \times 10^{8}}{10 \times 10^{9}}=0.02 \mathrm{~m}=2 \mathrm{~cm}$
$\lambda_{g}=\frac{0.02}{\sqrt{1-\left(\frac{6.67}{10}\right)^{2}}}=0.0268 \mathrm{~m}=2.68 \mathrm{~cm}$

Wave impedance, $\eta_{T E}=\frac{\eta^{\prime}}{\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}}$
$\eta^{\prime}=\sqrt{\frac{\mu}{\varepsilon}}=\sqrt{\frac{\mu_{0}}{2.25 \varepsilon_{0}}}=80 \pi \Omega$
$\eta_{\text {TE }}=\frac{80 \pi}{\sqrt{1-\left(\frac{6.67}{10}\right)^{2}}}=337.32 \Omega$
Now, $\tan \theta=\frac{\sigma}{\omega \varepsilon}$
Or, $\quad \sigma=\omega \varepsilon \tan \theta$

$$
\begin{aligned}
& \sigma=\left(2 \pi \times 10 \times 10^{9}\right)\left(2.25 \times \frac{1}{36 \pi} \times 10^{-9}\right)\left(4 \times 10^{-4}\right) \\
& \sigma=5 \times 10^{-4}
\end{aligned}
$$

Attenuation constant due to loss in dielectric is,
$\alpha_{d}=\frac{\sigma \eta^{\prime}}{2 \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}}=\frac{\left(5 \times 10^{-4}\right)(80 \pi)}{2 \sqrt{1-\left(\frac{6.67}{10}\right)^{2}}}$
$\Rightarrow \alpha_{d}=0.08433 \mathrm{~Np} / \mathrm{m}$
5.(e) What will be the execution time for the instruction "STA addr" of 8085 with a clock frequency of 3 MHz ? Number of T-states required by the instruction is 13.

Sol. Clock frequency $f_{c}=3 \mathrm{MHz}$
Clock period $\mathrm{T}_{\mathrm{C}}=\frac{1}{\mathrm{f}_{\mathrm{c}}}=\frac{1}{3 \times 10^{6}}=0.33 \mu \mathrm{sec}$

STA 16-bit Address

Eg. STA 4050
Store the content of accumulator to memory address 4050 H .
4 machine cycle.
(1) opcode Fetch 4T state
(2) memory Read 3T state
(3) memory Read 3T state
(4) memory Write 3 T state

Total 13 T state
\therefore Execution time $=13 \times 1 / 3=4.33 \mathrm{nsec}$

Note: STA 16-bit address is a data transfer instruction and addressing mode is direct addressing mode.
It is a 3-byte instruction.

eg. STA 4050	$\mathrm{~A} \rightarrow 26 \mathrm{H}$	
3000 H	opcode of STA	
3001 H	50	
3002 H	40	
	\vdots	
4050	26 H	\longleftrightarrow

5.(f) Illustrate hop-to-hop (node-to-node) delivery by the data link layer.
[10 Marks]
Sol. Figure given below illustrates hop-to-hop (node-to-node) delivery by the data link layer.

As the figure shows, communication at the data link layer occurs between two adjacent nodes. To send data from A to F, three partial deliveries are made. First, the data link layer at A sends a frame to the data link layer at B (a router). Second, the data link layer at B sends a new frame to the data link layer at E. Finally, the data link layer at E sends a new frame to the data link layer at F. Note that frames that are exchanged between the three nodes have different values in the headers. The frame from A to B has B as the destination address and A as the source address. The frame from B to E has E as the destination address and B as the source address. The frame from E to F has F as the destination address and E as the source address. The values of the trailers can also be different if error checking includes the header of the frame.
6.(a) A 50Ω transmission line has phase velocity $v_{p}=2.1 \times 10^{8} \mathrm{~m} / \mathrm{s}$. It is terminated by a load Z_{L} which has a value of

$$
\mathrm{Z}_{\mathrm{L}}=75+j 25 \Omega \text { at a frequency of } \mathrm{f}=29.6 \mathrm{MHz}
$$

Find the two closest positions to the load along the line where the real part of the line impedance is equal to the characteristic impedance of the line.
[20 Marks]

Sol.

At a distance ' I ' from load, impedance is
$Z=Z_{0}\left[\frac{z_{L}+j z_{0} \tan \beta \mid}{z_{0}+j z_{L}+\tan \beta \mid}\right]$
Let $\tan \beta \mid=x$
$z=50\left(\frac{75+j 25+j 50 x}{50+j(75+j 25) x}\right)=50\left(\frac{3+j+j 2 x}{2+j(3+j) x}\right)$
$=50\left[\frac{[3+j(1+2 x)]}{(2-x)+j 3 x}\right]$
$Z=50\left(\frac{(3+j(1+2 x)(2-x)-j 3 x)}{(2-x)^{2}+(3 x)^{2}}\right)$
$R_{e}\{Z\}=50\left(\frac{3(2-x)+(1+2 x) 3 x}{(2-x)^{2}+(3 x)^{2}}\right)$
We need $\operatorname{Re}\{Z\}=Z_{0}$
$50\left[\frac{3(2-x)+(1+2 x) 3 x}{(2-x)^{2}+(3 x)^{2}}\right]=50$
$6-3 x+3 x+6 x^{2}=4+x^{2}-4 x+9 x^{2}$
$6+6 x^{2}=4-4 x=+10 x^{2}$
$\Rightarrow 4 x^{2}-4 x-2=0$
Or, $2 x^{2}-2 x-1=0$
$x=\tan \beta 1=1.36,-0.36$
$\beta=\frac{\omega}{v_{p}}=\frac{2 \pi\left(29.6 \times 10^{6}\right)}{2.1 \times 10^{8}}=0.89$
$\beta l_{1}=\tan ^{-1}(1.36)=0.94$
$\mathrm{I}_{1} \cong 1.05 \mathrm{~m}$
Or, $\quad \mathrm{Il}_{2}=\tan ^{-1}(-0.36)$

$$
=-0.34=п-0.34
$$

$\beta l_{2}=2.79$
$\mathrm{I}_{2}=3.14 \mathrm{~m}$
Therefore, $\mathrm{I}_{1}=1.05 \mathrm{~m}$ and $\mathrm{I}_{2}=3.14 \mathrm{~m}$
6.(b) (i) An analog filter has a transfer function

$$
H(s)=\frac{10}{s^{2}+7 s+10}
$$

Design a digital filter equivalent to this using impulse invariant method for $\mathrm{T}=0.2 \mathrm{~s}$.
[10 Marks]
(ii) Calculate the filter coefficient for a 5 -tap FIR Bandpass filter with a lower cut-off frequency of 2 kHz and an upper cut-off frequency of 2.4 kHz at a sampling rate of 8 kHz .
[10 Marks]
Sol. (i) Given data:
Analog filter transfer function:
$H(s)=\frac{10}{s^{2}+7 s+10}$
$\mathrm{T}=0.2 \mathrm{sec}$
Method: Impulse invariance technique
Now, $\quad H(s)=\frac{10}{(s+5)(s+2)}=\frac{10}{3}\left[\frac{1}{s+2}-\frac{1}{s+5}\right]$
By taking inverse LT,
$h(t)=\frac{10}{3}\left[e^{-2 t} u(t)-e^{-5 t} u(t)\right]$
By performing sampling $h(t)$ at $t=n T=0.2 n$,
We can write,
$h(n)=\frac{10}{3}\left[e^{-2 \times 0.2 n} u(n)-e^{-5 \times 0.2 n} u(n)\right]=\frac{10}{3}\left[\left(e^{-0.4}\right)^{n} u(n)-\left(e^{-1}\right)^{n} u(n)\right]$
By applying ZT ,
$H(z)=\frac{10}{3}\left[\frac{1}{1-\mathrm{e}^{-0.4} \mathrm{z}^{-1}}-\frac{1}{1-\mathrm{e}^{-1} \mathrm{z}^{-1}}\right]$
Therefore, digital filter transfer function is,
$H(z)=\frac{10\left(e^{-0.4}-e^{-1}\right) z^{-1}}{3\left(1-e^{-0.4} z^{-1}\right)\left(1-e^{-1} z^{-1}\right)}$
$\Rightarrow H(z)=\frac{10\left(e^{-0.4}-e^{-1}\right) z^{-1}}{3\left[1-\left(e^{-0.4}+e^{-1}\right) z^{-1}+e^{-1.4} z^{-2}\right]}$
(ii) Given data:

BPF with $f_{c 1}=2 \mathrm{kHz}$ and $\mathrm{f}_{\mathrm{c} 2}=2.5 \mathrm{kHz}$
$\mathrm{f}_{\mathrm{s}}=8 \mathrm{kHz}$
Filter length : M = 5
Cut-off frequency of digital filter,
$\omega_{\mathrm{c} 1}=\frac{\Omega_{\mathrm{c} 1}}{\mathrm{f}_{\mathrm{s}}}=\frac{2 \pi \mathrm{f}_{\mathrm{c} 1}}{\mathrm{f}_{\mathrm{s}}}=\frac{2 \pi \times 2 \times 10^{3}}{8 \times 10^{3}}=\frac{\pi}{2} \mathrm{rad} / \mathrm{sample}$
$\omega_{\mathrm{c} 2}=\frac{\Omega_{\mathrm{c} 2}}{\mathrm{f}_{\mathrm{s}}}=\frac{2 \pi \mathrm{f}_{\mathrm{c} 2}}{\mathrm{f}_{\mathrm{s}}}=\frac{2 \pi \times 2.5 \times 10^{3}}{8 \times 10^{3}}=\frac{5 \pi}{8} \mathrm{rad} /$ sample
\quad Now, $\quad H_{d}(\omega)=\left\{\begin{array}{lc}1, & \frac{\pi}{2}<|\omega|<\frac{5 \pi}{8} \\ 0, & \text { otherwise }\end{array}\right.$
By taking inverse DTFT,

$$
\begin{aligned}
h_{d}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} H_{d}(\omega) e^{\mathrm{j} \omega n} d \omega=\frac{1}{2 \pi}\left[\int_{-\omega_{c 2}}^{-\omega_{c 1}} 1 \cdot \mathrm{e}^{\mathrm{j} \omega n} \mathrm{~d} \omega+\int_{\omega_{c 1}}^{\omega_{c 2}} 1 \cdot \mathrm{e}^{\mathrm{j} \omega \mathrm{n}} \mathrm{~d} \omega\right] \\
& =\frac{\sin \left(n \omega_{c 2}\right)}{\pi n}-\frac{\sin \omega_{c 1}}{\pi n}
\end{aligned}
$$

Put $n=0 ; \quad h_{d}(0)=\frac{\omega_{c 2}-\omega_{c 1}}{\pi}=\frac{\frac{5 \pi}{8}-\frac{\pi}{2}}{\pi}=0.125$
$h_{d}(-1)=h_{d}(1)=\frac{\sin \left(\frac{5 \pi}{8}\right)-\sin \frac{\pi}{2}}{\pi}=-0.024$
$h_{d}(2)=h_{d}(2)=0.112$
Thus, the digital filter impulse response is,

$$
h_{d}(n)=\{-0.112,-0.024,0.125,-0.024,-0.112\}
$$

But the above filter is non-causal. So, for causal type filter, the desired impulse-response will be
$h_{c}(n)=h_{d}(n-2)=\{-0.112,-0.024,0.125,-0.024,-0.112\}$
6.(c) (i) A digital fiber optical link working at 850 nm requires a maximum Bit Error Rate (BER) of 10^{-10} at a Data Rate (DR) of 20 Mbps for a simple binary level signalling scheme. Take detector quantum efficiency as 1 . $\left[\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right]$

Determine the incident optical power that must fall on the photo detector to achieve the above-mentioned BER and DR.
[10 Marks]
(ii) An optic fiber system uses a directly-modulated Distributed Feed-Back (DFB) laser as an optical source at the transmitter. If the operating bit rate $=2.5 \mathrm{Gbps}$, the dispersion
parameter $=10 \mathrm{ps} /(\mathrm{nm}-\mathrm{km})$ and RMS spectral width of the pulse $=0.15 \mathrm{~nm}$. Determine the maximum transmission distance.
[10 Marks]
Sol. (i) For maximum BER,
$\operatorname{Pr}(0)=\mathrm{e}^{-\bar{N}}=10^{-10}$
$\bar{N}=10 \ln 10=23$
Hence, an average of 23 photons per pulse is required for this BER.
$E=\frac{2 h \nu}{\eta}$
The next step is to find the minimum incident optical power P_{i} that must fall on the photodetector to achieve a $10^{-10} \mathrm{BER}$ at a data of 20 Mbps for a simple binary level signaling scheme. If the detector quantum efficiency $\eta=1$, then
$E=P_{i} \tau=23 \quad h \nu=\frac{23 h c}{\lambda}$
Where $\frac{1}{\tau}$ is one half the data rate $B, \frac{1}{\tau}=\frac{B}{2}$
$P_{i}=\frac{23 h c}{\lambda} \times \frac{1}{\tau}$
$P_{i}=\frac{23 h c}{\lambda} \times \frac{B}{2}$
$P_{i}=\frac{23 \times 6.626 \times 10^{-34} \times 3 \times 10^{8} \times 20 \times 10^{6}}{2\left(0.85 \times 10^{-6}\right)}$
$P_{i}=53.78 \mathrm{pW}=-72.7 \mathrm{dBm}$
(ii) Consider the expression to find the maximum transmission distance in a directly-modulated distributed-feedback (DFB) laser.
$\mathrm{L}<\frac{1}{4 \mathrm{R}_{\mathrm{B}}|\mathrm{D}| \sigma_{\lambda}}$
Here, L is the maximum transmission distance of the DFB laser, Rs is the transmission bit rate, D is the dispersion parameter and σ_{λ} is the root mean square (RMS) spectral width of the optical pulse.
$\mathrm{L}<\frac{1}{4 \times 2.5 \times 10^{9} \times 0.15 \times 10^{-9} \times 10 \times 10^{-12}}$
$\mathrm{L}<66.67 \mathrm{~km}$
7.(a) The scattering matrix of a two-port network is given by
$[\mathrm{S}]=\left[\begin{array}{cc}0.1 \angle 0 & 0.8 \angle 90^{\circ} \\ 0.8 \angle 90^{\circ} & 0.2 \angle 0\end{array}\right]$
(i) Determine whether the network is reciprocal or lossless.
[5 Mark]
(ii) If a short circuit is placed on port 2 , what will be the resulting return loss at port 1 ?
[15 Marks]
Sol. $S=\left[\begin{array}{cc}0.1 \angle 0^{\circ} & 0.8 \angle 90^{\circ} \\ 0.8 \angle 90^{\circ} & 0.2 \angle^{\circ}\end{array}\right]=\left[\begin{array}{cc}0.1 & 0.8 j \\ 0.8 j & 0.2\end{array}\right]$
(i) [S] matrix is symmetric, so network is reciprocal.

For lossless network,
$\sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{S}_{\mathrm{ii}} \mathrm{S}_{\mathrm{ji}}^{*}=1$, for all i
Solving for first row,
$\left|S_{11}\right|^{2}+\left|S_{12}\right|^{2}=(0.1)^{2}+(0.8)^{2}=0.65 \pm 1$
So, the network is not lossless.
(ii) $\mathrm{V}_{1}{ }^{-}=\mathrm{S}_{11} \mathrm{~V}_{1}{ }^{+}+\mathrm{S}_{12} \mathrm{~V}_{2}{ }^{+}$
$\mathrm{V}_{2^{-}}=\mathrm{S}_{21} \mathrm{~V}_{1}{ }^{+}+\mathrm{S}_{22} \mathrm{~V}_{2^{+}}$
Port 2 is short circuited, So, $\mathrm{V}_{2}{ }^{+}=-\mathrm{V}_{2}{ }^{-}$
Using (2), $\mathrm{V}_{2}{ }^{-}=\mathrm{S}_{21} \mathrm{~V}_{1}{ }^{+}-\mathrm{S}_{22} \mathrm{~V}_{2}{ }^{-}$
Or, $\frac{V_{2}^{-}}{V_{1}^{+}}=\frac{S_{21}}{1+S_{22}}$
In equation (1)
$\mathrm{V}_{1}{ }^{-}=\mathrm{S}_{11} \mathrm{~V}_{1}{ }^{+}-\mathrm{S}_{12} \mathrm{~V}_{2}^{-}$
Divide by $\mathrm{V}_{1}{ }^{+}$
$\frac{\mathrm{V}_{1}^{-}}{\mathrm{V}_{1}^{+}}=\mathrm{S}_{11}-\mathrm{S}_{12} \frac{\mathrm{~V}_{2}^{-}}{\mathrm{V}_{1}^{+}}$
So, Input, reflection coefficient,
$\mathrm{K}=\frac{\mathrm{V}_{1}^{-}}{\mathrm{V}_{1}^{+}}=\mathrm{S}_{11}-\mathrm{S}_{12}\left(\frac{\mathrm{~S}_{21}}{1+\mathrm{S}_{22}}\right)$
$=0.1-\frac{(0.8 \mathrm{j})(0.8 \mathrm{j})}{1+0.2}$
$k=0.1-\frac{-0.64}{1.2}=0.633$
So, return, loss is $R L=-20 \log |K|=-20 \log (0.633)$
$R L=3.96 d B$
7.(b) Write an 8085 assembly language program to sort N numbers in descending order where value of N is available in memory location 9000 H . Also note that numbers are stored in consecutive memory locations starting from 9001 H .
[20 Marks]

Sol. Program:-
Label:

Description of Program

a. Utilization of HL pair as memory location
b. Store N in register C
C. Store N - 1 Register B
d. Copy Num-1 in Accumulator from memory location 9001
e. Compare it with num-2 in the next location.
f. If Num-2 $>$ num 1 then exchange their location i.e.

g. Decrement B i.e., $B=B-1$
h. Repeat steps d, e, f, g for locations 9002, 9003, 9004 and so on till B register becomes 0 .
i. $C \rightarrow C-1$
j. Repeat steps from c to itill register C becomes 0 .
7.(c) (i) In the downlink of a GSM system, the carrier frequency is 950 MHz and according to GSM specifications the receiver sensitivity is -102 dBm . The output power of the transmitter amplifier is 30 W . The antenna gain of the transmitter antenna is 12 dB , and the aggregate attenuation of connectors, combiners, etc. is 7 dB . The fading margin is 12 dB and breakpoint $d_{b r e a k}$ is at a distance of 100 m . What distance can be covered? Take path loss exponent as 3.5.
[10 Marks]
(ii) It is required to keep track of Mach 8 (1 Mach $=330 \mathrm{~m} / \mathrm{s}$) missiles coming towards a ship (positive Doppler shifts only) from a 500 km range with an L-band ($\lambda \approx 30 \mathrm{~cm}$) radar. The perfect waveform would have its range rate ambiguity beyond Mach 8 and its range ambiguity beyond 500 km . In this scenario, calculate PRF necessary to provide range rate ambiguity and rage ambiguity. Also comment upon the result.
[10 Marks]

Sol. (i) TX side:

TX power	P_{Tx}	30 W	45 dBm
Antenna gain	$\mathrm{G}_{\mathrm{T} x}$	12	12 dB
Losses	L_{f}	7	-7 dB
EIRP (Equivalent Isotropic Radiated Power)		50 dBm	

RX side:

RX sensitivity, $P_{\text {min }}$
Fading margin
Maximum RX power
Admissible path loss (difference EIRP
and min $R X$ power)
Path loss at $d_{\text {break }}=100 m\left(\frac{\lambda}{4 \pi d}\right)^{2}$
Path loss beyond breakpoint ad^{-n}
Pathloss exponent $\mathrm{n}=35$
Coverage distance, $\mathrm{d}_{\mathrm{cov}}=100 \times 10^{68 / 10 n}$

$$
\begin{aligned}
& =100 \times 10^{\frac{68}{10 \times 9.5}} \\
& =8.76 \mathrm{~km}
\end{aligned}
$$

(ii) Doppler frequency, $f_{d}=\frac{2 v f_{0}}{C}$

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{d}}=\frac{2 \mathrm{v}}{\lambda}=\frac{2 \times 330}{30 \times 10^{-2}}=2.2 \mathrm{kHz} \\
& \mathrm{R}=\frac{\mathrm{C}}{2 \times \mathrm{PRF}} \Rightarrow \mathrm{PRF}=\frac{\mathrm{C}}{2 \times \mathrm{R}} \\
& \mathrm{PRF}=\frac{3 \times 10^{8}}{2 \times 500 \times 10^{3}}=300 \mathrm{pps}
\end{aligned}
$$

8.(a) An electric field strength of $10 \mu \mathrm{~V} / \mathrm{m}$ is required at a point which is 200 km from a half-wave dipole antenna in the horizontal plane i.e., $\theta=\frac{\pi}{2}$. The antenna is operating in air at 50 MHz .

Calculate the current that must be fed to the antenna. Also find the average power radiated by the antenna. If a transmission line with characteristic impedance $Z_{0}=75 \Omega$ is connected to the antenna, determine the value of standing wave ratio.
[20 Marks]
Sol. For a halfwave dipole antenna,
$|\mathrm{E}|=\frac{\eta \mathrm{I}_{0} \cos \left(\frac{\pi}{2} \cos \theta\right)}{2 \pi \mathrm{r} \sin \theta}=10 \mu \mathrm{~V} / \mathrm{m}$
$10 \times 10^{-6}=\frac{(120 \pi) \mathrm{I}_{0} \cos \left(\frac{\pi}{2} \cos \frac{\pi}{2}\right)}{2 \pi\left(200 \times 10^{3}\right) \sin \left(\frac{\pi}{2}\right)}$
$10 \times 10^{-6}=\frac{(120 \pi) \mathrm{I}_{0}}{2 \pi\left(200 \times 10^{3}\right)}$
$\mathrm{I}_{0}=\frac{10^{-5} \times 2 \times 200 \times 10^{3}}{120}=0.0333 \mathrm{~A}$
$\mathrm{I}_{0}=33.33 \mathrm{~mA}$
$P_{\text {rad }}=\frac{1}{2} I_{0}^{2} R_{\text {rad }}=\frac{1}{2}(0.0333)^{2}(73 \Omega)$
$P_{\text {rad }}=0.041 \mathrm{~W}$
Note: $\mathrm{R}_{\mathrm{rad}}=73 \Omega$ for half wave dipole antenna
For halfwave dipole antenna,
$Z_{\text {in }}=R_{\text {rad }}+j X_{\text {in }}=(73+j 42.5) \Omega$
(If dipole is resonant, then you can use $Z_{i n}=73 \Omega$ with $X_{i n}=0$

Reflection coefficient, $\mathrm{K}_{\mathrm{L}}=\frac{\mathrm{Z}_{\text {in }}-Z_{0}}{\mathrm{Z}_{\text {in }}+\mathrm{Z}_{0}}$
$K_{L}=\frac{-2+j 42.5}{148+j 42.5}$
$\Rightarrow\left|K_{L}\right|=0.276$
$s=\frac{1+\left|K_{L}\right|}{1-\left|K_{L}\right|}=1.763$
8.(b) (i) What do you mean by Electro-static Discharge (ESD)? Why is ESD protection required? Suggest a protection method for ESD.
[10 Marks]
(ii) Design a combinational circuit to generate the 9's complement of a BCD digit, using only two NOT gates, two 2-Input OR gates and one 2-Input X-OR gate.
[10 Marks]
Sol. (i) Electro-static Discharge (ESD) refers to the sudden flow of electricity between two electrically charged objects caused by a difference in their electric potentials. It occurs when there is a rapid transfer of electrons from one object to another, resulting in a discharge of static electricity. ESD can cause damage or malfunction to electronic devices and components, particularly those that are sensitive to electrical charges.
ESD protection is required in various industries, such as electronics manufacturing, aerospace, automotive, and telecommunications, to prevent the detrimental effects of electro-static discharge. Here are a few reasons why ESD protection is necessary:

1. Device damage prevention: ESD can cause immediate or latent damage to electronic components, leading to device failure, reduced lifespan, or performance degradation.
2. Data loss prevention: ESD events can corrupt or erase stored data in electronic devices, potentially leading to data loss and operational issues.
3. Product reliability improvement: ESD protection measures ensure that electronic devices and components meet reliability standards, enhancing their overall performance and longevity.
4. Cost reduction: By implementing effective ESD protection strategies, companies can avoid costly repairs, replacements, or warranty claims caused by ESD-induced damage. To protect against electro-static discharge, several methods can be employed. Here's one commonly used protection method:
5. ESD Control Measures: ESD control measures focus on creating an electrostatic discharge-safe environment and implementing proper handling procedures. Some key elements of ESD control include:
2.a.Grounding: Grounding personnel and workstations helps to equalize electrical potential and prevent static buildup. Conductive flooring, grounded wrist straps, and ESD-safe workbenches are commonly used.
3.b. ESD-safe Packaging: Using anti-static bags, containers, and trays to store and transport sensitive electronic components minimizes the risk of ESD damage during handling and shipping.
4.c. Humidity Control: Maintaining appropriate humidity levels in manufacturing areas can reduce static electricity buildup and discharge incidents.
5.d.ESD Training: Educating personnel about ESD risks, prevention techniques, and proper handling procedures is crucial for minimizing ESD-related damage.
6.e. ESD Testing: Conducting regular ESD testing and audits ensures that ESD control measures are effective and identifies areas for improvement.

It's important to note that the specific protection methods employed may vary depending on the industry, the nature of the electronic devices or components, and the desired level of ESD protection required.
(ii)

$P=\Sigma m(0,1)+\Sigma d(10,11,12,13,14,15)$

$$
\begin{aligned}
& P=\bar{A} \bar{B} \bar{C} \\
& Q=\Sigma_{m}(2,3,4,5)+\Sigma_{d}(10,11,12,13,14,15)
\end{aligned}
$$

$\mathrm{Q}=\mathrm{B} \overline{\mathrm{C}}+\overline{\mathrm{B}} \mathrm{C}=\mathrm{B} \oplus \mathrm{C}$
$R=\Sigma m(2,3,6,7)+\Sigma d(10,11,12,13,14,15)$

$S=\Sigma m(0,2,4,6,8)+\Sigma d(10,11,12,13,14,15)$

$\mathrm{S}=\overline{\mathrm{D}}$
So, $P=\bar{A} \bar{B} \bar{C}=\overline{A+B+C}$
$Q=B \oplus C$
$\mathrm{R}=\mathrm{C}$
$\mathrm{S}=\overline{\mathrm{D}}$

8.(c) (i) At a distance of $40,000 \mathrm{~km}$ from a point on the surface of Earth, a satellite radiates a power of 12 W from an antenna having a gain of 16 dB in the direction of the observer. Determine the flux density at the receiving point, and the power received by an antenna at this point with an effective area of $10 \mathrm{~m}^{2}$. Express both flux density and power received in decibels as well.
[10 Marks]
(ii) Consider a satellite uplink has (C / No) of 82.2 dB and downlink has (C / No) of 79.8 dB . Assume bandwidth of the system as 1.2 MHz .
(I) Determine Numeric Value (NV) for each (C/No) value.
(II) Calculate (C/No) for the system (C/No)s.
(III) Determine (C/N) at 1.2 MHz BW.
[10 Marks]
Sol. (i) Given $P_{t}=12 \mathrm{~W}, \mathrm{G}_{\mathrm{t}}=16 \mathrm{~dB}, \mathrm{~A}_{\mathrm{e}}=10 \mathrm{~m}^{2}$
$R=40,000 \mathrm{~km}$
Flux density $=F=\frac{P_{t} G_{t}}{4 \pi R^{2}}$

In dB:

$(F)_{d B}=10 \log \left(P_{t} G_{t}\right)-10 \log \left(4 \pi R^{2}\right)$
$=10 \log \left(P_{t} G_{t}\right)-10 \log R^{2}-1 \log 4 \pi$
$=26.79-152-11$
$=-136.21 \mathrm{dbW} / \mathrm{m}^{2}$
Received power $=F \times A_{e}$
$P_{r}=F \frac{d B W}{m^{2}}+A_{e} d B m^{2}$
$=-136.21+10$
$=-126.21 \mathrm{dBW}$

In Absolute values:

$F=\frac{12 \times 10^{1.6}}{4 \pi\left(4 \times 10^{7}\right)^{2}}=2.37 \times 10^{-14} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$P_{r}=F \times A_{e}$
$=2.37 \times 10^{-14} \times 10$
$=2.37 \times 10^{-13} \mathrm{~W}$
(ii) (I) First calculate the equivalent numerical value for each $\left(\frac{\mathrm{C}}{\mathrm{N}_{0}}\right)$ value

$$
\begin{aligned}
& \left(\frac{C}{N_{0}}\right)_{d}=10^{7.98}=95.5 \times 10^{6} \\
& \left(\frac{C}{N_{0}}\right)_{u}=10^{8.22}=166 \times 10^{6}
\end{aligned}
$$

(II) $\left(\frac{\mathrm{C}}{\mathrm{N}_{0}}\right)_{\mathrm{s}}^{-1}=\left(\frac{\mathrm{C}}{\mathrm{N}_{0}}\right)_{\mathrm{d}}^{-1}+\left(\frac{\mathrm{C}}{\mathrm{N}_{0}}\right)_{\mathrm{u}}^{-1}$
$\left(\frac{C}{N_{0}}\right)_{s}^{-1}=\frac{1}{95.5 \times 10^{6}}+\left(\frac{1}{166 \times 10^{6}}\right)=16.49 \times 10^{-9}$
$\left(\frac{C}{N_{o}}\right)_{s}=60.62 \times 10^{6}$
$\left(\frac{C}{N_{0}}\right)_{\mathrm{s}}=10 \log \left(60.62 \times 10^{6}\right)=77.82 \mathrm{~dB}$
This is carrier to noise ratio in 1 Hz of bandwidth.
(III) Suppose we want to calculate in 1.2 MHz BW with $\left(\frac{\mathrm{C}}{\mathrm{N}_{0}}\right)_{\mathrm{s}}$ of 77.82 dB $\left(\frac{C}{N}\right)=77.82-10 \log \left(1.2 \times 10^{6}\right)$
$=77.82-60.79$
$=17.03 \mathrm{~dB}$

Outstanding performance by our students in GATE 2023

Congratulations to our toppers

10 Under	Under	17
AlR 10	Under	
AlR 50	100	

RANK 01
SH GOWTHAM GUDIMELLA
Production \＆
Industrial Engineering

RANK 03
KUSHAGRA
Mechanical Engineering

RANK 05
DHRUV KATHROTIYA
Computer Science Engineering

RANK 03
SARANSH GUPTA
Civil Engineering

RANK 05
HARSHIT
Production \＆ Industrial Engineering

RANK 06
BHARAT RAHEJA＊
Electronics and
Communication Engineering

RANK 08
PRASHANT LAVANIA
Electronics and
Communication Engineering

RANK 09
ADITYA KALSHA
Electrical Engineering

路数回｜Download The App Today！

