
Linear Time Invariant System 
(LTI System) 

The LTI system is one of the important topics of the GATE Exam. Linear time-invariant 
systems are a class of systems used in signals and systems that are both linear and 
time-invariant. Linear systems are systems whose outputs for a linear combination of 
inputs are the same as a linear combination of individual responses to those inputs. 
Time-invariant systems are systems where the output does not depend on when input 
was applied. 

LTI systems have the property that the output is linearly related to the input. Changing 
the input in a linear way will change the output in the same linear way. So if the input 
x1(t) produces the output y1(t) and the input x2(t) produces the output y2(t), then linear 
combinations of those inputs will produce linear combinations of those outputs. The 
input {x1(t)+x2(t)} will produce the output {y1(t)+y2(t)}. Further, the input {a1x1(t)+a2x2(t)} 
will produce the output {a1y1(t)+a2y2(t)} for some constants a1 and a2. 

In other words, for a system T over time t, composed of signals x1(t) and x2(t) with 
outputs y1(t) and y2(t) 

T[a1x1(t) + a2x2(t)] = a1T[x1(t)] + a2T[x2(t)] = a1y1(t) + a2y2(t) 

Homogeneity Principle 

Position Principle 

Thus, an LTI system can be described by a single function called its impulse response. 
This function exists in the time domain of the system. For an arbitrary input, the output 
of an LTI system is the convolution of the input signal with the system's impulse 
response. 

Conversely, the LTI system can also be described by its transfer function. The transfer 
function is the Laplace transform of the impulse response. This transformation changes 
the function from the time domain to the frequency domain. This transformation is 
important because it turns differential equations into algebraic equations, and turns 
convolution into multiplication. 



In the frequency domain, the output is the product of the transfer function with the 
transformed input. The shift from time to frequency is illustrated in the following image: 

 

Homogeneity and shift invariance may, at first, sound a bit abstract but they are very 
useful. To characterize a shift-invariant linear system, we need to measure only one 
thing: the way 
the system responds to a unit impulse. This response is called the impulse response 
function of the system. Once we’ve measured this function, we can (in principle) predict 
how the system will respond to any other possible stimulus. 

Introduction to Convolution 

In “Signals and Systems” probably we saw convolution in connection with Linear Time 
Invariant Systems and the impulse response for such a system. This multitude of 
interpretations and applications is somewhat like the situation with the definite integral. 
To pursue the analogy with the integral, in pretty much all applications of the integral 
there is a general method at work, which is explained below. 

• Cut the problem into small pieces where it can be solved approximately. 
• Sum up the solution for the pieces, and pass to a limit. 

Convolution Theorem 

The convolution theorem can be expressed as below. 

F(g∗f)(s)=Fg(s)Ff(s) 

• In other notation: If f(t)⇔ F(s) and g(t) ⇔ G(s) then (g∗f)(t)⇔ G(s)F(s) 



• In words: Convolution in the time domain corresponds to multiplication in the frequency 
domain. 

(g ∗ f)(t) = 0∫1 g(t-x) f(x) dx 

• For the Integral to make sense i.e., to be able to evaluate g(t−x) at points outside the 
interval from 0 to 1, we need to assume that g is periodic. it is not the issue in the 
present case, where we assume that f(t) and g(t) are defined for all t, so the factors in 
the integral 

-∞∫∞ g(t-x) f(x) dx 

Convolution in the Frequency Domain 

• In Frequency Domain convolution theorem states that 

F(g ∗ f)=Fg × Ff 

• here we have seen that the whole thing is carried out for inverse Fourier transform, as 
follows: 

F−1(g∗f)=F−1g·F−1f 

F(gf)(s)=(Fg∗Ff)(s) 

General Method of Convolutions 

• Usually, there’s something that has to do with smoothing and averaging, understood 
broadly. 

• You see this in both the continuous case and the discrete case. 

Some of you who have seen convolution in earlier courses, you’ve probably heard the 
expression “flip and drag” 

Meaning of Flip and Drag 

Here’s the meaning of Flip and Drag is as follows 

• Fix a value t. The graph of the function g(x−t) has the same shape as g(x) but shifted to 
the right by t. Then forming g(t − x) flips the graph (left-right) about the line x = t. 

• If the most interesting or important features of g(x) are near x = 0, e.g., if it’s sharply 
peaked there, then those features are shifted to x = t for the function g(t − x) (but there’s 
the extra “flip” to keep in mind). Multiply f(x) and g(t − x) and integrate with respect to x. 

Averaging 



• I prefer to think of the convolution operation as using one function to smooth and 
average the other. Say g is used to smooth f in g∗f. In many common applications, g(x) 
is a positive function, concentrated near 0, with a total area of 1. 

-∞∫∞ g(x) dx = 1 

• Then g(t−x) is concentrated near t and still has area 1. For a fixed t, forming the integral 

-∞∫∞ g(t-x) f(x) dx 

• The last expression is like a weighted average of the values of f(x) near x = t, weighted 
by the values of (the flipped and shifted) g. That’s the averaging part of the convolution, 
computing the convolution g∗f at t replaces the value f(t) by a weighted average of the 
values of f near t. 

Smoothing 

• Again take the case of an averaging-type function g(t), as above. At a given value of t, ( 
g ∗ f)(t) is a weighted average of values of f near t. 

• Then Move t a little to a point t0. Then (g∗f)(t0) is a weighted average of values of f near 
t0, which will include values of f that entered into the average near t. 

• Thus the values of the convolutions (g∗f)(t) and (g∗f)(t0) will likely be closer to each other 

than are the values f(t) and f(t0). That is, (g ∗f)(t) is “smoothing” f as t varies — there’s 
less of a change between values of the convolution than between values of f. 

Other Identities of Convolution 

It’s not hard to combine the various rules we have and develop an algebra of 
convolutions. Such identities can be of great use — it beats calculating integrals. Here’s 
an assortment. (Lower and uppercase letters are Fourier pairs.) 

• (f ·g)∗(h·k)(t) ⇔ (F ∗G)·(H ∗K)(s) 

• {(f(t)+g(t))·(h(t)+k(t)} ⇔ {[(F + G)∗(H + K)]}(s) 
• f(t)·(g∗h)(t) ⇔ F ∗(G·H)(s) 

Properties of Convolution 

Here we are explaining the properties of convolution in both continuous and discrete 
domains. The properties of convolution can be explained below. 

• Associative 
• Commutative 
• Distributive properties 
• As an LTI system is completely specified by its impulse response, we look into the 

conditions on the impulse response for the LTI system to obey properties like memory, 
stability, invertibility, and causality. 

• According to the Convolution theorem in Continuous & Discrete time as follow: 



For Discrete system 

 

For Continuous System 

 
We shall now discuss the important properties of convolution for LTI systems. 

Commutative Property 

The cumulative property of convolution can be explained as follows: 

• In Discrete-time 

x[n]*h[n] ⇔ h[n]*x[n] 

• In Continuous time 

x[t]*h[t] ⇔ h[t]*x[t] 

Proof 



 

So x[t]*h[t] ⇔ h[t]*x[t] 

Distributive Property 

By this Property, we will conclude that convolution is distributive over addition. 

• Discrete-time 

x[n]{αh1[n] + βh2[n]} = α{x[n] h1[n]}+ β{x[n] h2[n]} Where, α & β are constant. 

• Continuous Time 

x(t){αh1(t) + βh2(t)} = α{x(t)h1(t)} + β{x(t)h2(t)} Where, α & β are constant. 

Associative Property 

• Discrete-Time 

y[n] = x[n]*h[n]*g[n] 

x[n] * h1[n] * h2[n] = x[n] * (h1[n] * h2[n]) 

• In Continuous Time 

[x(t) * h1(t)] * h2(t) = x(t) * [h1(t) * h2(t)] 

Invertibility 

A system is said to be invertible if there exists an inverse system that when connected 
in series with the original system produces output identical to the input. 

(x*δ)[n]= x[n] 

(x*h*h-1)[n]= x[n] 

(h*h-1)[n]= (δ)[n] 

What is Sampling Theorem? 



The sampling process is usually described in the time domain. In this process, an 
analog signal is converted into a corresponding sequence of samples that are usually 
spaced uniformly in time. Consider an arbitrary signal x(t) of finite energy, which is 
specified for all time as shown in figure 1(a). 

Suppose that we sample the signal x(t) instantaneously and at a uniform rate, once 
every TS second. Consequently, we obtain an infinite sequence of samples spaced TS 
seconds apart and denoted by {x(nTS)}, where n takes on all possible integer values. 
Thus, we can define the following terms 

1. Sampling Period: The time interval between two consecutive samples is referred to as 
the sampling period. In the figure, TS is the sampling period. 

2. Sampling Rate: The reciprocal of the sampling period is referred to as the sampling 
rate, i.e. fS = 1/TS 

 

The sampling theorem provides both a method of reconstruction of the original signal 
from the sampled values and also gives a precise upper bound on the sampling interval 
required for distortionless reconstruction. It states that 



• A band-limited signal of finite energy, which has no frequency components higher than f 
Hertz, is completely described by specifying the values of the signal at instants of time 
separated by 1/2f seconds. 

• A band-limited signal of the finite energy, which has no frequency components higher 
than f Hertz, may be completely recovered from a knowledge of its samples taken at the 
rate of 2f samples per second. 

Explanation of Sampling Theorem 

Consider a message signal m(t) band limited to ω, i.e. 

M(f) = 0; For |f| ≥ ω 

Then, the sampling frequency fS, required to reconstruct the band-limited waveform 
without any error, is given by 

Fs ≥ 2 ω 

Aliasing and Anti-Aliasing 

Aliasingsuch an effect of violating the Nyquist-Shannon sampling theory. During 
sampling, the baseband spectrum of the sampled signal is mirrored to every multifold 
sampling frequency. These mirrored spectra are called alias. 

• The easiest way to prevent aliasing is the application of a steeply sloped low-pass filter 
with half the sampling frequency before the conversion. Aliasing can be avoided by 
keeping Fs > 2Fmax. 

• The sampling rate for an analog signal must be at least two times as high as the highest 
frequency in the analog signal in order to avoid aliasing. So in order to avoid this, the 
analog signal is then filtered by a low pass filter prior to being sampled, and this filter is 
called an anti-aliasing filter. Sometimes the reconstruction filter after a digital-to-analog 
converter is also called an anti-aliasing filter. 

Nyquist Rate 

Nyquist rate is defined as the minimum sampling frequency allowed to reconstruct a 
band-limited waveform without error, i.e. 

fN = min {fS} = 2ω 

Where, 

• ω is the message signal bandwidth 
• fS is the sampling frequency. 

Nyquist Interval 



The reciprocal of the Nyquist rate is called the Nyquist interval (measured in seconds), 
i.e. 

TN = 1/fN = 1/2W 


