
Steady State Response 

Steady state response is the behavior of a system after it has reached a stable 
condition in response to a constant input or disturbance. It is the response of a system 
when all the transient effects have died out, and the system has settled into a steady 
state. In other words, it is the behavior of the system over the long term, when the input 
or disturbance is constant or periodic. 

The steady-state response of a system is characterized by the system's output 
remaining constant or oscillating at a constant amplitude and frequency. The behavior 
of a system in a steady state is often easier to analyze and predict than its behavior 
during transient periods, making steady-state analysis an important tool in engineering 
and science. 

Steady State Response is Denoted by 

Many applications of control theory are to servomechanisms which are systems using 
the feedback principle designed so that the output will follow the input. Hence there is a 
need for studying the time response of the system. The time response of a system may 
be considered in two parts: 

• Transient response: this part reduces to zero as t → ∞
• Steady-state response: response of the system as t → ∞

Response of First Order Systems 

In closed-loop or open-loop control systems engineering, a first-order system is a 
system whose behavior can be described by a first-order differential equation. The 
steady-state response of a first-order system is the response that the system 
approaches as time goes to infinity after any transient effects have died away. 

• Consider the output of a linear system in the form Y(s) = G(s)U(s) where Y(s): Laplace
transform of the output, G(s): transfer function of the system, and U(s): Laplace
transform of the input.

• Consider the first-order system of the form ay + y = u, its transfer function is Y(s) =
U(s)/(as+1).

• For a transient response analysis, it is customary to use a reference unit step function
u(t) for which U(s) = 1/s

• It then follows that Y(s) = 1/{s(as+1)} = (1/s) - (1/(s+(1/a))).
• On taking the inverse Laplace of the equation, we obtain y(t) = 1 - e-t/a

• The response has an exponential form. The constant 'a' is called the time constant of the
system.



 

• Notice that when t = a, then y(t)= y(a)= 1- e-1=0.63. The response is in two parts, the 
transient response part e-t/a, which approaches zero as t →∞ and the steady-state part 1, 
which is the output when t → ∞. 

• If the derivative of the input is involved in the differential equation of the system, that is if 
ay + y = bu + u then its transfer function is Y(s) = (bs+1)U(s)/(as+1) = K(s+z) U(s)/(s+p) 

where, 

o K = b/a 
o z =1/b: the zero of the system 
o p =1/a: the pole of the system 

• When U(s) =1/s, Equation can be written as 

 

• Hence, y(t) = K1 - K2e-pt 
• With the assumption that z>p>0, this response is shown in 



 

• We note that the responses to the systems have the same form, except for the constant 
terms K1 and K2 . It appears that the role of the numerator of the transfer function is to 
determine these constants, that is, the size of y(t), but its form is determined by the 
denominator. 

Response of Second Order Systems 

In control systems engineering, a second-order system is a system whose behavior can 
be described by a second-order differential equation. The steady-state response of a 
second-order system is the response that the system approaches as time goes to 
infinity after any transient effects have died away. 

• An example of a second-order system is a spring-dash pot arrangement, Applying 
Newton’s law, we find M d2y/dt2 = -μ dy/dt + u(t) 

• where k is the spring constant, µ is the damping coefficient, y is the distance of the 
system from its position of the equilibrium point, and it is assumed that y(0) = y(0)' = 0. 



 

• Hence, u(t) = M d2y/dt2 + μ dy/dt + ky 
• On taking Laplace transforms, we obtain, 

 

• where K =1/ M, a1 = µ / M, a2 = k / M. Applying a unit step input, we obtain Y(s) = 
K/s(s+p1)(s+p2) 

• where p1,2 = [a1 ± √(a1
2 - 4a2)]/2, p1 and p2 are the poles of the transfer function G(s) = 

K/(s2 + a1s + a2) that is, the zeros of the denominator of G(s). 
• There are there cases to be considered: 

Over Damped System 

• In this case, p1 and p2 are both real and unequal. The equation can be written as 

 

Critically Damped System 

• In this case, the poles are equal: p1 = p2 = a1 / 2 = p , and 



 

Under Damped System 

• In this case, the poles p1 and p2 are complex conjugate having the form p1,2 = α±iβ 
where, α=a1/2 and β= 0.5 √(4a2-a1

2) 

 

The three cases discussed above are plotted as: 

 

There are two important constants associated with each second-order system 

• The undamped natural frequency ωn of the system is the frequency of the response 
shown in Fig. ωn = √a2 



• The damping ratio ξ of the system is the ratio of the actual damping µ(= a1M) to the 
value of the damping µc, which results in the system being critically damped. Hence, ξ = 
μ/μc = a1/2√a2 

• also, 

 

Terminologies About Steady State Response 

Here, a few terms have been explained that help to understand the concept of steady-
state response in detail. 

 

• Overshoot: It is defined as the ratio of maximum overshoot to the final desired value. 
• Time delay τd: the time required for a system response to reach 50% of its final value 
• Rise time: the time required for the system response to rise from 10% to 90% of its final 

value 
• Settling time: the time required for the eventual settling down of the system response to 

be within (normally) 5% of its final value 
• Steady-state error ess: the difference between the steady-state response and the input. 

Steady State Error 

Steady-state error is a term used in control theory to describe the difference between 
the desired output of a system and the actual output of the system once it has reached 
a steady-state condition. In other words, it's the difference between the desired and 
actual output of a system when the input is a constant value over time. 



In closed-loop control systems, the goal is to design a controller that minimizes steady-
state error. A system with zero steady-state error is called a "zero-error" system, which 
means that the actual output is exactly equal to the desired output when the input is a 
constant value. However, in practice, it is often difficult to achieve zero steady-state 
error, and the goal is to minimize the error as much as possible. 

Steady-state error is typically expressed as a percentage or a decimal value, and it can 
be calculated using mathematical formulas that depend on the specific characteristics of 
the system being analyzed. The steady-state error can be affected by various factors, 
such as the system's gain, its time constant, and the type of input signal applied to the 
system. 

Steady-state error ess can be summarized in the below table: 

 


