ESE Mains 2023

Electrical Engineering

Questions \& Solutions
PAPER-2

Electrical Engineering Paper 2: Marks Distribution					
S. No.	Subjects	Difficulty Level 2023	2023 Marks	2022 Marks	2021 Marks
1	Analog and Digital Electronics	Moderate	84	46	58
2	Systems and Signal Processing	Moderate	84	82	66
3	Control Systems	Moderate	72	92	104
4	Electrical Machines	Moderate	84	124	104
5	Power Systems	Easy	84	72	64
6.	Power Electronics and Drives	Moderate	72	64	84
	Total	480	480	480	

ELECTRICAL ENGINEERING

Paper-2

SACTION - A

1. a. Draw memory read machine cycle of 8085 microprocessor and explain.
[12 Marks]
Sol. 1a.

In 8085 microprocessor
Machine cycles

1. Opcode fetch
2. memory Read
3. Memory

Memory Read
$\left.\begin{array}{rl}\mathrm{I}_{0} / \overline{\mathrm{m}} & =0 \\ \overline{\mathrm{R}_{\mathrm{D}}} & =0\end{array}\right\}$ then $\overline{\mathrm{MEMR}}=0$

Let memory location 4050 H
has 37 H as data.
copy 37 H to Accumulator.
3T states are required for memory Read
$1^{\text {st }} \mathrm{t}$ State
ALE $\rightarrow 1$
$\mathrm{A}_{15}-\mathrm{AB}_{\mathrm{B}} \rightarrow 40 \mathrm{H}$ Higher order address
$\mathrm{AD}_{7} \rightarrow \mathrm{AD}_{0} \rightarrow 50 \mathrm{H}$ Lower order Address
Lower order address [50H] will store in D latch as ALE $\rightarrow 1 . \mathrm{I}_{0} / \overline{\mathrm{m}}=0$
$\underline{2}^{\text {nd }} \mathrm{T}$ State
$A L E \rightarrow 0$ now $A D_{7}-A D_{0}$ in act as data line but $A_{15}-A_{8}$ remain same.
now read pin goes low
$\because \overline{\mathrm{RD}}=0 \quad \mathrm{I}_{0} / \overline{\mathrm{m}}=0: \overline{\mathrm{MEMR}}=0$
It will active the output butter of memory. Data will transfer through. Data bus to microprocessor.

1. b. Reduce the block diagram shown below, using block diagram reduction technique and find the transfer function $\frac{\mathrm{C}(\mathrm{s})}{\mathrm{R}(\mathrm{s})}$.

[12 Marks]
Sol. 1b.

Shift Take-off point before ($1+\mathrm{G}_{3}$) to after it

Solving cascade and parallel blocks :

$$
\begin{aligned}
& \text { Closed loop gain } \frac{G_{2}\left(1+G_{3}\right)}{1+\left(\frac{H_{2}\left(1+G_{3}\right)+1}{1+G_{3}}\right) H_{1} G_{2}\left(1+G_{3}\right)} \\
& =\frac{G_{2}\left(1+G_{3}\right)}{1+H_{1} G_{2}\left(H_{2}\left(1+\mathrm{G}_{3}\right)+1\right)} \\
& \mathrm{R} \rightarrow \mathrm{G}_{1} \rightarrow \frac{\mathrm{G}_{2}\left(1+\mathrm{G}_{3}\right)}{1+\mathrm{H}_{1} \mathrm{G}_{2}\left[\mathrm{H}_{2}\left(1+\mathrm{G}_{3}\right)+1\right]} \rightarrow \mathrm{C} \\
& \mathrm{So}, \frac{\mathrm{C}}{\mathrm{R}}=\mathrm{G}_{1} \times \frac{\mathrm{G}_{2}\left(1+\mathrm{G}_{3}\right)}{1+\mathrm{H}_{1} \mathrm{G}_{2}\left[\mathrm{H}_{2}\left(1+\mathrm{G}_{3}\right)+1\right]} \\
& \frac{\mathrm{C}}{\mathrm{R}}=\frac{\mathrm{G}_{1} \mathrm{G}_{2}\left(1+\mathrm{G}_{3}\right)}{1+\mathrm{G}_{2} \mathrm{H}_{1} \mathrm{H}_{2}+\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{1} \mathrm{H}_{2}+\mathrm{G}_{2} \mathrm{H}_{1}}
\end{aligned}
$$

1. c. The maximum efficiency of a $500 \mathrm{KVA}, 3300 / 500 \mathrm{~V}, 50 \mathrm{~Hz}$ single-phase transformer is 97% and occurs at $\frac{3}{4}$ full load, unity power factor. If the impedance is 10%, find the voltage regulation at full load, power factor 0.8 leading.
[12 Marks]

Sol. 1c. Given $\eta_{\max }=97 \%$ at $\frac{3}{4}$ of full load at UPF

$$
\begin{aligned}
& \eta_{\max }=\frac{\frac{3}{4} \times \mathrm{S}_{\text {out }} \times 1}{\frac{3}{4} \mathrm{~S}_{\text {out }} \times 1+\text { losses }} \\
& 0.97=\frac{\frac{3}{4} \times 500}{\frac{3}{4} \times 500+\text { losses }} \\
& \text { losses }=\frac{375}{0.97}-375=11.597 \mathrm{~kW}
\end{aligned}
$$

At maximum efficiency, copper loss $=$ Iron loss $=\frac{11.597}{2} \mathrm{~kW}=5.798 \mathrm{~kW}$
$\mathrm{x}^{2} \mathrm{P}_{\mathrm{cu}, F \mathrm{FL}}=5.798 \mathrm{~kW}$
$P_{\mathrm{cu}, \mathrm{FL}}=\left(\frac{4}{3}\right)^{2} \times 5.798 \mathrm{~kW}=10.308 \mathrm{~kW}$
We know, \% R = \% Cu loss at full load

$$
=\frac{10.308}{500} \times 100=2.061 \%
$$

\%Z(given) $=10 \%$
$\% X=\sqrt{(\% Z)^{2}-(\% R)^{2}}$
$=\sqrt{(10)^{2}-(2.061)^{2}}=9.785 \%$
\therefore Voltage regulation at full load and 0.8 leading
$=\% R \cos \phi-\% X \sin \phi$
$=(2.061)(0.8)-(9.785)(0.6)$
$=-4.22 \%$

1. d. Calculate the inductance and capacitance of the single-circuit, two-bundle conductor, 200 km long line as shown below. The diameter of each conductor is 5 cm .

[12 Marks]
Sol. 1d. As we know for bundled conductions

$$
\mathrm{L}=2 \times 10^{-7} \ln \left(\frac{\mathrm{GMD}}{\mathrm{GMR}}\right) \mathrm{H} / \mathrm{m}
$$

From given figure,

$$
\text { GMD }=\sqrt[3]{6 \times 6 \times 12}
$$

$=7.56 \mathrm{~m}$
radius $=\frac{\mathrm{D}}{2}=\frac{5}{2}=2.5 \mathrm{~cm}$
From figure,
Daa' $=D a^{\prime} \mathrm{a}=25 \mathrm{~cm}$
Daa $=\mathrm{Da}^{\prime} \mathrm{a}^{\prime}=0.7788 \times 2.5 \times 10^{2}$
$=1.947 \times 10^{-2} \mathrm{~m}$
GMR $=\sqrt[4]{\text { Daa Daa' Da'a Da'a' }}$
$=\sqrt[4]{1.947 \times 10^{-2} \times 25 \times 10^{-2} \times 25 \times 10^{-2} \times 1.947 \times 10^{-2}}$
$=6.97 \times 10^{-2} \mathrm{~m}$
$\mathrm{L}=2 \times 10^{-7} \ln \left(\frac{7.56}{6.97 \times 10^{-2}}\right)$
$=9.37 \times 10^{-7} \mathrm{H} / \mathrm{m}$
For 200 km,
$\mathrm{L}=200 \times 9.37 \times 10^{-7} \times 10^{3}$
$=0.187 \mathrm{H}$
Capacitance calculation

$$
C=\frac{2 \pi \varepsilon_{0} \varepsilon_{r}}{\ln \left(\frac{G M D}{\mathrm{GMR}}\right)}
$$

We know,

$$
\text { GMD }=7.56 \mathrm{~m}
$$

$$
\text { GMR }=\sqrt{25 \times 2.5 \times 25 \times 25 \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2}}
$$

$$
\mathrm{GMR}=7.9 \times 10^{-2} \mathrm{~m}
$$

$$
C=\frac{2 \pi \times 8.854 \times 10^{-12}}{\ln \left(\frac{7.56}{7.9 \times 10^{-2}}\right)}
$$

$$
\mathrm{C}=12.2 \times 10^{-12} \mathrm{~F} / \mathrm{m}
$$

$$
\text { For } 200 \text { km }
$$

$$
C=200 \times 10^{3} \times 12.2 \times 10^{-12}
$$

$$
\mathrm{C}=2.44 \mu \mathrm{~F}
$$

1. e. Explain the concept of Pulse Width Modulation. How is it used in the reduction of harmonics in a single-phase full bridge Inverter?
[12 Marks]
Sol. 1e. PWM stands for Pulse Width Modulation. It is a modulation technique commonly used in electronic systems to control the average power delivered to a load by varying the width of the pulses of a periodic signal. In PWM, the continuous waveform, typically a square wave, is divided into two parts: a high state and a low state. The width or duration of the high state, known as the pulse width, is varied to achieve the desired output. By changing the duty cycle (the ratio of the pulse width to the total period), the average power delivered to the load can be controlled.

Using pule width modulation, the width of the pule is Modulated to reduce the harmonics content. Lets take an example

the fourier expression of $V(t)=\sum_{\substack{n_{e 1} \\ n \rightarrow o d d}}^{\infty} \frac{4 A}{n \pi} \sin n \omega_{0} t$
So above wave contains odd harmonics
Now lets modulate the above wave as shown below.

Above signal is modulated (have taken two switching per quarter cycle) keeping the odd half wave symmetry and odd nature of wave intact.
Now harmonic content can be shown using its fourier expression.
$V_{0}(t)=\sum_{\substack{n=1 \\ n \rightarrow 0 d d}}^{\infty} \frac{4 A}{\eta \pi}\left[1-\cos n \alpha_{1}+\cos n \alpha_{2}\right] \sin n \omega_{0} t$
by controlling α_{1} and α_{2} we can eliminate few harmonics. If we can increase number of switching, per quarter then we can eliminate higher number of harmonics.
So from above discussion it is evident that PWM technique is used to minimise the harmonic content of the ware.
2. a. For the circuit given below, find the value of the components. Gain is 5 at a frequency of 32 kHz.

[20 Marks]
Sol. 2a. Gain $=5$ at 32 KHz

$Z_{L}=j \omega l$
$\left|Z_{L}\right|=\omega L$
$\left|Z_{L}\right|=2 \pi \times 32 \times 10^{3} \times 10^{-3}=64 \pi=201.06 \Omega$

$\left|Z_{L}\right| \gg R$; nelgect R
R is internal resistance of coil
feedback path is parallel RLC circuit and at resonant freq. LC combination act or open circuit $\mathrm{f}_{0}=\mathrm{f}_{\mathrm{r}}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}=32 \times 10^{3}$
we are assuming 32 KHz as resonant freq.

$$
\begin{aligned}
& \frac{1}{2 \pi \sqrt{10^{-3} \mathrm{C}}}=32 \times 10^{3} \\
& \frac{1}{2 \pi \times 32 \times 10^{3}}=\sqrt{10^{-3} \mathrm{C}} \\
& \left.\mathrm{C}=\frac{1}{10^{-3}} \times \frac{1}{2 \pi \times 32 \times 10^{3}}\right]^{2} \\
& \mathrm{C}=2.47 \times 10^{-8} \mathrm{~F} \\
& \mathrm{C}=24.7 \times 10^{-9} \mathrm{~F}=24.7 \mathrm{nF}
\end{aligned}
$$

$A_{V}=\frac{V_{0}}{V_{S}}=-\frac{R_{f}}{R_{1}}$
$\left|A_{V}\right|=\frac{R_{f}}{R_{1}}=5$
$R_{f}=5 R_{1}=5 \times 100$

$$
\mathrm{R}_{\mathrm{f}}=500 \Omega
$$

2. b. Find $x(t) * g(t)$, using graphical convolution.
$x(\mathrm{t})$

$g(t)$

[20 Marks]
Sol. 2b. Given, $y(t)=x(t) * g(t)$
So, $y(t)=\int_{-\infty}^{\infty} g(\tau) \cdot x(t-\tau) d \tau$

Case-I:

When $0.5+\mathrm{t}<0$
$\Rightarrow \mathrm{t}<-0.5$
then, $\mathrm{y}(\mathrm{t})=0$

Case-II:

When $-0.5+\mathrm{t}<0$ but $0.5+\mathrm{t}>0$
i.e. $-0.5<t<0.5$
then, $y(t)=\int_{0}^{0.5+t} t_{0} \cdot \frac{2}{3} \tau d \tau=\frac{20}{3}\left[\frac{\tau^{2}}{2}\right]_{0}^{0.5+t}$

$$
=\frac{10}{3}(0.5+t)^{2}
$$

Case-III:

When $-0.5+\mathrm{t}>0$ but $0.5+\mathrm{t}<3$
i.e $\quad 0.5<t<2.5$

$y(\mathrm{t})=\int_{-0.5+\mathrm{t}}^{0.5+\mathrm{t}} 10 \cdot \frac{2}{3} \tau \mathrm{~d} \tau=\frac{20}{3}\left[\frac{\tau^{2}}{2}\right]_{-0.5+\mathrm{t}}^{0.5+\mathrm{t}}$
$=\frac{10}{3}\left[(0.5+\mathrm{t})^{2}-(-0.5+\mathrm{t})^{2}\right]$
$=\frac{20}{3} \mathrm{t}$

Case-IV:

When $-0.5+\mathrm{t}<3$ but $0.5+\mathrm{t}>3$

i.e. $2.5<\mathrm{t}<3.5$
then, $\mathrm{y}(\mathrm{t})=\int_{-0.5+\mathrm{t}}^{3} 10 \cdot \frac{2}{3} \tau \mathrm{~d} \tau=\frac{20}{3}\left[\frac{\tau^{2}}{2}\right]_{-0.5+\mathrm{t}}^{3}$
$=\frac{10}{3}\left[9-(-0.5+\mathrm{t})^{2}\right]=\frac{10}{3}\left[8.75-\mathrm{t}^{2}+\mathrm{t}\right]$

Case-V:

When $-0.5+t>3$,
i.e. $\mathrm{t}>3.5$

then $y(t)=0$
Thus, $y(t)=\left\{\begin{array}{cc}0, & \text { for } t<-0.5 \\ \frac{10}{3}(0.5+t)^{2}, & \text { for }-0.5<t<0.5 \\ \frac{20 t}{3}, & \text { for } 0.5<t<2.5 \\ \frac{10}{3}\left[8.75-t^{2}+t\right], & \text { for } 2.5<t<3.5 \\ 0, & \text { for } t>3.5\end{array}\right.$
2. c. Design a PD controller for a unity feedback system whose open loop transfer function.
$\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{10}{(\mathrm{~s}+1)(\mathrm{s}+4)}$
Will have poles at $s=-4 \pm j 4$.
[20 Marks]
Sol. 2c. Let PD controller gain be ($\mathrm{K}_{\mathrm{P}}+\mathrm{SK} \mathrm{K}_{\mathrm{D}}$)

Now, Characteristic equation, CE, is
$1+\left(K_{P}+s K_{D}\right) \times \frac{10}{(s+1)(s+4)}=0$
$\Rightarrow \mathrm{s}^{2}+5 \mathrm{~s}+4+10 \mathrm{~K}_{\mathrm{P}}+10 \mathrm{~s} \mathrm{~K}_{\mathrm{D}}=0$
$s^{2}+\left(5+10 K_{D}\right) s+\left(10 K_{P}+4\right)=0$
we need poles at $s=-4 \pm j 4$
So, characteristic equation desired is
$(s-(-4+j 4))(s-(-4-j 4))=0$
$(s+4-j 4)(s+4+j 4)=0$
$(s+4)^{2}+4^{2}=0$
$\Rightarrow s^{2}+8 s+32=0$...(2)
Compared (1) \& (2),
$5+10 K_{D}=8 \Rightarrow K_{D}=0.3$
$10 K_{P}+4=32 \Rightarrow K_{P}=2.8$
So, DD controller gain, is

$$
\mathrm{G}_{\mathrm{C}}(\mathrm{~s})=2.8+0.3 \mathrm{~s}
$$

3. a. Design a second order low pass filter using Op-Amp with feedback gain 1.586. High cut-off frequency is 10 kHz . Assume capacitor $0.1 \mu \mathrm{~F}$ and $\mathrm{R}_{1}=10 \mathrm{k} \Omega$ (resistor connected between input source to input terminal of Op-Amp). Draw the circuit diagram and plot the frequency response.
[20 Marks]

Sol. 3a.

Cutoff frequency $f_{c}=\frac{1}{2 \pi \sqrt{R^{\prime} \mathrm{CC}^{\prime}}}$
if $R=R^{\prime}$ and $C=C^{\prime}$
$\mathrm{f}_{\mathrm{c}}=\frac{1}{2 \pi \mathrm{RC}}=10 \mathrm{KHz}$
$\mathrm{R}=\frac{1}{2 \pi \mathrm{C} \times 10 \times 10^{3}}=\frac{1}{2 \pi 0.1 \times 10^{-6} \times 10^{4}}$
$R=\frac{100}{2 \pi}=159.15 \Omega$

$A_{\max }=1+\frac{R_{f}}{R_{1}}=1.586$
$\mathrm{R}_{1}=10 \mathrm{~K} \Omega$ (given)
$1+\frac{R_{f}}{10}=1.586$
$R_{f}=0.586$
$\mathrm{R}_{\mathrm{f}}=0.586 \times 10=5.86 \mathrm{~K} \Omega$
3. b. A DC motor is mechanically connected to a constant torque load. When the armature is connected to a 120 volt DC supply, it draws an armature current of 10 amperes and runs at 1800 rpm . The armature resistance is $\mathrm{R}_{\mathrm{a}}=0.1 \Omega$. Accidentally, the field circuit breaks and the flux drops to the residual flux, which is only 5% of the original flux.
(i) Determine the value of the armature current immediately after the field circuit breaks (i.e. before the speed has had time to change from 1800 rpm).
(ii) Determine the hypothetical final speed of the motor after the field circuit breaks.

Neglect the inductance of the armature circuit.
[20 Marks]
Sol. 3b. (i)

$\mathrm{I}_{0}=10 \mathrm{~A}$
According to $\mathrm{KVL}, \mathrm{E}_{\mathrm{b}}=120-10(0.1)=119 \mathrm{~V}$
$\mathrm{k}_{\mathrm{e}} \phi\left(1800 \times \frac{2 \pi}{60}\right)=119$
As the field has dropped to 0.05ϕ, the new back emf will be $119(0.05)=5.95 \mathrm{~V}$
So, armature current $=\frac{120-5.95}{0.1}=1140.5 \mathrm{~A}$
(ii) Under steady state, torque remain constant

$$
\mathrm{K}_{\mathrm{e}} \phi \mathrm{I}_{\mathrm{a}}=\mathrm{T}_{\mathrm{L}}
$$

$$
\mathrm{K}_{\mathrm{e}} \phi(10)=\mathrm{K}_{\mathrm{e}} \phi(0.05) \mathrm{I}_{\mathrm{a}}^{\prime}
$$

$$
I_{a}^{\prime}=\frac{10}{0.05}=200 \mathrm{~A}
$$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{b}} & =120-200(0.1) \\
& =100 \mathrm{~V}
\end{aligned}
$$

$$
100=\mathrm{K}_{\mathrm{e}} \phi(0.05) \mathrm{N}\left(\frac{2 \pi}{60}\right)
$$

From initial stable condition

$$
\begin{aligned}
& 119=\mathrm{K}_{\mathrm{e}} \phi(1800)\left(\frac{2 \pi}{60}\right) \\
& \Rightarrow \frac{119}{100}=\frac{1800}{0.05 \mathrm{~N}} \Rightarrow \mathrm{~N}=\frac{1800 \times 100}{119(0.05)} \\
& =30252.10 \mathrm{rpm}
\end{aligned}
$$

3. c. A 250 km long, three-phase, 50 Hz , transmission line has the following line constants:
$\mathrm{A}=\mathrm{D}=0.9 \angle 1^{\circ}$
$B=120 \angle 72^{\circ} \Omega$
$C=0.001 \angle 90^{\circ} \Omega^{-1}$
The sending end voltage is 230 kV .
Find
(i) Line charging current
(ii) Maximum active power that can be transferred at 220 kV , and also the corresponding reactive power.
[20 Marks]
Sol. 3c. (i) Line charging current

$$
\begin{aligned}
I_{C} & =\frac{V}{X_{c}}=V_{B C} \\
X_{C} & =C(\text { From } A B C D \text { parameter }) \\
= & 0.00190^{\circ} \\
I_{C} & =\frac{230 \times 10^{3}}{\sqrt{3}} \times 0.00190^{\circ} \\
& =133 \mathrm{~A}
\end{aligned}
$$

(ii) Maximum power at the receiving end

$$
\begin{aligned}
& P_{R(\max)}=\frac{3\left|V_{S} V_{R}\right|}{|B|}-3\left|\frac{A}{B}\right| V_{R}^{2} \cos (\theta-\alpha) \quad\left[\because V_{S} \text { and } V_{R} \text { are per phase voltages }\right] \\
& Q_{R(\max)}=-3\left(\frac{A}{B}\right) V_{R}^{2} \sin (\theta-\alpha)
\end{aligned}
$$

Given
$\alpha=1^{\circ} \quad \theta=72^{\circ}$
$\theta-\alpha=72^{\circ}-1^{\circ}=71^{\circ}$
Per phase voltages

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}(\mathrm{ph})=\frac{230}{\sqrt{3}}=132.8 \mathrm{kV} \\
& \mathrm{~V}_{\mathrm{R}}(\mathrm{ph})=\frac{220}{\sqrt{3}}=127 \mathrm{kV}
\end{aligned}
$$

Substitute all the data into the given formula

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{R}(\max)}=\frac{3 \times 132.8 \times 127 \times 10^{6}}{120}-\frac{3 \times 0.9}{120} \times(127)^{2} \times \cos 71^{\circ} \\
& =303.5 \mathrm{MW} \\
& Q_{R(\max)}=\frac{3(0.9)}{120} \times(127)^{2} \times \sin 71^{\circ} \\
& =343.13 \mathrm{MVAR}
\end{aligned}
$$

4. a. Draw a 4-bit digital to analog (D - A) convert circuit diagram using Op-Amp and binary weighted resistors. Derive the output voltage equation to get bidirectional signal output. Assume digital input 5 V and bias power supply $\pm 15 \mathrm{~V}$.
[20 Marks]

Sol. 4a.

$\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{n}}=0$ Virtual Ground process
$\mathrm{I}_{\mathrm{f}}=\mathrm{I}=\mathrm{I}_{3}+\mathrm{I}_{2}+\mathrm{I}_{1}+\mathrm{I}_{0}$
$\frac{0-V_{0}}{R_{f}}=\frac{B_{3} V_{R}}{R}+\frac{B_{2} V_{R}}{2 R}+\frac{B_{1} V_{R}}{2 R}+\frac{B_{0} V_{R}}{8 R}$
$V_{0}=-\frac{R_{f}}{8 R} V_{R}\left[8 B_{3}+4 B_{2}+2 B_{1}+B_{0}\right]$
$V_{0}=\left[\frac{V_{R}}{2_{\downarrow}^{3}}\right]\left[\frac{-R_{f}}{R}\right] \sum_{\downarrow=0}^{i=3} 2^{i} B_{i}$
Resolution gain Decimal Equivalent of Binary number
$\because V_{R}=5 V$
for 2's complement representation

$\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{n}}=0 \quad \mathrm{VGp}$
$\mathrm{If}_{\mathrm{f}}=\mathrm{I}=\mathrm{I}_{\text {ref }}+\mathrm{I}_{3}+\mathrm{I}_{2}+\mathrm{I}_{1}+\mathrm{I}_{0}$
$\frac{-V_{0}}{R_{f}}=B_{3} \frac{V_{\text {ref }}}{R / 2}+B_{3} \frac{V_{R}}{R}+B_{2} \frac{V_{R}}{2 R}+\frac{B_{1} V_{R}}{4 R}+\frac{B_{0} V_{R}}{8 R}$
$\because \mathrm{V}_{\text {ref }}=-\mathrm{V}_{\mathrm{R}}$ \& it is connected as
i / p if $B_{3}=0$ otherwise it is connected to ground.

$$
\begin{aligned}
& V_{O}=\left[\frac{V_{R}}{2^{3}}\right]\left[\frac{-R_{f}}{R}\right]\left[-16 B_{3}+8 B_{3}+4 B_{2}+2 B_{1}+B_{0}\right]
\end{aligned}
$$

B_{3}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{0}$	$-8 \mathrm{~B}_{3}+4 \mathrm{~B}_{2}+2 \mathrm{~B}_{1}+\mathrm{B}_{0}$
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	-8
1	0	0	1	-7
1	0	1	0	-6
1	0	1	1	-5
1	1	0	0	-4
1	1	0	1	-3
1	1	1	0	-2
1	1	1	1	-1

\therefore Vo is proportional to 2 's complement representation. we are getting bidirectional signal output.
4. b. A unity feedback control system has
$\mathrm{G}(\mathrm{s})=\frac{10 * \mathrm{~K}}{\mathrm{~s}\left(\frac{\mathrm{~s}}{2}+1\right)(\mathrm{s}+10)}$
(i) Find gain and phase margin for $\mathrm{K}=1$.
(ii) If a phase-lag element with transfer function of $\frac{(1+2 s)}{(1+5 s)}$ is added in the forward path, find the new value of K to keep the same gain margin.
[20 Marks]
Sol. 4b. (i) $\mathrm{K}=1$

$$
\begin{aligned}
& G(j \omega) H(j \omega)=\frac{10}{j \omega\left(1+\frac{j \omega}{2}\right)(10+j \omega)} \\
& M=|G(j \omega) H(j \omega)|=\frac{10}{\omega \sqrt{\left(1+\frac{\omega^{2}}{4}\right)\left(100+\omega^{2}\right)}}
\end{aligned}
$$

$\phi=\angle \mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega)=-90^{\circ}-\tan ^{-1}\left(\frac{\omega}{2}\right)-\tan ^{-1}\left(\frac{\omega}{10}\right)$

Phase Crossover Frequency, ω_{p}

at $\omega=\omega_{p}, \phi=-180^{\circ}$
$\Rightarrow-90^{\circ}-\tan ^{-1}\left(\frac{\omega_{p}}{2}\right)-\tan ^{-1}\left(\frac{\omega_{p}}{10}\right)=-180^{\circ}$
$\tan ^{-1}\left(\frac{\frac{\omega_{p}}{2}+\frac{\omega_{p}}{10}}{1-\frac{\omega_{p}}{2} \cdot \frac{\omega_{p}}{10}}\right)=90^{\circ}$
$\Rightarrow 1-\frac{\omega_{p}^{2}}{20}=0 \Rightarrow \omega_{p}^{2}=20$
$\omega_{p}=\sqrt{20}$
$\omega_{\mathrm{p}}=4.47 \mathrm{rad} / \mathrm{sec}$

Gain Margin

$G M=\frac{1}{\left|G\left(j \omega_{p}\right) H\left(j \omega_{p}\right)\right|}$
$\left|G\left(j \omega_{p}\right) H\left(j \omega_{p}\right)\right|=\frac{10}{\sqrt{20} \sqrt{\left(1+\frac{20}{4}\right)(100+20)}}$
$=\frac{10}{\sqrt{20 \times 6 \times 120}}=\frac{10}{120}=\frac{1}{12}$
So, $G M=\frac{1}{1 / 12}=12$
In $\mathrm{dB}, \mathrm{GM}=20 \log (12)=21.58 \mathrm{~dB}$
Gain crossover frequency, ω_{g}
at $\omega=\omega_{\mathrm{g}}, \mathrm{M}=|\mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega)|=1$
$\frac{10}{\omega_{g} \sqrt{\left(1+\frac{\omega_{g}^{2}}{4}\right)\left(100+\omega_{g}^{2}\right)}}=1$
$\Rightarrow \omega_{\mathrm{g}}^{2}\left(1+\frac{\omega_{\mathrm{g}}^{2}}{4}\right)\left(100+\omega_{\mathrm{g}}^{2}\right)=10^{2}=100$
let $\omega_{g}^{2}=x$
$x\left(\frac{x+4}{4}\right)(x+100)=100$
$x\left(x^{2}+104 x+400\right)=400$
$x^{3}+104 x^{2}+400 x-400=0$
So, $x=\omega_{g}^{2}=0.82,-99.96 m,-4.86$
but $x=\omega_{g}^{2}$ must be positive
So, $\omega_{\mathrm{g}}^{2}=0.82 \Rightarrow \omega_{\mathrm{g}} \approx 0.9 \mathrm{rad} / \mathrm{sec}$

Phase Margin PM

$$
\begin{aligned}
& \mathrm{PM}=180^{\circ}+\angle \mathrm{G}\left(\mathrm{j} \omega_{\mathrm{g}}\right) \mathrm{H}\left(\mathrm{j} \omega_{g}\right) \\
& =180^{\circ}+\left(-90^{\circ}-\tan ^{-1}\left(\frac{0.9}{2}\right)-\tan ^{-1}\left(\frac{0.9}{10}\right)\right)
\end{aligned}
$$

$P M=60.63^{\circ}$
(ii) Gain margin is same as case (i) $=12$ (or) 21.58 dB

New $G(S)=\left(\frac{1+2 s}{1+5 s}\right) \frac{10 k}{S\left(\frac{s}{2}+1\right)(S+10)}$
Phase cross over frequency $\mathrm{G}(\mathrm{s})=-\left.180\right|_{\omega=\omega_{p c}}$

$$
=-90+\tan ^{-1}(2 \omega)-\tan ^{-1}(5 \omega)-\tan ^{-1}(\omega / 2)-\tan ^{-1}(\omega / 10)=-180
$$

$$
=-\tan ^{-1}[\frac{5 \underbrace{\frac{5 \omega-2 \omega}{1+10 \omega^{2}}}_{A}]-\tan ^{-1}(\underbrace{\frac{\omega}{2}+\frac{\omega}{10}}_{B} 1-\frac{\omega^{2}}{20}}{1})=-90
$$

$\tan ^{-1}\left(\frac{A+B}{1-A B}\right)=90^{\circ}$
$\Rightarrow 1-\mathrm{AB}=0$ and $\mathrm{AB}=1$
$\left(\frac{3 \omega}{1+10 \omega^{2}}\right)\left(\frac{12 \omega}{20-\omega^{2}}\right)=1$
$36 \omega^{2}=20-\omega^{2}+200 \omega^{2}-10 \omega^{4}$
$10 \omega^{4}-163 \omega^{2}-20=0$
By solving $\omega=\omega_{\mathrm{pc}}=4.05 \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
& \text { Gin margin }=12=\frac{1}{\mid \mathrm{G}(\mathrm{~s}) \mathrm{I}_{\mathrm{\omega}_{\mathrm{p}}}} \\
& |\mathrm{G}(\mathrm{~S})|_{\omega_{\mathrm{c} \mathrm{copcc}}}=\frac{\sqrt{1+(2 \omega)^{2}}}{\sqrt{1+(5 \omega)^{2}}} \cdot \frac{\mathrm{k}}{\omega \sqrt{\left(\frac{\omega}{2}\right)^{2}+1} \sqrt{\omega^{2}+10^{2}}} \\
& =\frac{\sqrt{1+(2 \times 4.05)^{2}}}{\sqrt{1+(5 \times 4.05)^{2}}} \cdot \frac{\mathrm{k}}{4.05 \sqrt{\left(\frac{4.05}{2}\right)^{2}+1} \sqrt{(4.05)^{2}+100}} \\
& =\frac{8.161}{20.274} \times \frac{\mathrm{k}}{4.05 \times 2.258 \times 10.788}=\mathrm{k} / 244.99 \\
& \therefore \mathrm{GM}=\frac{1}{(\mathrm{k} / 244.99)} \\
& 12=\frac{244.99}{\mathrm{k}} \\
& \mathrm{k}=20.416
\end{aligned}
$$

4. c. The equivalent circuit and is associated voltage waveform for a switched mode DC power supply is show below.

(i) Assuming a pure $\mathrm{dc} \mathrm{V}_{0}=15 \mathrm{~V}$ at the output across a load of 240 watts, calculate and draw the waveforms of volage and current associated with the filter inductor 'L' and current through 'C'. Let switch duty ratio $\mathrm{D}=0.75$ in this condition.
(ii) Estimate the peak-to-peak ripple in the voltage across capacitor.
(iii) Calculate the harmonic voltage of v_{o}.
(iv) Calculate the attenuation in decibels of ripple voltage in V_{oi} at harmonic frequency.
[20 Marks]
Sol. 4c.

(i) $\mathrm{V}_{0}=15$ volt
$I_{0}=\frac{240}{15}=16 \mathrm{~A}$
$\mathrm{D}=0.75=\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{A}}}$
So above circuit is buck convence
Since $\frac{V_{0}}{V_{d}}=D$ (duty ratio) so there is continues conduction.
Waveshape of $V_{L}(t)$ and $i_{L}(i)$ are shown below.

During on condition
$0 \leq \mathrm{t} \leq \mathrm{D} \top$

During on condition
$\mathrm{DT} \leq \mathrm{t} \leq \mathrm{T}$

During ON condition
V L $(\mathrm{t})=5$ Volt
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{i}_{\mathrm{Lmin}}+\frac{1}{\mathrm{~L}} \int_{0}^{\mathrm{t}} 5 \mathrm{dt}$
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{i}_{\mathrm{L} \text { min }}+\frac{5}{\mathrm{~L}} \mathrm{t}$
$0 \leq \mathrm{t} \leq \mathrm{DT}$
At $\mathrm{t}=\mathrm{DT} \quad \mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{i}_{\mathrm{L} \text { max }}=\mathrm{i}_{\mathrm{L} \text { min }}+\frac{5}{\mathrm{~L}} \mathrm{DT}$
During off condition
$\mathrm{V}_{\mathrm{L}}(\mathrm{t})=-15$ volt
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{i}_{\mathrm{L} \max }+\frac{1}{\mathrm{~L}} \int_{\mathrm{DT}}^{\mathrm{t}}-15 \mathrm{dt}$
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{i}_{\mathrm{L} \max }-\frac{15}{\mathrm{~L}}(\mathrm{t}-\mathrm{DT}) \quad, \quad \mathrm{T} \leq \mathrm{t} \leq \mathrm{T}$
at $\mathrm{t}=\mathrm{T} \mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{i}_{\mathrm{L} \min }=\mathrm{i}_{\mathrm{Lmax}} \mathrm{IL}$
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{i}_{\mathrm{L} \min }=\mathrm{i}_{\mathrm{L} \max }-\frac{15}{\mathrm{~L}}(\mathrm{~T}-\mathrm{DT})$

The current waveshape is shown below.

$16=i_{\text {min }}+\frac{i_{\text {max }}-i_{L \text { min }}}{2}=\frac{i_{\text {max }}+i_{\text {min }}}{2} \Rightarrow i_{L_{\text {min }}}+i_{L_{\text {max }}}=32$
Using equation (1) $i_{L \text { min }}+i_{L \text { min }}+\frac{5}{L} D T=32$
$2 \mathrm{i}_{\mathrm{L} \text { min }}=32-\frac{5 \mathrm{DT}}{\mathrm{L}} \Rightarrow 2 \mathrm{i}_{\llcorner\text {min }}=32-\frac{(5)(0.75)}{300 \times 10^{3}\left(1.3 \times 10^{-6}\right)}$
$\Rightarrow \mathrm{i}_{\mathrm{Lmin}}=2211.192 \mathrm{Amp}$
$\Rightarrow \mathrm{i}_{\mathrm{L} \max }=11.192+\frac{5(0.75)}{300 \times 10^{3}\left(1.3 \times 10^{-6}\right)}=20.80 \mathrm{Amp}$
(ii) Capacitor current
$\mathrm{i}_{\mathrm{c}}(\mathrm{t})=\mathrm{i}_{\mathrm{L}}(\mathrm{t})-\mathrm{I}_{0}$
Wave shape of $i_{c}(t)$ is shown below.

Peak to peak ripple in capacitor voltage $=\Delta \mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\mathrm{cmax}}-\mathrm{V}_{\mathrm{cmin}}$
$\Delta \mathrm{V}_{\mathrm{c}}=\frac{\Delta \mathrm{Q}}{\mathrm{c}}$
$\Delta V=$ Area of shaded region
$=\frac{1}{2}[4.808]\left[\frac{\mathrm{T}}{2}\right]$
$\Delta \mathrm{V}_{\mathrm{c}}=\frac{1}{4}\left(\frac{4.808)}{50 \times 10^{-6}}\left(\frac{1}{300 \times 10^{3}}\right)=0.0801 \mathrm{volt}\right.$
(iii) $V_{0 i}(t)=V_{0}+\sum_{n=1}^{\infty} a_{n} \cos n \omega_{0} t+\sum_{n=1}^{\infty} b_{n} \sin n \omega_{0} t$
$\mathrm{v}_{0}=15 \mathrm{volt}$
$a_{1}=\frac{2}{T} \int_{0}^{T} V_{0} i \cos n \omega_{0} t d t=\frac{2}{T} \int_{0}^{D T} 20 \cos n \omega_{0} t d t$
$=\frac{40}{\mathrm{~T}\left(\mathrm{n} \omega_{0}\right)}\left[\left.\sin n \omega_{0} \mathrm{t}\right|_{0} ^{\mathrm{DT}}\right] \quad \omega_{0} \mathrm{~T}=2 \pi$
$=\frac{40}{2 n \pi}\left[\sin \frac{3}{4}(2 n \pi)\right]=\frac{20}{n \pi} \sin \frac{3 n \pi}{2}$
$b_{n}=\frac{2}{T} \int_{0}^{T} V_{0 i} \sin n \omega_{0} t d t=\frac{2}{T} \int_{0}^{D T} 20 \sin n \omega_{0} t d t$
$\frac{40}{\mathrm{~T}\left(\mathrm{n} \omega_{0}\right)}\left[-\left.\cos n \omega_{0} t\right|_{0} ^{\mathrm{DT}}\right]=\frac{40}{2 n \pi}\left[1-\cos \frac{3}{2} n \pi\right]=\frac{20}{\mathrm{n} \pi}\left(1-\cos \frac{3}{2} n \pi\right)$
$V_{0 i}(t)=15+\sum_{n=1}^{\infty} \frac{20}{n \pi} \sin \frac{3 n \pi}{2} \cdot \cos n \omega_{0} t+\sum_{n=1}^{\infty} \frac{20}{n \pi}\left(1-\cos \frac{3 n \pi}{2}\right) \cdot \sin n \omega_{0} t$
R.M.S value of $\mathrm{V}_{\mathrm{oi}}(\mathrm{t})$

$$
=\sqrt{\frac{1}{T} \int_{0}^{D T} 20^{2}} d t=\sqrt{\frac{20^{2}(D T)}{T}}=\sqrt{20^{2}\left(\frac{3}{4}\right)}=20 \sqrt{\frac{3}{4}} \text { volt }
$$

R.M.S value of harmonic content
$=\sqrt{V_{0 i m s}^{2}-V_{0}^{2}}$
$=\sqrt{400\left(\frac{3}{4}\right)-15^{2}}=\sqrt{300-225}=8.66 \mathrm{volt}$
R.M.S value of ripple voltage $=8.66$ volt

Attenuation is $\mathrm{dB}=20 \log \frac{8.66}{15}=-4.77 \mathrm{~dB}$

SECTION - B

5. a. Find the Laplace transform of the signal given below.

Sol. 5a.

$x(t)=r(t)-3 r(t-2)+2 r(t-3)$
Taking LT,
$x(s)=\frac{1}{s^{2}}-\frac{3 e^{-2 s}}{s^{2}}+\frac{2 e^{-3 s}}{s^{2}}$
$x(s)=\frac{1}{s^{2}}\left[1-3 e^{-2 s}+2 e^{-3 s}\right]$
5. b. Find the time response, initial value and final value of the given function
$F(s)=\frac{12(s+1)}{s(s+2)^{2}(s+3)}$

Sol. 5b. $F(s)=\frac{12(s+1)}{s(s+2)^{2}(s+3)}$
By partial fraction
$F(s)=\frac{A}{s}+\frac{B}{s+2}+\frac{C}{(s+2)^{2}}+\frac{D}{(s+3)}$
$F(s)=A(s+2)^{2}(s+3)+B s(s+2)(s+3)+C(s+3) s+D(s)(s+2)^{2}$ put $s=-3$,
$12(-3+1)=-3 D$
D $=8$
put s = 0,
$12=12 \mathrm{~A}$
A $=1$
puts $=-2$,
$-12=-2 C(-2+3)$
$C=6$
puts $=1$,
$24=9 A^{2} \times 4+B \times 12+4 c+9 D$
$24=36+12 B+24+72$
$B=-9$
$F(s)=\frac{1}{s}-\frac{9}{s+2}+\frac{6}{(s+2)^{2}}+\frac{8}{(s+3)}$
Taking ILT,
$f(t)=1-9 e^{-2 t}+6 t e^{-2 t}+8 e^{-3 t}$

Initial value theorem, $\left.f(t)\right|_{t=0}=\lim _{s \rightarrow \infty} s F(s)=0$
Final value theorem, $\left.f(t)\right|_{t \rightarrow \infty}=\lim _{s \rightarrow 0} s F(s)=1$
5. c. A toroidal core of mean length 15 cm and cross-sectional area $10 \mathrm{~cm}^{2}$ has a uniformly distributed winding of 300 turns.
The B-H characteristic of the core can be assumed to be of rectangular form, as shown in the figure below. The coil is connected to a $100 \mathrm{~V}, 400 \mathrm{~Hz}$ supply. Determine the hysteresis loss in the core.

[12 Marks]
Sol. 5c. Hysteresis loss = (Volume of cone) (Area of BH curve) (f)
Volume of core $=(0.15)\left(10 \times 10^{-4}\right)=1.5 \times 10^{-4} \mathrm{~m}^{3}$
Area of BH curve $=2(1.2)(20)=48 \mathrm{~m}^{2}$
Hysteresis loss $=\left(1.5 \times 10^{-4}\right)(48)(400)=2.88$ watt
5. d. The incremental fuel cost for a generating plant having two units are
$\mathrm{IC}_{1}=20+0.1 \mathrm{P}_{1} \mathrm{Rs} / \mathrm{MWhr}$
$\mathrm{IC}_{2}=15+0.12 \mathrm{P}_{2} \mathrm{Rs} / \mathrm{MWhr}$
If the total demand $P_{D}=200 \mathrm{MW}$, determine the division of load between the units for the most economical operation.
[12 Marks]
Sol. 5d. Given,
$P_{1}+P_{2}=200 \mathrm{MW}$
$\mathrm{I}_{\mathrm{C}_{1}}=\mathrm{I}_{\mathrm{C}_{2}}$
$0.1 \mathrm{P}_{1}+20+0.12 \mathrm{P}_{2}+15$
$0.1 P_{1}-0.12 P_{2}=-5$
$2 \div 0.1$
$P_{1}-1.2 P_{2}=-50$
(1) - (3)
$\Rightarrow P_{2}=113.64 \mathrm{MW}$
Given $P_{1}+P_{2}=200$
$P_{1}=200-113.64$
$\mathrm{P}_{1}=86.34 \mathrm{MW}$
5. e. For a class-D communication circuit shown below, calculate
(i) peak currents through Main and Auxiliary thyristors
(ii) turn-off time (s) for Main and Auxiliary thyristors

Where T_{M} is main thyristors and T_{A} is Auxiliary thyristors.
[12 Marks]
Sol. 5e.

(i) before $\mathrm{t}=0$ capacitor is charged at 23000 t with polarity shown above. Output current is flowing through FD and no thyristor is conducting. $\mathrm{V}_{\mathrm{TM}}=230$ volt. It is under forward blocking made. At $t=0 T_{m}$ is fired. Waveshape of i_{T} is shown below i_{T}.

because t > 0 FD gets reverse biased and LC circuit current will also How through T_{m} $\mathrm{i}_{\text {TM peak }}=140+230 \sqrt{\frac{\mathrm{C}}{\mathrm{L}}}=140+230 \sqrt{\frac{16}{4}}=140+460=600 \mathrm{Amp}$
(ii) Waveshape of $\mathrm{V}_{\text {TM }}$ and $\mathrm{V}_{T A}$ are shown below.

$A T t=0 T_{M}$ is fired. During $T_{m} O N \quad V_{T A}=-V_{C}(t)$
At $t=t_{1}$ auxilary thyristor T_{A} get fired. At the save instant T_{m} gets reversed biased by capacitor voltage and then load current will start flowing through capacitor and auxiliary thyristor. So capacitor will charge. Linearly as shown above from above waveshape we can conclude that T_{A}. will get reversed biased for minimum interval of $\frac{\pi}{2} \sqrt{\mathrm{LC}}$.

So t_{c} (circuit term-off time) for $T_{A}=\frac{\pi}{2} \sqrt{64} \mu \mathrm{sec}$.
$=\frac{\pi}{2}(8) \mu \mathrm{sec}$
$=4 \pi \mu \mathrm{sec}$
t_{L} (circuit tern-off time) for main thyristor $=t_{0}$ from capacitor
$0=-230+\frac{1}{c} \int_{0}^{t_{0}} 140 d t$
$\Rightarrow 230=\frac{140 \mathrm{t}_{0}}{\mathrm{c}}$
$\mathrm{t}_{0}=\frac{230 \mathrm{C}}{140}=26.28 \mu \mathrm{sec}$
6. a. Determine the Fourier transform of a pulse shown below.

Find the magnitude at $\omega=2 \pi$.

Sol. 6 a.

$X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$
$=\int_{0}^{2} 10 e^{-\mathrm{j} \omega t} d t=\frac{10}{-\mathrm{j} \omega}\left[\mathrm{e}^{-\mathrm{j} \omega t}\right]_{0}^{2}$
$=\frac{10}{-\mathrm{j} \omega}\left[\mathrm{e}^{-\mathrm{j} \omega(2)}-1\right]=\frac{\left(1-\mathrm{e}^{\mathrm{j} 2 \omega}\right) 10}{\mathrm{j} \omega}$
$=\frac{10\left(1-\mathrm{e}^{\mathrm{j} 2 \omega}\right)}{\mathrm{j} \omega}$
Magnitude at $\omega=2 \pi$

$$
\begin{aligned}
\mathrm{X}(\omega=2 \pi) & =\frac{10}{\mathrm{j} 2 \pi}\left(1-\mathrm{e}^{\mathrm{j} 4 \pi}\right) \\
& =0
\end{aligned}
$$

6. b. For a single machine infinite bus shown below, if δ_{c} is the critical clearing angle for a threephase short circuit ' F ', prove that the clearing time ' tc_{c} ' of the circuit breaker CB must satisfy the following:
Where P_{d} is the mechanical power input, δ_{0} is the initial power angle,
F is the frequency and
H is the machine inertia constant and is given by
$\mathrm{H}=\frac{\pi f}{\mathrm{G}} \mathrm{J}\left(\frac{2}{\mathrm{P}}\right)^{2} \omega_{\mathrm{e}} \times 10^{-6}$
J is moment of inertia of rotor $\left(\mathrm{kg}-\mathrm{m}^{2}\right)$
ω_{e} is synchronous speed in electrical rad/sec.
G is three-phase MVA rating (base) of machine.

Also express the relation of $\delta_{c r}$ with δ_{0}, where $\delta_{c r}$ is the critical clearing angle for corresponding critical clearing time.
[20 Marks]
Sol. 6b. Single machine connected to an infinite bus

$\mathrm{P}_{\mathrm{i}}=$ Mechanical input
$P_{e 1}=$ Electrical output before fault
$\mathrm{P}_{\mathrm{e} 2}=$ Electrical output during the fault

There is only one network between the generation and infinite bus.
Hence $P_{e 2}=0$ (During the fault)
Swing equation is used for the transient stability study
$M \frac{d^{2} \delta}{d t^{2}}=P_{a}=P_{i}-P_{e 2}$
$M \frac{d^{2} \delta}{\mathrm{dt}^{2}}=\mathrm{P}_{\mathrm{i}}-0=P_{\mathrm{i}}$ (constant)
$\frac{d^{2} \delta}{d t^{2}}=\frac{P_{i}}{M}$ (constant)
M is the angular momentum of synchronous machine
Integrate w.r.t. dt on both sides
$\frac{d \delta}{d t}=\frac{P_{i}}{M} t+A$
When $t=0$, before acceleration period
The synchronous machine is running $\omega=\omega_{s}$ at δ_{0}
$\frac{\mathrm{d} \delta}{\mathrm{dt}}=0$
$0=\frac{P_{i}}{M} \times 0+A$
$A=0$
$\frac{d \delta}{d t}=\frac{P_{i}}{M} t$
Integrate on both sides w.r.t. dt on both sides
$\delta=\frac{P_{i}}{M} \frac{t^{2}}{2} t$
Assume $\mathrm{t}_{\mathrm{c}} \mathrm{t}_{\mathrm{c}}$ and δ is δ_{c}
$\mathrm{t}_{\mathrm{c}}=$ critical time
$\delta_{c}=$ critical time
$\delta_{c}=\frac{P_{i}}{M} \frac{t_{c}^{2}}{2}+B$
When $\mathrm{t}_{\mathrm{c}}=0$ before acceleration period $\omega=\omega_{\mathrm{s}}$ at δ_{0}
$\delta_{c}=\delta_{0}$
$\delta_{0}=\frac{P}{M} \times 0+B$
$B=\delta_{0}$
$\delta_{c}=\frac{P_{i}}{M} \frac{t_{c}^{2}}{2}+\delta_{0}$

$$
\begin{aligned}
& \left(\delta_{c}-\delta_{0}\right)=\frac{P_{i}}{M} \frac{t_{c}^{2}}{2} \\
& t_{c}=\sqrt{\frac{2 M\left(\delta_{c}-\delta_{0}\right)}{P_{i}}} \\
& t_{c}=\sqrt{\frac{2 \frac{S H}{\pi f}\left(\delta_{c}-\delta_{0}\right)}{P_{i}}} \\
& {\left[M=\frac{S H}{\pi f}\right]} \\
& {\left[M=\frac{G H}{\pi f}\right]} \\
& S=G \\
& t_{c}=\sqrt{\frac{2 G H\left(\delta_{c}-\delta_{0}\right)}{\pi f P_{i}}}
\end{aligned}
$$

However, the time taken by CB shall be $\mathrm{t}_{\mathrm{c}} \leq \sqrt{\frac{2 G H\left(\delta_{c}-\delta_{0}\right)}{\pi f P_{i}}}$
To clear the fault
$\mathrm{P}_{\mathrm{i}}=$ Mechanical input
$P_{\text {e1 }}=$ Electrical output before fault
$P_{e 1}=P_{m 1} \sin \delta_{0}$
$\mathrm{P}_{\mathrm{e} 2}=$ Electrical output during fault
$\mathrm{P}_{\mathrm{e} 2}=0$
$\mathrm{Pe}_{\mathrm{e} 3}=$ Electrical output after fault cleared
$\mathrm{P}_{\mathrm{e} 2}=\mathrm{P}_{\mathrm{m} 3} \sin \delta$

$$
\begin{aligned}
& \int_{\delta_{0}}^{\delta_{m}} P_{a} d \delta=0 \\
& \int_{\delta_{0}}^{\delta_{c}} P_{a} d \delta+\int_{\delta_{c}}^{\delta_{m}} P_{a} d \delta=0 \\
& \int_{\delta_{0}}^{\delta_{c}}\left(P_{i}-P_{e 2}\right) d \delta+\int_{\delta_{c}}^{\delta_{m}}\left(P_{i}-P_{e 3}\right) d \delta=0 \\
& {\left[P_{i} \delta\right]_{\delta_{0}}^{\delta_{c}}+\left[P_{i} \delta+P_{m 3} \cos \delta\right]_{\delta_{c}}^{\delta_{m}}=0} \\
& P_{i} \delta_{c}-P_{i} \delta_{0}+P_{i} \delta_{m}=P_{i} \delta_{c}+P_{m 3} \cos \delta_{m}-P_{m 3} \cos \delta_{c}=0 \\
& P_{i}\left(\delta_{m}-\delta_{0}\right)+P_{m 3} \cos \delta_{m}=P_{m 3} \cos \delta_{c} \\
& \delta_{c}=\cos ^{-1}\left[\frac{\left.P_{i}\left(\delta_{m}-\delta_{0}\right)+P_{m 3} \cos \delta_{m}\right]}{P_{m 3}}\right] \\
& \delta_{c}=\sin ^{-1}\left(\frac{P_{i}}{P_{m 1}}\right) \\
& \delta_{m}=180-\sin ^{-1}\left(\frac{P_{i}}{P_{m 3}}\right) \\
& P_{m 3}=P_{m 1} \\
& \delta_{m}=180-\delta_{0} \\
& \delta_{m}=180-\sin ^{-1}\left(\frac{P_{i}}{P_{m 1}}\right) \\
& \delta_{m}=180-\delta_{0} \\
& \delta_{c}=\cos ^{-1}\left[\frac{P_{i}\left(180-\delta_{0}-\delta_{0}\right)+P_{m 3} \cos \left(180-\delta_{0}\right)}{P_{m 3}}\right]
\end{aligned}
$$

6. c. A half-wave uncontrolled rectifier circuit is fed from ac source with source inductance ' Ls^{\prime}. It is driving a dc load at a constant I_{d} as shown in figure below.

Calculate average output voltage V_{d}. average power P_{d}, communication overlap angle μ and plot the wave form of source current is, if
(i) $\mathrm{V}_{\mathrm{s}}=310 \sin (314 \mathrm{t})$ and $\mathrm{L}_{\mathrm{s}}=0$
(ii) $V_{s}=310 \sin (314 t)$ and $L_{s}=5 \mathrm{mH}$
(iii) V_{s} is a square wave of 310 V and 50 Hz a source inductance $\mathrm{L}_{\mathrm{s}}=5 \mathrm{mH}$.
[20 Marks]

Sol. 6c.

(i) $\quad \mathrm{v}_{\mathrm{s}}(\mathrm{t})=310 \sin (314 \mathrm{t}) \quad \mathrm{L}_{\mathrm{s}}=0$

D_{1} and D_{2} are in common cathode connection
At anode of D_{1} voltage is $\mathrm{V}_{\mathrm{s}}(\mathrm{t})$
At anode of D_{2} Voftye is zero.
If $V_{s}(t)>0 D_{1}$ will be ON and D_{2} will be off
If $V_{5}(t)<0 D_{1}$, will be off and D_{2} will be $O N$ ware shapes ax shown below

Average value of $\mathrm{V}_{\mathrm{d}}(\mathrm{t})=\frac{1}{2 \pi} \int_{0}^{\pi} 310 \sin \omega \mathrm{t}(\omega \mathrm{t})=\frac{310}{\pi}$ volt $=98.67$ volt.
Average power absorbed by current source $=98.67(10)=986.7$ watt.
(ii)

before $t=0 D_{2}$ is conducting so entire current (10 A) is flowing through D_{2} and current through D_{1} is zero.

After $t=0 \mathrm{~V}_{\mathrm{s}}(\mathrm{t})>0$. So now D_{1} will also start conducting. Due to inductor there will be overlapping interval. During overlapping internal (μ) both diodes will conduct. Current in D_{1} will increase and current in D2 will decrease as shown below

$$
0 \leq \omega \mathrm{t} \leq \mu
$$

i_{μ} chages fron 0 to 10 A duing aveslapph intenal μ
$\mathrm{V}_{\mathrm{s}}(\mathrm{t})-\mathrm{L}_{3} \frac{\mathrm{di}_{\mu}}{\mathrm{dt}}=0 \Rightarrow 310 \sin \omega \mathrm{t}=\mathrm{L}_{3} \frac{\mathrm{di}_{\mu}}{\mathrm{dt}}$
$\Rightarrow \quad \frac{310}{W L_{s}} \int_{0}^{\mu} \sin \omega \operatorname{td}(\omega \mathrm{t})=\int_{0}^{10} \mathrm{di}{ }_{\mu}$
$5 \times 10^{-3} \frac{310}{314}[1-\cos \mu]=10 \Rightarrow 1-\cos \mu=\frac{314 \times 5 \times 10^{-3}}{31}$
$1-\cos \mu=0.0506 \Rightarrow \cos \mu=0.9493 \Rightarrow \mu=18.31^{\circ}=0.3196 \mathrm{rad}$
Waveshape are shown below

$\mathrm{V}_{\mathrm{d}}(\mathrm{t})_{\mathrm{ay}}=\frac{1}{2 \pi} \int_{\mu}^{\pi} \mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{td}(\omega \mathrm{t})=\frac{\mathrm{V}_{\mathrm{M}}}{2 \pi}[1+\cos \mu]=\frac{310}{2 \pi}[1+0.9493]=96.175$ volt
Power absorbed by current source $=96.175$ (10)
$=961.75$ watt
(iii)

$0 \leq \omega \mathrm{t} \leq \mu$ circuit is shown below

According to K.V.L
$310-L_{s} \frac{d_{i \mu}}{d t}=0$
$\Rightarrow \quad \frac{310}{\omega L_{s}} \int_{0}^{\mu} d(\omega t)=\int_{0}^{10} \mathrm{di}_{\mu} \Rightarrow \frac{310 \mu}{100 \pi\left(5 \times 10^{-3}\right)} \Rightarrow 10$
$\mu=\frac{10(100 \pi)\left(5 \times 10^{-3}\right)}{310}=0.0506 \mathrm{rad}$
The waveshapes will look like

$\mathrm{V}_{\mathrm{d}}(\mathrm{t})_{\mathrm{ay}}=\frac{1}{2 \pi}[310(\pi-0.0506)]=152.503$ volt
Power absorbed by current source $=152.503(10)=152.503$ watt.
7. a. A certain system is described by

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
-2 & 1 \\
-2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
3
\end{array}\right] u(t)} \\
& y=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

Determine the transformation matrix $[P]$ so that if $[x]=[P][Z]$; the state matrices $[A],[B]$, $[C]$ and $[D]$ describing the dynamics of $[Z]$ are in control canonical form.
[20 Marks]
Sol. 7a. Given

$$
\begin{align*}
& \binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{ll}
-2 & 1 \\
-2 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{1}{3} 4 \\
& y=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{x_{1}}{x_{2}} \tag{1}
\end{align*}
$$

Finding the transfer function, by $\mathrm{T}(\mathrm{s})=\mathrm{CQ}(\mathrm{s}) \mathrm{B}+\mathrm{D}$
Where $Q(s)=(s l-A)^{-1}$
$(s I-A)=\left(\begin{array}{ll}s & 0 \\ 0 & s\end{array}\right)-\left(\begin{array}{cc}-2 & 1 \\ -2 & 0\end{array}\right)=\left(\begin{array}{cc}s+2 & -1 \\ 2 & s\end{array}\right)$
$(s I-A)^{-1}=\frac{\operatorname{adj}(s I-A)}{|s I-A|}=\frac{\left(\begin{array}{cc}s & 1 \\ -2 & s+2\end{array}\right)}{s(s+2)+2}$
$T(s)=C Q(s) B+D$
$=\left(\begin{array}{ll}1 & 0\end{array}\right) \frac{\left(\begin{array}{cc}s & 1 \\ -2 & s+2\end{array}\right)\binom{1}{3}+0}{s^{2}+2 s+2}$
$T(s)=\frac{\left(\begin{array}{ll}s & 1\end{array}\right)\binom{1}{3}}{s^{2}+2 s+2}=\frac{s+3}{s^{2}+2 s+2}$
or, $\mathrm{T}(\mathrm{s})=\frac{\mathrm{s}^{-1}+3 \mathrm{~s}^{-2}}{1-\left(-2 \mathrm{~s}^{-1}-2 \mathrm{~s}^{-2}\right)}=\frac{\mathrm{P}_{1} \times 1+\mathrm{P}_{2} \times 1}{1-\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)}$
Drawing signal flow graph for it, (as per controllable canonical form)

Taking output of integrators (s^{-1}) as state variables,
$\dot{z}_{1}=\mathrm{z}_{2}$
$\dot{z}_{2}=-2 z_{1}-2 z_{2}+4$
$y=3 z_{1}+z_{2}$
So, $\left.\begin{array}{rl}\binom{\dot{z}_{1}}{\dot{z}_{2}} & =\left(\begin{array}{cc}0 & 1 \\ -2 & -2\end{array}\right)\binom{z_{1}}{z_{2}}+\binom{0}{1} 4 \\ y & =\left(\begin{array}{ll}3 & 1\end{array}\right)\binom{z_{1}}{z_{2}}\end{array}\right\}$
or, $\quad \dot{z} .=\bar{A} z+\bar{B} y$

$$
\begin{equation*}
\mathrm{y}=\overline{\mathrm{c}} \mathrm{z} \tag{3}
\end{equation*}
$$

But given $\dot{x} .=A x+B y$

$$
y=C x
$$

put $\mathrm{X}+\mathrm{Pz}$
Pż. $=A P z+B 4$
$y=C P z$
$\left.\begin{array}{c}\Rightarrow \dot{z}_{\mathrm{z}}=\mathrm{P}^{-1} \mathrm{APz}+\mathrm{P}^{-1} \mathrm{~B} 4 \\ \mathrm{y}=\mathrm{CPz}\end{array}\right\}$.
Comparing (3) and (4)
$\bar{A}=P^{-1} A P$
$\overline{\mathrm{B}}=\mathrm{P}^{-1} \mathrm{~B}$
$\overline{\mathrm{C}}=\mathrm{CD}$

So, $P \bar{A}=A P$
$P \bar{B}=B$

$$
\begin{equation*}
\overline{\mathrm{C}}=\mathrm{CP} \tag{6}
\end{equation*}
$$

Let $P=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]$
Using (6), $\mathrm{P} \overline{\mathrm{B}}=\mathrm{B}$

$$
\begin{aligned}
& \left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right)\binom{0}{1}=\binom{1}{3} \\
& \Rightarrow q=1 \\
& s=3
\end{aligned}
$$

Using (5), $\mathrm{P} \overline{\mathrm{A}}=\mathrm{AD}$
$\left(\begin{array}{ll}\mathrm{p} & 1 \\ \mathrm{r} & 3\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ -2 & -2\end{array}\right)=\left(\begin{array}{ll}-2 & 1 \\ -2 & 0\end{array}\right)\left(\begin{array}{ll}\mathrm{p} & 1 \\ \mathrm{r} & 3\end{array}\right)$
$-2=-2 p+4$
$p-2=-2+3=1 \Rightarrow p=3$
So, $r=2 p-2=2(3)-2=4$
So, $P=\left(\begin{array}{ll}3 & 1 \\ 4 & 3\end{array}\right)$
7. b. A 3-phase, $440 \mathrm{~V}, 50 \mathrm{~Hz}$, four pole wound rotor induction motor develops full load torque at a slip of 0.04 (i.e. 4\%) when the slip rings are short circuited. The maximum torque it can develop is 2.5 per unit. The stator leakage impedance is negligible. The rotor resistance measured between two slip rings is 0.5Ω.
(i) Determine the speed of the motor at maximum torque. Derive the formula used.
(ii) Determine the starting torque in per unit. (Full load torque is one per unit torque)
(iii) Determine the value of resistance to be added to each phase of the rotor circuit so that maximum torque is developed at the starting condition.
(iv) Determine the speed at full-load torque with the added rotor resistance of part (iii).

Sol. 7b. $\mathrm{V}_{\mathrm{e}}=440$ volt
$f=50 \mathrm{~Hz}$
$P=4$
$S_{R}=0.04$
$\mathrm{T}_{\text {em }}=2.5 \mathrm{~T}_{\text {eff }}$
Stator impedance is neglected
Rotor resistance between two slip rings $=0.5 \mathrm{~W}$
Rotor resistance $=\frac{0.5}{2}=0.250 \Omega$
As we know
$T=\frac{m}{\omega_{s}} \frac{V_{e}^{2}}{\left(R_{e}+\frac{r_{2}}{s}\right)^{2}+\left(X_{2}+X_{e}\right)^{2}} \frac{r_{2}}{s}$
Since stator impedance is neglected
$T_{\text {eff }}=\frac{m V_{e}^{2}}{\left.\omega_{s}\left(\frac{r_{2}}{s}\right)^{2}+X_{2}^{2}\right)} \frac{r_{2}}{s}$
Tem (maximum torque) occurs at $\mathrm{S}_{\text {mt }}$
$S_{M T}=\frac{r_{2}}{\sqrt{R_{e}^{2}+\left(X_{2}+X_{e}\right)^{2}}}$
So, $\quad T_{e m}=\left.T_{e}\right|_{s=S_{M T}}=\frac{m V_{e}^{2}}{\omega_{s}\left[R_{e}+\sqrt{R_{e}^{2}+\left(X_{e}+X_{2}\right)^{2}}\right]}$
Since stator impedance is neglected
$T_{e m}=\frac{m V_{e}^{2}}{\omega_{s} X_{2}}$
And $S_{M T}=\frac{r_{2}}{X_{2}}$
.(3)
From eq. (1) and (2)

$$
\begin{array}{ll}
\frac{T_{e}}{T_{e m}}=\frac{2 X_{2}}{\left(\frac{r_{2}}{s}\right)^{2}+X_{2}^{2}} \cdot \frac{r_{2}}{s} & X_{2}=\frac{r_{2}}{s_{M T}} \\
\Rightarrow \quad \frac{T_{e}}{T_{e m}}=\frac{2}{\frac{s_{M T}}{s}+\frac{s}{S_{M T}}}=\frac{2 s s_{M T}}{s_{M T}^{2}+s^{2}}
\end{array}
$$

7. c. For the Figure shown above, the transistor ' Q ' is excited by a pulse of duration ' t_{1} ' with a periodicity of $\frac{1}{\mathrm{~T}}$.

(i) Draw the current waveform of ' i_{s} ' and ' i i '.
(ii) Expression for absorbed average power by resistor ' R ' in the circuit. Assume $\frac{L}{R}$ ratio to be too small in comparison to ' T '.
(iii) Expression for $i_{L}(t)$, the current through inductor ' L '.

Sol. 7c.

(i) During 0 to t_{1} transistor is ON and from t_{1} to T transistor is off. Waveshape of $\mathrm{V}_{\mathrm{L}}(\mathrm{t})$ will be

$0 \leq t \leq t_{1} \quad V_{L}(t)=V_{c c}$
So $\mathrm{i}_{\mathrm{L}}(\mathrm{t})=0+\frac{1}{\mathrm{~L}} \int_{0}^{\mathrm{t}} \mathrm{V}_{\mathrm{cc}} \mathrm{dt}=\frac{\mathrm{V}_{\mathrm{cc}} \mathrm{t}}{\mathrm{L}} \quad 0 \leq \mathrm{t} \leq \mathrm{t}_{1}$
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})_{\text {max }}=\frac{\mathrm{V}_{\mathrm{cc}} \mathrm{t}_{1}}{\mathrm{~L}}$
$\mathrm{t}_{1} \leq \mathrm{t} \leq \mathrm{T}$ inductor will discharge through R

$$
\begin{aligned}
& i_{L}(t)=i_{L}\left(t_{1}\right) e^{-\frac{R}{L}\left(t-t_{1}\right)} U\left(t-t_{1}\right) \\
& V_{L}(t)=-V_{R}(t) \\
& =-R_{L}\left(t_{1}\right) e^{-\frac{-R}{L}\left(t-t_{1}\right)} U\left(t-t_{1}\right)
\end{aligned}
$$

$$
\mathrm{i}_{\mathrm{L}}\left(\mathrm{t}_{1}\right)=\frac{\mathrm{V}_{\mathrm{c}_{\mathrm{t}} \mathrm{t}_{1}}}{\mathrm{~L}}
$$

(ii) Energy stored in inductor at $t=t_{1}$
$=\frac{1}{2} \mathrm{~L}\left(\frac{\mathrm{~V}_{\mathrm{cc}} \mathrm{t}_{1}}{\mathrm{~L}}\right)^{2}=\frac{\mathrm{V}_{\mathrm{cc}}^{2} \mathrm{t}_{1}^{2}}{2 \mathrm{~L}}$
This energy is dissipated in R .
average power absorbed by $R=\frac{V_{c t}^{2} t_{1}^{2}}{2 L T}$
(iii) From the above calculation
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\frac{\mathrm{V}_{\mathrm{cc}} \mathrm{t}}{\mathrm{L}}\left[\mathrm{U}(\mathrm{t})-\mathrm{U}\left(\mathrm{t}-\mathrm{t}_{1}\right)\right]+\frac{\mathrm{V}_{\mathrm{cc}} \mathrm{t}_{1}}{\mathrm{~L}} \mathrm{e}^{-\frac{\mathrm{R}}{\mathrm{L}}\left(\mathrm{t}-\mathrm{t}_{1}\right)} \mathrm{U}\left(\mathrm{t}-\mathrm{t}_{1}\right)$
(iv) With addition of rotor resistance maximum torque will not effect

$$
\begin{aligned}
& \Rightarrow \mathrm{T}_{\max }=2.5 \mathrm{~T}_{\mathrm{fl}} \\
& \frac{3}{\mathrm{~W}_{\mathrm{s}}} \frac{\mathrm{E}_{2}^{2}}{2 \mathrm{X}_{2}}=2.5 \frac{3}{\mathrm{~W}_{\mathrm{s}}} \frac{\mathrm{~S}_{\mathrm{fl}} \mathrm{E}_{2}^{2}}{\mathrm{R}_{2}^{2}+\left(\mathrm{SX}_{2}\right)^{2}} \cdot \mathrm{R}_{2} \\
& \frac{1}{2 \times 1.3089}=\frac{2.5 \times \mathrm{S}_{\mathrm{fl}}}{\mathrm{R}_{\mathrm{zeq}}^{2}+\left(\mathrm{S}_{\mathrm{fl}} \times 1.3089\right)^{2}} \mathrm{R}_{\mathrm{zeq}} \\
& \frac{1}{2 \times 1.31}=\frac{2.5 \times \mathrm{S}_{\mathrm{fl}}}{131^{2}+1.31^{2} \mathrm{~S}_{\mathrm{fl}}^{2}} \\
& \frac{1}{2}=\frac{2.5 \mathrm{~S}_{\mathrm{fl}}}{1+\mathrm{S}_{\mathrm{fl}}^{2}} \\
& \mathrm{~S}_{\mathrm{fl}}^{2}+1=5 \mathrm{~S}_{\mathrm{fl}} \Rightarrow \mathrm{~S}_{\mathrm{fl}}^{2}-5 \mathrm{~S}_{\mathrm{fl}}+1=0 \\
& \therefore \mathrm{~S}_{\mathrm{fl}}=0.2087 \\
& \therefore \mathrm{Full} \text { load speed } \mathrm{N}_{\mathrm{r}, \mathrm{fl}}=\mathrm{N}_{\mathrm{s}}\left(1-\mathrm{S}_{\mathrm{fl}}\right) \\
& =1500(1-0.2087) \\
& =1186.95 \text { rpm }
\end{aligned}
$$

8. a. For a causal system $H(z)=\frac{z}{z-0.5}$, find the zero state response to input

$$
x(n)=\left(\frac{1}{4}\right)^{n} u(n)+5(3)^{n} u[-(n+1)]
$$

Sol. 8a. Given:-
$H|z|=\frac{z}{z-0.5} ;|z|>0.5$
$x(n)=\left(\frac{1}{4}\right)^{n} u(n)+5(3)^{n} u(-n+1)$
z transform of $a^{n} u(n)$ is $\frac{1}{1-a z^{-1}} ;|z|>a$
z-transform of $-a^{n} u(-n-1)$ is $\frac{1}{1-a z^{-1}} ;|z|>a$
$x(z)-\frac{1}{1-\frac{1}{4} z^{-1}}-\frac{5}{1-3 z^{-1}} ; \frac{1}{4}<|z|<3$
For ZSR, initial conditions are zero.
$Y(z)=X(z) H(z)$

$$
\begin{aligned}
& =\frac{1}{\left(1-0.5^{-1}\right)}\left[\frac{1}{1-\frac{1}{4} z^{-1}}-\frac{5}{1-3 z^{-1}}\right] \\
& =\frac{1}{\left(1-0.52^{-1}\right)\left(1-\frac{1}{4} z^{-1}\right)}-\frac{5}{\left(1-0.5 z^{-1}\right)\left(1-3 z^{-1}\right)}
\end{aligned}
$$

After partial fraction,

$$
\begin{aligned}
& Y(z)=\frac{2}{1-0.5 z^{-1}}-\frac{1}{1-\frac{1}{4} z^{-1}}+\frac{1}{1-0.5 z^{-1}}+\frac{6}{1-3 z^{-1}} \\
& =\frac{3}{1-0.5 z^{-1}}-\frac{1}{1-\frac{1}{4} z^{-1}}-\frac{6}{1-3 z^{-1}}
\end{aligned}
$$

Taking IZT,

$$
y(n)=3(0.5)^{n} u(n)-\left(\frac{1}{4}\right)^{n} u(n)+6(3)^{n} u(-n-1)
$$

8. b. Two identical 250 KVA, $230 / 460$ volt transformers are connected in open delta to supply a balanced 3-phase star connected load at 460 volt and at answer the following:
(i) Draw the phasor diagram of the open-delta condition.
(ii) Find the maximum secondary line current without overloading the transformers.
(iii) Find the real power delivered by each transformer and the total real power delivered.
(iv) Find the primary line currents.
(iv) If a similar transformer is now added to complete the Δ, find the percentage increase in real power that can be supplied. Assume that the load voltage and power factor remain unchanged at 460 volt and 0.8 lagging, respectively.
[20 Marks]
Sol. 8b.

(i) Phasor diagram

$\phi=\omega_{\mathrm{s}}=(0.8)=36.86^{\circ}$
$\mathrm{I}_{\mathrm{a}}+\mathrm{I}_{\mathrm{b}}+\mathrm{I}_{\mathrm{c}}=0$
(ii) maximum secondary current $=$ Maximum secondary phase current of open delta
$=\frac{250 \times 10^{3}}{460}$
$=543.48 \mathrm{~A}$
(iii) Real power delivered by transformer coil a.b
$=V_{a b} \cdot I_{a} \cos [30+\phi]$
$=460(543.48) \cos \left[30+36.86^{\circ}\right]$
$=98.245 \mathrm{~kW}$
Real power delivered by transformer coil BC.
$=\mathrm{V}_{\mathrm{bc}}(-\mathrm{Ic}) \cos [\mathrm{q}]$
θ is angle between V_{bc} and I_{2} and is $\theta=30-\phi$
$=460(543.86) \cos [30-\phi]$
$=248.211 \mathrm{~kW}$
Total real power delivered $=98.245+248.211=346.456 \mathrm{~kW}$
(iv) Primary line current
$I_{A}=(543.48)\left(\frac{60}{230}\right)$
$=1086.96 \mathrm{~A} \quad \& \quad \mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{C}}$
If it is now closed delta then real power output $=(3)\left(\frac{460}{\sqrt{3}}\right)(543.48 \sqrt{3})(0.8)=600 \mathrm{~kW}$
(v) Increase is real power $=(600-246.456) \mathrm{kW}=253.54 \mathrm{~kW}$
$\%$ increase in real power $=\frac{253.544}{346.456} \times 100=73.18 \%$
9. c. The positive, negative and zero sequence reactances of a $25 \mathrm{MVA}, 13.2 \mathrm{kV}$ synchronous generator are $0.3 \mathrm{pu}, 0.2 \mathrm{pu}$ and 0.1 pu respectively. The generator is star connected and neutral is solidly grounded. When it is unloaded, find the fault current and line-line voltages when a fault of
(i) Line-line occurs,
(ii) Double line to ground occurs.
[20 Marks]
Sol. 8c. (i) For line to line fault

$$
\begin{aligned}
& \left|I_{f(P \mathrm{Pu})}\right|=\left|\frac{j V_{3} \mathrm{E}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}}\right| \\
& =\frac{\mathrm{jV}(1)}{\mathrm{jO.3}+\mathrm{jO.2}} \\
& \mathrm{If}_{\mathrm{pu}}=2 \mathrm{~V}_{3} \mathrm{Pu} \\
& \mathrm{I}_{\text {base }}=\frac{(\mathrm{MVA})_{\text {base }}}{\mathrm{V}_{3}(\mathrm{KV})_{\text {base }}} \\
& =\frac{25 \times 10^{6}}{\mathrm{~V}_{3} \times 13.2 \times 10^{3}} \\
& \mathrm{I}_{\text {base }}=1093.5 \mathrm{Amp} \\
& \mathrm{I}_{\text {act }}=\mathrm{I}_{\mathrm{b}} \times \mathrm{I}_{\mathrm{pu}} \\
& =1093.5 \times 2 \mathrm{~V}_{3} \\
& \mathrm{I}_{\text {act }} \cong 3788 \mathrm{Amp}
\end{aligned}
$$

(ii) Double line to ground fault

$$
\begin{aligned}
& I_{f}=3 I_{0}=3\left(I_{1} \frac{Z_{2}}{Z_{2}+Z_{0}}\right) \\
& =+3\left(\frac{1}{0.3+\frac{0.1 \times 0.2}{0.3}}\right)\left(\frac{0.2}{0.3}\right)
\end{aligned}
$$

$\mathrm{If}_{\mathrm{f}}=5.454 \mathrm{Pu}$
$\mathrm{I}_{\mathrm{f} \text { (actual) }}=5.454 \times \mathrm{I}_{\text {base }}$
$=5.545 \times 1039.5$
$=5964.54$ Amp

Outstanding performance by our students in GATE 2023

Congratulations to our toppers

13
Under AIR 10

1 52
 Under AIR 50

RANK 01
SH GOWTHAM GUDIMELLA
Production \&
Industrial Engineering

RANK 03
KUSHAGRA
Mechanical Engineering

RANK 05
DHRUV KATHROTIYA
Computer Science Engineering

RANK 03
SARANSH GUPTA
Civil Engineering

RANK 05 HARSHIT
Production \& Industrial Engineering

RANK 06
BHARAT RAHEJA*
Electronics and Communication Engineering

RANK 08
PRASHANT LAVANIA
Electronics and
Communication Engineering

RANK 09
ADITYA KALSHA
Electrical Engineering

Download The App Today!

