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IMPORTANT FORMULAS TO REMEMBER

CHAPTER 1: BASICS OF SIGNALS

1. Continuous-time signal
A signal x(t) is continuous-time (CT) signal, if t is a continuous variable. A continuous time signal

is defined continuously with respect to time.

x(t)

:xk:t
0

If t is a discrete variable, then it is a discrete-time (DT) signal. A discrete time signal is often

2. Discrete-time signal

identified as a sequence of humbers, denoted by x[n], where n is an integer.

x[n]

1

» N

-2 -1 0 1 2
3. BASIC OPERATIONS ON CONTINUOUS TIME SIGNAL
3.1. Addition/Subtraction of signals
The sum of two continuous-time signals can be obtained by adding their values at every
instant of time. Similarly, the subtraction of two continuous-time signals can be obtained
by subtracting their values at every instant of time.

Example:
x,(t)
A
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x,(t)
r 3
2
-10 10 >t
(i) Addition
B+ (1) =y(t)
3
] _—2 [ ]
~10 3 3 10 "
From -10 < t < =3, amplitude of y(t) = x1(t) + x2(t) =0+ 2 =2
From -3 <t < -3, amplitude of y(t) = xa(t) + x2(t) =1+ 2 =3
From 3 < t < 10 amplitude of y(t) = xa(t) + x2(t) =0+ 2 =2
(ii) Subtraction
y(t) = x,(t) - x,(t)
F'y
-10 -3 3 10
>t
-1
T-2

From -10 < t < -3, amplitude of y(t) = xa(t) = x2(t) =0-2=-2
From -3 < t < -3, amplitude of y(t) = x1(t) - x2(t) =1 -2=-1
From 3 < t < 10, amplitude of y(t) = xa(t) = x2(t) =0-2=-2

3.2. Multiplication of signals
The multiplication of two continuous signals can be obtained by multiplying their values

at every instant.
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Example:
x,(t)
A
1
>t
-3 3

x,(t)

ry
2

-10 10 >t

4 y(t) = x,(t) x x,(t)

2

>t
-3 3

From -10 < t < -3, amplitude of y(t) = x1(t) x x2(t) =0 x 2 =0
From -3 < t < 3, amplitude of y(t) = x1(t) X x2(t) =1 x 2 =2
From 3 < t < 10, amplitude of y(t) = x1(t) X x2(t) =0 x 2 =0

3.3. Amplitude scaling of signals
The amplitude of a signal can be changed by amplitude scaling. If a signal x(t) is
multiplied by a factor A, it is expressed as A x(t) which means that, at every instant t,
the amplitude of x(t) is multiplied by A.

Example:
4 2x(t)

4 x(t) 4 0.5x(t)

Note:
Amplitude scaling signal A x(t) is identical in shape to the original signal x(t) but its

amplitude is multiplied by A everywhere.
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3.4. Transformation of signal
i. Time-Shifting
Signal x(t - to) represents a time shifted version of x(t) by to seconds. If to > 0, then the signal
is delayed by to seconds. If to < 0, then x(t + to) represents an advanced version of x(t). The
time shifting operation is shown in figure.
The waveform of x(t - to) is identical to that of x(t), except for a shift of to time units towards
the right-hand side.

x(t) x(t-t,) x(t+t,)
A
1 1 1
< >t + » t <+ + >
-1 0 1 0 t-1 t, t,+1 —-t,~1 -t, -t,+1 0
(a) (b) (c)

Figure: Time shifting operation (a) Original signal x(t) (b) Time delayed version of x(t)

(c) Time advanced version of x(t)

ii. Time scaling
If the independent variable t is scaled by a parameter a, then x(at) is time scaled version of x(t).
It is important to note that time scaling is performed on t-axis such that the values x(t) and

x(at) at t = 0 are the name for both waveforms.

x(t) x(t/2) x(2t)
2 2 2
1 1 1
-1 0 1 "t -2 o 2 ¢ -1/2 0 1/2 "t
(a) (b) (c)

Figure: Time scaling operations, (a) Original signal x(t), (b) Time expanded version,

(c) Time compressed version of x(t)

iii. Time-Reversal/Folding
The signal x(-t) is called folded version of signal x(t) and is obtained by taking reflection of x(t)

about vertical axis t = 0 as shown in figure.
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x(t) Xﬁ-t)

31 13

/ . : \ .

-1 0 2 -2 0 1

F 3

(a) Signal x(t) (b) Reflection of x(t)

4. MULTIPLE OPERATIONS ON CONTINEOUS-TIME SIGNALS
Consider a signal x(t) with multiple transformation given as
x(t) — A x(bt £ to)
where, a and b are assumed to be real numbers. The operations should be performed in the
following order
METHODOLOGY 1
Step 1: First multiply signal by a constant A to obtained amplitude scaled version of x(t) that
is A x(t).
Step 2: Shift the signal A x(t) to the left or to right by to time units. This will produced shifted
signal A x(t £ to).
Step 3: Scale the signal A x(t + to) by b, the resulting signal represents Ax(bt % to).
Step 4: If b is negative, reflect the scaled signal Ax(bt £ to) about the vertical axis.

The correct sequence for the above transformation is

amplitude time time
scaling 1:_>t_toshifting t_'btscaling
x(t) Ax(t) X(t—ty) — Ax(bt — t)

If time scaling is done before time shifting it will produce incorrect results.
amplitude time time
scaling tobtgcaling ©t=toghifting

x(t) Ax(t) Ax(bt) ———"8 5 Ax[b(t — t,)] # Ax(bt — to)

For a different multiple transformation, different order of sequence is performed. Consider a

signal x(t) with multiple transformation given as

x(t) = Ax (?)

For this sequence the simplest sequence of operation is given as follows.

METHODOLOGY 2

Step 1: First multiply signal by a constant A to obtained amplitude scaled version of x(t) that
is Ax(t).

Step 2: Scale the signal Ax(t) by 1/a, the resulting signal represents x(t/a).

Step 3: If a is negative, reflect the scaled signal x(t/a) about the vertical axis.

Step 4: Shift the scaled signal Ax(t/a) by to units to the left or to right by to time units. This
will produced signal Ax[(t - to) /a].

The correct sequence for the above transformation is
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amplitude

. (t) scaling Ax (t)

If we change the order of sequence (time scaling is done after time shifting), then we would

not get correct results.

amplitude
scaling

t—»t/atl

E BYJU'S

a

time
t_)t_t(’shifting

x(t)

Ax(t)

Ax(t—tg)

me ot time
scaling t ~tLoshifting t—t,
Ax Ax

t—»t/at

me
scaling t t—tg
— S Ax(——t, ) = Ax
a a

It must be noted that the operation of reflecting and time scaling is commutative, whereas the

a

i

operation of shifting and reflecting or shifting and time scaling is not.

5. Some Important Signals

Name Continuous Discrete
> >
Unit Step function u(t) = {(1) i < 8 uln] = {(1) ?28
> >
Ramp signal rlt] = {(t) i < 8 rln] = nu(@) = {3 Z < g
Impulse function o(t)=0,t+0 S[n] = {1’ -
! 0, otherwise
) t (1, [t <7/2 n1 (1, |n|<N
Rectangular pulse function rect (T> = {0’ It] > /2 rect [ZN] = {0' inl > N
t In|
. t — |- < n _
Triangular pulse tri (—) = {1 |‘r| el tri [ﬁ] = {1 N’ In| <N
A 0, t>|7| 0, elsewhere
. . 1, t>0 1, n>0
Signum signal sgn(t) = {_1 t<0 sgn[n] = {—1 n<0

Sinusoidal signal

x(t) = sin(2n fot + 6)

X[n] = sin(2n fon +06)

Sinc function

) sin(mwgyt)
sin{wot) =—
0

) sin(mwgn)
sin(wgn) = R
0
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Signals in term of

r(t) = tu(t)
d
u(t) = ar(t)

d
5(t) = —u(®)

f:a(t)dt =1

1
8(at) =1 :8(0)

(t - B) = x(at - B)]

Or, compress by a:
[x(t)=x(at)] then shift
by g:x {a (t - S)}= x (at -
B)}]

t
4 . _ Impulse
t) = 6(t)d 1 b
unit step and vice u® f_m (Ddr properties 6(at +b) =—6<t+—>
versa |ex| a
sgh = u(t) - u(-t) o
sgn = 2u(t) - 1 f f (8 —Ndt = f()
t t -
11(;) = w(e+;) f®S(E =2 = FAS(t— 1)
(-
T
Sum of signals is
periodic  if D="= Xe(t) = xe(=t)
rational number Xo(t) = —xo(-t)
i t) = xe(t) +xo(t
Time period of linear ZPZ(E;IangRZr;\t?ypr?Tr;of odd and XE) = xe(t) +xo(t)
. . = 1
cS:ion;:Ilsnatlon of two mT. provided that the :Vrennmetr & X () = 5 [x() + x(-1)]
9 values of m and n are | °Y Y X
chosen such that the Xy (£) = = [x(t) — x(=)]
greastest common 2
divisor (gcd) between m
and nis 1
x(t) = Kx(t) + C d
Scale by K then shift by wd®=5
C... _ {undefined, t=0
- 0, otherwise
x(t) = x(at - B) 1
Shift by B : [x(t - B)] | Derivative ot = a1 ©
Combined operation | then compress by a:[x of impulse
(doublet)

wa(t)s’(t — A)dt
- S

x(£)3'(t) = x(0)3'(t) -

x'(0)d(t)

Energy and power

Periodic signals have
infinite energy hence
power type signals.
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Properties
1. x(t) x 8(t) =x(t) 2. X(t-a)x8(t-B)=x(t-a-P)
3. O6(t) x8(t)=6(1) 4. [6(t) x 8(t) x 8(t) x ------- 1=98(t)

5. 8(t-o) x 8(t-PB)=8(t-a-p)

A. u(t) x u(t) = r(t) B.u(t-a) xu(t-B)=r(t-oa-p)
C. u(t) xu(t)=p(t)=§ u(t) D.r(t-a) xu(t-p) =p(t-a—B)=w ult - a-p)

7. Gaussian function
The Gaussian function is defined by the expression
ga(t) =e " —o0 <t < oo

The function is extremely useful in probability theory.

1 T T T T T T
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

0 1 1 1 Il
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure: Gaussian function
8. Sinusoidal signal
A continuous-time sinusoidal signal is given by
x(t) = Asin (Qt + o)
where A is the amplitude, Q is the frequency in radians per second and ¢ is the phase angle in

radians.
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9. Real exponential signal

A real exponential signal is defined as

-10

x(t) = Aedt

Figure: Sinusoidal signal

10

20

where both A and a are real. Depending on the value of ‘a’ we get different signals.

4x(t) =e"fora=0

(a)

.

x(t) = e"

a>0

(b)

.

x(t) = e

a<o0

A

P

(c)

Figure: (a) A dc signal (b) exponentially growing signal (c) exponentially

10. Complex exponential signal

The most general form of complex exponential is given by

x(t) = et

Where, s is a complex variable defined as

s=0+jQ

Depending on the values of o and Q, we get different signals.

decaying signal.

A.If o = 0 and Q = 0 then x(t) = 1; that is the signal x(t) is a pure DC signal.

B. If Q = 0, then s = 0 and x(t) = e, which decays exponentially for ¢ < 0 and grows

exponentially for o > 0.

C. If 0 = 0 then s = £jQ gives x(t) = et a sinusoidal signal with ¢ = 0.
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D. If 0 < 0 with finite Q, then x(t) is a exponentially decaying sinusoidal signal.
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E. If 0 > 0 with finite Q, then x(t) is a exponentially growing sinusoidal signal.
11. BASIC OPERATION ON DISCRETE TIME SIGNAL:

11.1. Addition of discrete-time signals
Addition of discrete time sequence is done by adding the signals at every instant of time
[n].

11.2. Multiplication of discrete time signal
The multiplication of two discrete time signals xi1[n] and xz2[n] is obtained by multiplying
the signal values at each instant of time n.

11.3. Amplitude scaling of discrete time Signals
Amplitude scaling is obtained by multiplying the signal x[n] with a constant A at each
instant of time n. The amplitude-scaled is represented as A x[n].

11.4. Time-Scaling of discrete time Signals
Consider a discrete-time signal x[n], if the independent variable n is scaled by a factor
of n then x[an] is the time-scaled version of x[n]. There are two types of time scaling
Note: Time-scaling of discrete time signals is different from continuous time signals, since
discrete time signals are defined only for integer values of time variable n.
Time Compression: Decimation or Down-sampling
Compression of discrete time signals is also referred to as decimation. If a sequence x[n]
is compressed by a factor a, some data samples of x[n] are lost. For example, if we
compress X[n] by a factor of 2, the compressed signal y[n] = x[2n] contains only the
alternate samples x[0], x[2], x[4] and so on. This operation losses data, and that is why
time compression is called decimation or down-sampling.
Time Expansion: Interpolation or Up-sampling
In the discrete time domain, expansion is also referred to as interpolation. Let x[n] is
expanded by a factor of 2 and the expanded signal is given as y[n] = x[n/2]. It is known
that x[n] is defined only for integer value of n and zero for all non-integer values of n.
Therefore, y[n] contains samples y[0] = x[0], y[2] = x[1], y[4] = x[2] and so on. The
odd numbered samples y[1], y[3], y[5] all are zero.

x[n]

x[2n]
3
2
2
‘ T 1 T {
. n + 4 4 4 4 >N
-3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3 4

11
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Figure: Time scaling of DT signal, (a) Original DT sequence x[n], (b)
Compressed (decimated) version of x[n], (c) Expanded (interpolated)

version of x[n]

11.5. Time-Shifting of discrete time Signals

The steps to obtain a time shifted signal from the original signal is given below.

(i) If x[n] is given, then x[n + no] is plotted by shifting x[n] to the left by no.

(ii) If x[n] is given, then x[n - no] is plotted by shifting x[n] to the right by no.

(iii) If x[-n] is given, then x[- n —no] is plotted by shifting x[- n] to the left by no.

(iv) If x[- n] is given, then x[= n + no] is plotted by shifting x[- n] to the right by no.
Note: The waveform of x[n + no] is identical to that of x[n] except for a shift of no time
units towards the left-hand side.

11.6. Time-Reversal (folding) of discrete time signals

The folding operation produces a signal x[-n] which is the mirror image of x[n] about the

vertical axis.

o

12
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A

Figure: Time folding of DT Signal, (a) Original DT Sequence x[n],
(b) Folded Version of x[n].

12. MULTIPLE OPERATIONS ON DISCRETE TIME SIGNALS

Consider a discrete time signal x[n] with multiple transformation given as

x[n] — A x[bn £ no]

Where a and b are assumed to be real numbers. The operations should be performed in the
following order.

Methodology

Step 1: First multiply signal by a constant A to obtained amplitude scaled version of x[n] that
is A x[n].

Step 2: Shift the signal A x[x] to the left or to right by no time units. This will be produced
shifted signal A x[n £ no].

Step 3: Scale the signal A x[n £ no] by b, the resulting signal represents A x[bn £ no].

Step 4: If b is negative, reflect the scaled signal A x[bn £ no] about the vertical axis.

The correct sequence for the above transformation is

amplitude non nOtime n_)btime
li “Noghifti li
x[n] Sene Ax[n] e Ax[n-n,] ﬂ>Ax[bn— ng|

If time scaling is done before time shifting it will produce incorrect results.

amplitude Lpptime R time
scaling N=bNghifting N=N-Nogeq)ing

X[n] ———— Ax[n] ———— Ax[bn] ———— > Ax[b(n-ny)] # Ax[bn-n,]

13
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13. BASIC DISCRETE TIME SIGNALS
13.1. Discrete Impulse Function
The unit-impulse function in discrete time is defined as
s(nl={ ¢zl
S[n] = {...0,0,0,%,0,0,0...}
So, 6 [n] is referred as the unit sample occurring at n = 0.
Similarly, for the shifted function & [n - k] the unit sample occurring at n = k
That is,
Sin-kl={ g =k

s[n] 3[n-k]

0 0 k

Figure: (a) DT Unit Impulse Function (b) DT Shifted Unit Impulse Function

Properties
Following are some of the important properties of unit impulse function.
(i) Product property
X[n] d[n = no] = x[no] &[N - no]
(ii) Shifting property
n=-oo0
> x[nlln-ng] = x[n,]
(iii) Scaling Property
The discrete-time unit impulse does not have a property corresponding to the scaling
property of continuous-time unit impulse. Therefore, & [n] = & [an] for any nonzero
integer value of n.

13.2. Discrete Unit Step Function

The unit-step sequence shown in figure 29 (a) is defined as,

1, n >0

u[n] = !

0, n <0
or, u[n] = {...0,0,0,%,1,1,1...}

Similarly, the shifted unit-step sequence is defined as follows

1, n-k=0o0orn=k

u[n-k] = [

0, n-k<Oorn<k

14
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u[n] u[n-=k]

0 S A O O I

0 1 2 3 4 5 0 K k+1 k+2 k+3

Figure: (a) DT Unit Impulse Function,(b) Shifted DT Unit Impulse Function
Properties
Following are some of the important properties of unit step function.

(i) 3[n] = u[n] - u[n - 1]
(i) X 6[k] = uln]

k=-00
[0}

(iii) Y 6[n-k] = uln]
13.3. Discrete Unit-ramp Function
The unit ramp sequence is defined as

r[n] =

{nfornz 0

0 forn < 0
Or, r[n] = nu[n] = {(T), 1,2,3/4,5,...}

The graphical representation of r(n) is shown in figure 30.

Figure: DT unit Ramp Function

13.4. Unit-Rectangular Function
The discrete-time unit rectangular sequence is shown in figure 31. It is defined as

1, In]| £ N
rect [1] =
ZNT o, jn) > N
rect[n/2N]

SRR ES

n
-N -3 -2 -1 0 1 2 3 4 5

Figure: DT unit rectangular function
The signal rect [n/2N] has (2N + 1) unit samples over the interval - N < n < N.
13.5. Unit-Triangular Function
The discrete-time unit triangular sequence shown in figure 32 is defined as

15
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|n|

tn’(%): 1—7 In] £ N
0, [n] > N
triln/N]
1
R 2 I O

Figure 1: DT unit Triangular Function
The signal trifn/N] has (2N + 1) unit samples over the interval - N < n < N.

13.6. Unit-Signum Function

The discrete-time function corresponding to the continuous time signum function is
defined in figure 33.

Figure: DT unit Signum Function

16
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CHAPTER 2: CLASSIFICATION OF SIGNALS

1. Periodic and Aperiodic signal
1.1 Condition for continuous-time periodic signal
x(t+ T) = x(t), -0 <t<oo ..(i)
Where T is the fundamental period of a signal.

Frequency of the periodic signal is given by

1
I=7
Angular frequency, measured in radian per second, is defined as
21
©=7
1.2 Condition for discrete-time periodic signal

x(n + N) = x(n), -0 < n < oo .. .(ii)
Where N is called the fundamental period of a signal.

The fundamental angular frequency or simply fundamental frequency of x[n] is given by,

|- 2n

where, N = fundamental period
m = Smallest integer.

Important point
e The sum of two or more periodic discrete-time sequence is always periodic.
¢ A constant signal is periodic and its fundamental period is undefined.
e The sum of two or more periodic continuous-time signals need not be periodic. They will be

periodic if and only if the ratio of their fundamental periods is rational.
1.3. Steps to determine whether the sum of two or more periodic signals is periodic or
not.
Step 1: Determine the fundamental period of the individual signals in the sum signal, say Ty, T2
Step 2: Find the ratio of the fundamental period of the first signal with the fundamental periods
of every other signals.
Step 3: If all the ratios are rational, then the sum signal is also periodic, and its fundamental
period is

LCM of Numerator of Ty, T......
HCF of Denominator of Ty, T,......

1.4. Steps to determine whether the sum of two or more sequence periodic or not
Step 1: Determine the fundamental period of individual sequence in the sum sequence, say Ni,
N2 ...

Step 2: If all the individual sequences are periodic then fundamental period is

N = LCM of N1, N2, .....

17
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Step 3: If any one or more sequence in sum is aperiodic then the resultant sequences are also
aperiodic.
2. Even and odd signals

Even signals are symmetric about origin whereas odd signals are antisymmetric about origin.

Even Signal

: }

x(t) = x(~t) xX[n] = x[-n]
For continuous - time signal For discrete - time signal
Odd Signal
x(t) = —-x(-t) x[n] = =x[-n]
For continuous - time signal For discrete - time signal

An arbitrary signal x(t) can always be expressed as a sum of even and odd signals as
X(t) = Xe(t) + xo(t)

Where, xe(t) is called the even part of x(t) and is given by

%o () = 5 [x(t) + x(=1)]

and Xo(t) is called the odd part of x(t) and is given by

xo() = 5 [x() ~ ()]

Basic properties
e The sum of two even function is even and any constant multiple of an even function is even.
e The sum of two odd function is odd, and any constant multiple of an odd function is odd.
e The product of two even functions is an even function
e The product of two odd function is an even function.
e The product of an even function and an odd function is an odd function.
e Due to anti symmetry property, odd signal is always zeroatt =0
therefore, Xo(0) = yo(0) = 0

or, Xo[0] = yo[0] =0

e Integration of a continuous-time odd signal within the limits [-T, T] results in a zero value ie.

T T

f_ xo(t)de = f_ Yo(yde = 0

e The integral of a continuous-time even signal within the limits [-T, T] can be simplified as

follow:

J-Txe(t)dt =2 foe(t)dt

18
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¢ Adding the samples of discrete-time odd sequence xo[n] within the range [-N, N] is O ie,

N N
Y xhl=0= ) yln
n=-N n=—-N
¢ Adding the samples of discrete-time even sequence xe[n] within the range [-N, N] simplifies
to
N N
Xe[n] = x.[0] + 2 Xe[n]
nZN nzzl

Note: Even and odd signals are mutually exclusive. That is, if a signal is an even signal, it
cannot be odd and vice versa. however, there could be certain class of signals that could
neither be termed odd nor even signal.

s/g s/g s/g
xl(t)xz(") xz(t)xz(n) X - X,y xllxz
E E —+—E E
E (o] — 0 o]
o E ——0 (o]
(o] 0O —+—E E
( “only for signals”
d/dt d/dt
—_—
—_—
Even signal odd signal Odd signal Even signal
e —— -
+ +
[Ca j dt

3. Energy and power signal
Signals which are classified on the basis of finite energy or finite average power are known as
energy or power signal.
Power signal
Periodic signal is called power signal and for power signal, P» = finite & Ex = 0.

Signal is referred to as power signal, if and only if the average power of the signal satisfies the
condition

0<P< o

Energy signal
For energy signal, P« = 0 & Ex = finite

Signal is referred as energy signal, if and only if the total energy of the signal satisfies the
condition,

0O<E< o
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In case of Continuous-time signal

Total energy is given by

T/2
{Tlim J. |x(t)|2dt

E= ®J_r/2
[ee)
f [x(t)|?dt
—o0
Average power is given by,
1 T/2
P=lim— )|2dt
timz | G

Average power of a periodic signal x(t) of fundamental period T is given by,

1 T/2
p=o f () [2dt

T -T/2

In the case of discrete time signal

Energy of signal is given as

F= i x|

n=—00

Average power is defined by,

n=N
Pl > Ixfull
T NO®2N + 1 *(nl

n==N

Average power in a periodic signal x(n) with fundamental period N is given by

N-1
— 1 2
p=1 > lx[n]
n=0

20


https://byjusexamprep.com/

byjusexamprep.com

E BYJU'S

4. Energy and Power Continuous time Signals

Energy Signal Power Signal

) The total energy is obtained using ) The average power is obtained using P =

' E = lim [* |x(D)*dt ' lim [T 1x () |de

For the energy signal For the power signal
2.| 0 < E < o, and the average power | 2. 0 < P < o0, and the energy
P=0. E = .

3 Non-periodic signals are energy 3 Periodic signals are power signals. However, all

) signals. ) power signals need not be periodic.
4. | Energy signals are not time limited. | 4. Power signals exist over infinite time.

Properties of Power signal:

1) Power signal has infinite energy

2
{ A sint — &
x(t) — P zA2
2) A sin (2t) — =
x(-at + b) — P
Asin (2t — T)— A;

3) Kx(at + b) — K?P

5. Causal and non-causal signal
A continuous-time signal x(t) is said to be causal if x(t) = 0 for t < 0, otherwise the signal
is‘non-causal. For an anti-causal signal x(t) = 0 for t > 0.
Similarly, a discrete-time signal x(n) is said to be causal if x(n) = 0 for n < 0; otherwise

the signal is non- causal. For an anti-causal discrete-time signal x(n) = 0 for n > 0.
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CHAPTER 3: CLASSIFICATION OF SYSTEMS

1. Linear, nonlinear systems
A linear system is one which satisfies the principle of superposition and homogeneity or
scaling.

Consider a linear system characterized by the transformation operator T[]. Let x1, X2 are the
inputs applied to it and y:, y2 are the outputs. Then the following equations hold for a linear

system

y1 = T[x1], y2 = T[xz]
Principle of homogeneity: T [a*x1] = a*y1, T [b*x2] = =b*y>
Principle of superposition: T [x1] + T [x2] = a*yi+b*y2
Linearity: T [a*x1] + T [b*x2] = a*yi+b*y>

Where a, b are constants.
2. Time variant, time invariant systems
A system is said to be time variant system if its response varies with time. If the system

response to an input signal does not change with time such system is termed as time invariant

system. The behaviour and characteristics of time variant system are fixed over time.
In time invariant systems if input is delayed by time to the output will also gets delayed by to.
Mathematically it is specified as follows
y(t-to) = T[x(t-to)]
For a discrete time invariant system the condition for time invariance can be formulated
mathematically by replacing t as n*Ts is given as
y(n-no) = T[x(n-no)]
Where no is the time delay.
Methodology
1. Let y(t, to) denotes the output corresponding to a delayed input x(t —-to). This can be obtained
by substituting x(t) — x(t - to) in the given input-output relation
2. Now, obtain the delayed output y(t - to), by directly substituting t — t - to in the given input-
output relation
3. If y(t, to) = y(t - to), then the system is time invariant. Otherwise it is a time-varying system
Similarly can be checked for discrete time signals also.
3. Systems with and without memory (Dynamic and Static systems)
A system is said to be static or memory less if its output at any instant depends on the input at

that and does not depend on the past or future values of input. Otherwise, if the output at any
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instant depends on the past or future values of input, then the system is said to be dynamic or

with memory.

4. Causal and Non-causal Systems

A system is said to be causal, if the present value of the output signal depends only on the
present value or past value or a combination of present and past values of the input signal. A
system is said to be non-causal if it is not causal i.e., the present value of output depends on
the future values of input. For example: (i) y(t) = x(t) + x(t - 1) is a causal system.
(ii) The system y[t] = x[n] + x[n — 1] is causal
NOTE: All memory less systems are causal systems because the output at any time instant
depends only on the input at that time instant. Systems with memory can either be causal or
non-causal.

5. Invertible and Non-Invertible Systems
A system is said to be invertible if the input to the system can be uniquely determined from the
output. In order to have a system to be invertible, it is necessary that distinct inputs produce
distinct outputs i.e., two different inputs cannot produce the same output.
If the system is invertible, there exists an inverse system. If these two systems are cascaded as
shown in the figure, then final output is same as the input.

x[t] Sveter Y[t] | Inverse |z(t)=x(t)
> >Y system ’

Figure: CT Invertible System

x[n] Inverse x[n]
—— | DT System > —
System

Figure: DT Invertible System
NOTE: Invertible system
A system is invertible if for the given to inputs x1(t) and x2(t) with x1(t) # x2(t), it must be true
that y1(t) # y2(t)

6. Stable and Unstable systems

A system is said to be bounded input and bounded output (BIBO) stable if and only if every
bounded input produces a bounded output.

The input signal x(t) is said to be bounded if there exists a finite number Mx such that |x(t)| <
Mx < oo, for all t The system is BIBO stable if for any bounded input x(t) the output signal y(t)
is also bounded i.e., |y(t)] £ My < oo, for all t. If the system produces unbounded output for
bounded input then it is unstable.

A Discrete Time system is said to be BIBO stable if for any bounded input, it produces a bounded

output.
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The system is BIBO stable if for any bounded input x[n] the output signal y[n] is also bounded
i.e.
ly[n] |< My < oo, for all n
If the system produces unbounded output for a bounded input then it is unstable.
7. Properties of LTI systems in Terms of impulse Response
7.1. Memory less LTI system

A CT system is said to be memory less if its output at any time depends only on the value of the
input at the same time. A memory less, linear time invariant system has an input output relation
that is of the form

y(t) = Kx(t)

where K is any arbitrary constant. By substituting x(t) = &(t) in equation, memory less LTI
system has the impulse response

h(t) = K&(t)

NOTE: Memory less LTI continuous system

An LTI continuous system will be memory less if and only if its impulse response h(t) = 0 for t
# 0.

7.2. Causal LTI System

An LTI system is said to be causal if the output at any instant depends only on the present and
past values of the input. Consider a continuous-time LTI system whose output y(t) can be

obtained using convolution integral given by
y(t) =j h(D)x(t-1)dt
At t = 0 the output can be written as

y(0) = j h(D)x(-T)dr

[ee]

For a causal system the output depends only on present and past values of input. From equation,
we can see that, if T = 0, the output depends on present and past values of input and the system
is causal. But if T < 0, then output depends on future values of input, therefore the system will
be causal if h(t) = 0 for T < 0.

NOTE:

An LTI system will be causal if and only if its impulse response h(t) = 0

fort < 0.

7.3. Invertible LTI system

An LTI system is said to be invertible if the input of the system can be recovered from the output.
As we discussed earlier. if the inverse system is connected in cascade with the original system,

then final output will be same as the input. This can be illustrated in below figure.
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NOTE:
An LTI system is invertible if its impulse response satisfies h=1(t) * h(t) = d(t)
NOTE:

x(t)
—_—

Figure: An LTI inverse system

System y(t)

h(t)

Inverse
system
h™'(t)

z(t)=x(t)
—

E BYJU'S

An LTI system is BIBO stable if the impulse response is absolutely integrable

J-oolh(r)ldt < 00

8. Table Showing Comparison of Different Signals with Their Properties

S.No Relationship between Linearit Causalit Static or Time-
e output and input y y Dynamic Variancy
_ B . . Time-
1. y(t) = x(t - to) Linear Causal Dynamic invariant
2. y(t) = t.x(b) Linear Causal Static Time-variant
_ Non- . Time-
3. y(t) = x(t) + A linear Causal Static invariant
4 (t) = x(at) Linear en- Dynamic Time-variant
' yib = causal Y
Non- . Time-
— —y2
5. y(t) = =x2(t) linear Causal Static invariant
6. y(t) = x(t?) Linear Non- Dynamic Time-variant
causal
dx(t) . . Time-
7. y(t) = at Linear Causal Dynamic invariant
‘ Time-
8. y(t) = f_wx(r)dr Linear Causal Dynamic invariant
at Non-
9. y(t) = f_wx(r)dr Linear causal Dynamic Time-variant
_ Non- . Time-
10. y(t) = cos[x(t)] linear Causal Static invariant
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ol . Non- . L
11. y(t) = x(-t) Linear causal Dynamic Time-variant
y(t) = coswot.x(t)
12. Linear Causal Static Time-variant
Note:

= All the static systems are causal systems but converse is not true.

= All the non-causal systems are dynamic systems but the converse is not true.
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CHAPTER 4: LTI SYSTEM (CONVOLUTION

1. Convolution Integral

x(t) —| LTI system |—» y(t) = 7{x(t)}

h(t) Impulse
response

y(t) = fmx(r)h(t —1)dt

or

ly(®) = x() ® h(D)]
lut+a) Qut+p)=r(t+a+p)]

tz
y() =u(t) *r(t) = ?u(t) Parabolicfunction

(t+a+p)?

u(t+ )| rt+ p)| = u(t +a + p)

2. Properties of convolution Integral

i. Commutative property

ly(®) = x@®) ® h(t) = h(t) @ x(¢)]

ii. Distributive property

x(t) ® [hi()® h2 (1)] = x(t) & h1 (t) + x(t) & ha(t)
ili. Associative property

[x(t) ® hi(t)] @ ha(t) = x(t) ® [hi(t) ® hz(t)]

iv. Property based on time invariancy

a. x(t) ® h(t) = y(t)

b. x(t + a) ® h(t) = y(t + a)

c. X(t) ® h(t + B) = y(t + B)
d.x(t+a)® h(t+B) =y(t+a+p)

v) Differentiation property:

If x(t) * h(t) = y(t)

Then,
dx(® . dy(®)
a PO="5"
dh d
O =N

dx(t) dh(® _ dy(D)

dt dt dt?

vi. When two equal width rectangular pulses of duration ‘T’ are convoluted, resultant signal is

always a triangular pulse of duration “2T".
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vii. When two unequal width rectangular pulses of duration T1 and T2 are convoluted, then the

byjusexamprep.com

resultant signal is always a trapezoidal pulse of duration T: +To.

viii. Invertibility of continuous time signals
[h(t) = hi(t) ® hy(t) = 6(1)|

ix. Scaling property of convolution

1
x(at) ® h(at) = Ey(at)

x. Stability
For a continuous time LTI system to be stable, its impulse response should be absolutely

integrable. i.e.

[ee]

f |h(t)ldt < oo

xi. System in cascade connection

|hcascade B =ht)Q h(t)|
xii. System in parallel connection

‘hparallel(t) = hy(t) + h, (t)‘

3. Discrete Time LTI System

x[n] ~ > y[n] = x[n] ® hfn]

output response of a LTI system to an input x[n]

[ee]

yinl =x[n] ® hin] = ) x[K]hln - K]

K=—-00

convolution sum

4. Properties of convolution sum
i.Commutative property
X[n] ® hin] = h[n] ® x[n]
ii. Distributive property
X[n] ® (hi[n] + h2[n]) = x[n] ® hi[n] + x[n] ® hz[n]
ili. Associative property
X[n] ® hi[n] ® h2[n] = x[n] ® (hi[n] & h2[n])
iv. Shifting property
If y[n] = x[n] ® h[n]
then, x[n - no] ® hn [n-ni] = y[n - no - ni]
v. Duration of convolution

Let M be the duration (length) of sequence x[n] and N be the duration (length) of sequence h[n],
then the duration of convolution sum.

y[n] = x[n] ® h[n] is M+N-1

vi. Generalized Results

a. If x[n] = u(n)

h[n] = u(n)

then y[n] = x[n] ® h[n] = u[n] ® u[n] = (n + 1) u[n]

28


https://byjusexamprep.com/

ERS

byjusexamprep.com
b.uln+ada]l®u[n+B]=[n+a+B+1Jun+ a+ B]
vii. Systems in parallel
h{n] = hi[n] + hz[n]
viii. System in cascade
h[n] = hi[n] ® h2[n]
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CHAPTER 5: CONTINUOUS TIME FOURIER SERIES (CTFS
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1. Existence of Fourier Series

The Fourier series for a periodic signal x(t) exists if it satisfies the following conditions which

2. Fourier Series
Fourier Series Form | Mathematical Expression Coefficients
1
ag = N x(t)dt
x(t) = ao 5 0o
Trigonometric ¢ ) a, = x(t) cos(nwot) dt
+Z(an cosn wyt + by, sinn wyt) To i,
n=1 2
b, = = | x(t)(sinnwyt)dt
TO TO
= 1
Exponential x(t) = Z c, e/ ot Cn =7 x(t)e Imwotdt
0J1,
n=-—0oo
Ao = ao
X(t) = Ao Ay = JaZ ¥ b
Polar or Cosine Form
+ z A, cos(nwyt + 6,,) = tan™! (b—">
a?’l
n=1
NOTE: c, = - (a, — jbn),
¢y =5 @y + jbn),.
3. Properties of Fourier Series
S.N. Property CTFS Coefficients
. . CTFS
1 Linearity px1(t) + qx, (t) — pcy + qdy,
2 Time shifting x(t — to) PRCLLEN e~Jnwotoc
3 Time reversal x(—t) PRI C_n
CTFS
4 Time scaling *(at) o
With period aTo
T . CTFS 2
5 Multiplication X, ()% () s Z by,
[=—00

are knows as Dirichlet conditions:

e The function x(t) has a finite humber of maxima and minima in one period.

e The function x(t) has a finite number of discontinuities in one period.

e The function x(t) is absolutely integrable over one period, that is,

lex(t)ldt <
0
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CTFS
. . . x * (t) ———c*, and
6 Conjugation and conjugate symmetry (©) "
c_, = ¢}, for x(t) is real
. . . dx(t) crFs
7 Time Differentiation ( )<—>jnw0c‘n
dt
t CTFS ¢
. . n
8 Time Integration f x(1) d1 — -
—00 ]nwo
. CTFS
9 Convolution x1(t) * x5 (t) —— Tycpd,
To ®
f X (D)X (O)dt = T, Z e d,
Parseval’s Theorem 0 ——
10 -
If x1(t) = x2(t) = x(t) To
[Cx@rde=1y Y 1
0 n=-00
P , CTFS
11 Frequency Shifting eTk@ot x () e——— ¢,
4. Condition for periodic signals to be symmetry
Type of symmetry Condition Example an ba Property
2T/2
z == | x(t)dt
(%) To 2R
E t) = x(-t = (t) (ntypt)dt 0 Cosine t |
ven x(t) = x(-t) ii in o - ? T JU x(t) cos(nyt) osine terms only
t
T is fundamental period
) T/2
0dd x(t) = -x(-t) e 0 0 % | x(t)sin(ngtjdt | Sine terms only
; t o
x(t) i
N 472 . . q 742 ) .
Half wave x(t):—x[t:5| Tld‘ 0 T | X (t) cos (noyt)dt T | x(t)sin(ngyt)dt Odd n only
) t 0 0
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CHAPTER 6: CONTINUOUS TIME FOURIER TRANSFORM (CTFT

1. Fourier Transform
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Fourier transform is a transformation technique which transforms non-periodic signals from the
continuous-time domain to the corresponding frequency domain. The Fourier transform of a
continuous-time non periodic signal x(t) is defined as

X(jw) = F[x(t)] = J-oox(t)e‘j“’tdt

If the frequency is represented in terms of cyclic_frequency f (in Hz), then the above equation
is written as

X(f) = J-_oox(t)e_jz”ftdt

2. Existence of Fourier Transform
Dirichlet Conditions
(i) x(t) is absolutely integrable. That is,

j [x(t)|dt < o0
(ii) x(t) has a finite number of maxima and minima and a finite number of discontinuities

within any finite interval.
3.MAGNITUDE AND PHASE SPECTRA

The Fourier transform X(jw) of a signal x(t) is in general, complex form can be expressed as
X(jw) = 1X(jo)[X(w)]
The plot of |[X(jw)| versus wis called magnitude spectrum of x(t) and the plot of [X(jw)]versus

wis called phase spectrum. The amplitude (magnitude) and phase spectra are together called
Fourier spectrum which is nothing but frequency response of X(jw) for the frequency range

—00<w< 00,

4. Inverse Fourier Transform
The inverse Fourier transform of X(jw) is given as

1 r® .
= — I Jjwt
x(t) o f_wx(m))e dw

5. Fourier Transform of Some Basic Signals

S. No. | Time Domain x(t) | Fourier Transform X(jw)
1. 1 216 (w)
6(t) 1
1
3. u(t) m8(w) + —
jw
4, e %yu(t) ! -
a+jw
—alt 2a
5. ealtl PR
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6.

1
—at
6. te"*u(t) —(a 0
. n!
7. the u(t) W
_,1t>0 2
8. sgn® =4, _ g jw
9. el ®ot 218 (w — wy)
10. cos(wgt) [6(w — wy) + §(w + wy)]
s
11. sin(wgt) 7 [6(w — wg) — 6(w + wy)]
12 —at t t &
. e % cos(wyt) u(t) (@ +]0) + o
—at .: Wy
13. e % sin(wyt) u(t) @+ jw)? +
t 1t <t/2 . ays
14, rect (T) = {Oltl > 7/2 rsmc(zn)
w Wt wy el <w
L 7o () rect (33p) = lolol > w
13
A<E)={1—7|t|sf , .
16. 4 00therwise N (E)
0] [o0)
17. 6(t — kTy) N Z 6(w —mwy)
k=—00 1M.=—00
18. e—t2/202 oV2r -a%w?/2

Properties of Fourier Transform

E BYJU'S

. No. Properly Time Signal x(t) | Fourier Transform X(j )
1. Linearity axi(t) + bxa(t) aXi(jw) + bXa2(jw)
2. Time Shifting X(t - to) e-lw'o X(jw)

3. Conjugation X*(t) X*(-jw)
4, Time Scaling X(at) X %)
5. Differentiation in time ddigt) (Jw)" X(jw)
6. Differentiation in frequency domain t x(t) AX (o)
t 1
7. Time Integration f x(1) dt j—wX(jw) + 17X (0)6(w)
Frequency Shifting X(t) elwt X[j(w -wo)]
Duality X(t) 2mx(—jw)

10. Time convolution X(t)*h(t) X(jw) H(jw)

11. Frequency Convolution x1(t)xz2(t) % [X;(w) * X, (jw)]
[o0) 1 o]

12. Parseval’s theorem E, = J- |x(t)|?dt E, = ﬂf [X(w)|*dw

13. Time reversal X(-t) X(-jw)
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Important Points

(i) If x(t) is a real and even symmetric function, then its Fourier transform X(jw) is also
real and even.

(i) If x(t) is real and odd symmetric signal, its Fourier transform X(jw) is imaginary and
odd symmetric.

(iii) If x(t) is an imaginary and even symmetric function, then its Fourier transform X(jw)
is also imaginary and even symmetric.

(iv) If x(t) is imaginary and odd symmetric signal, its Fourier transform X(jw) is real and

odd symmetric.
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CHAPTER 7: LAPLACE TRANSFORM

1. The Bilateral or Two-Sided Laplace Transform
The bilateral or two-sided Laplace transform of a continuous-time signal x(t) is defined as

X(s) = L{x(t)} = J-oox(t)e‘“dt

2. The Unilateral Laplace Transform
The Laplace transform for causal signals and systems is referred to as the unilateral Laplace
transform and is defined as follows:

[ee]

X(s) = L{x(t)} =f x(t)estdt

Comparison table for unilateral and bilateral Laplace transform:

Bilateral LT Unilateral LT

1. X(s) [7 x(t)e st dt = LT[x(¢)] 1. X(s) = [Zx(t)e™* dt = ULT[x(t)] \

2. Limits of integration: —co to + oo | 2. Limits of integration: 0~ to o

3. ROC is must 3. No need to specify ROC (ROC must
always be RHS of s- plane)

4. BLT is unique if ROC is specified | 4.ULT is unique

5. Handles both causal and non- 5.Handles only causal systems
causal systems

3. THE EXISTENCE OF LAPLACE TRANSFORM

The bilateral Laplace transform of a signal x(t) exists if the following integral converges (i.e.

finite)
X(s) = ij(t)e'“dt
Substituting s = 0 + jw in above equation
X(s) = J-wx(t)e'("”“’)tdt

= f_o:o[x(t)e“”]e‘j‘“tdt
The above integral converges if
I 1x(t)et|dt < oo

Hence, the Laplace transform of x(t) exists if x(t) e ° is absolutely integrable.

4. REGION OF CONVERGENCE
Laplace transform of x(t) i.e. X(s) exists if

[ee]
f [x(t)e’t|dt < o
—00
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The range of values of ¢ (i.e. real part of s) for which the Laplace transform converges is known

as Region of Convergence (ROCQC).

5. Laplace Transform of Some Basic Function

Laplace Transform
S. No. CT signal x(t) X(s) zf (et dt ROC
1. o(t) _Oi Entire s-plane
2. u(t) 1 Re{s} > 0
S
3. u(t) - u(t -a) 1(1_e-a5) Re{s} >0
S
4, e atu(t) Re {s} > - a
a+s
tu(t) iz Re {s} >0
S
n n!
6. t "u(t) q"i” Re {s} >0
—at -
7. te@tu(t) (a1 52 Re {s} > - a
n!
na-at _
8. the 2t u(t) Gis Re {s} > - a
S
9. cos(wot)u(t) W 152 Re{s} > a
. w
10. sin(wot)u(t) m Re {s} >0
Qw3 + s2)
11. = 2 - = R
x(t) = cos?(wot)u(t) (4l 1 57) e{s}>0
2wk
12. x(t) = sin?(wot) u(t .- Re {s} >0
(£) = sin?(wat) u(t) T {s}
x(t) = exp (-at) cos(wot) a+s _
13. u(t) (a+5)2+ w? Re {s} > -a
Wo
14, x(t)=exp(-at) sin(wot) u(t) (a+5s)2+w Re {s} > -a
6. Properties of Laplace Transform
S.N. Property Time function x(t) ROC
1. Linearity ax; (t) + bx, (t) N aX,(s) + bX,(s) At least R1 N R2
2 Ti li Hs Lty R
. ime scaling x(a )<—>m (5) aRx
3. Time shifting x(t —tg) PN estoX(s) Rx
4, Frequency shifting eSotx(t) <L>X(s —5) Rx + Re(so)
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5. Time differentiation d);(tt) <L>sx(s) —x(0) Rx
o . t L X(s)
6. time integration f x(7) dr<—>T R N Re(s) >0
0
7. s-domain differentiation —tx(t) — d);(s) Rx
S
8. Conjugation X*(t) <L>X*(s %) Rx
9. Time convolution %1 (£) * x, (1) ;Xl(S)Xz(S) atleast R:1 N R2
L 1

10. s-domain convolution X1 ()x, (1) <—>2—nj[X1(s) * X5(8)] atleast R1 N R2
11. Initial value theorem x(0%) = limx(t) = limsX (s)

12. Final value theorem x(00) = limx(t) = limsX(s)

13. Time Reversal x(—t) <L>X(—s) —Rx

7.IMPULSE RESPONSE AND TRANSFER FUNCTION

Let x(t)<L>X(s) is the input and y(t);)Y(s) is the output of an LTI continuous time system

L
having impulse response h(t) «— H(s). The response y(t) of the continuous time system is given

by convolution integral of input and impulse response as
y(© =x@© +h(®) = [ x(h(e-7)de

Using convolution property of Laplace transform the above equation can be written as.
Y(s) = X (s) H (s)

Thus H(s) =22

X(s)
Where, H(s) defined as the transfer function of the system. It is the Laplace transform of the
impulse response.

Impulse response is

Y
h(t) = L (H(s)) = L {%}
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8. STABILITY AND CAUSALITY

For a causal system the ROC of its rational transfer function H(s) is to the right of the righter
most pole.

For the system to be stable (i.e. the ROC of its system function H(s) includes the entire jw-
axis) the righter most pole of H(s) must be to the left of jw axis.
NOTE: A causal system with rational transfer function H(s) is stable is and only if all its poles
lie in the negative half of s-plane.
9. SYSTEM FUNCTION FOR INTERCONNECTED LTI SYSTEMS
1. Parallel Connection
The parallel interconnection of two LTI continuous systems having impulse responses
hi(t) and h2 (t) is shown in the below figure.

o H(s) [Yi5)
X9 | Y YO, — X6 () = Hs) + i) |V
+
H,(s) Y6
(a) Parallel connection (b) Equivalent system

Figure: Parallel connection of LTI system in s-domain
2. Cascaded Connection
Two systems with impulse responses hi(t) and h2 are connected in cascaded configuration
as shown in below figure.

X6) [ Ths) e, The) S, = X6V TH(s) = H(sH,(s) G,
(a) Cascade connection (b) Equivalent system

Figure: Cascaded connection of LTI system in s-domain

10. ZERO INPUT RESPONSE AND ZERO-STATE RESPONSE

The Laplace transform gives total response which includes zero input response and zero state
response components.

Total response = Zero input response + Zero state response

10.1 Zero- input response:
The input is considered as zero and response is due to the initial conditions i.e. initial
conditions generates the output.

10.2 Zero state response:
The initial conditions are considered as zero (i.e. zero state) and response is due to
applied input. The term zero state signifies the system is initially released.

This is also termed as forced response as we are applying input (i.e., force to the
system) with zero initial condition.
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CHAPTER 8: Z TRANSFORM

The Bilateral or Two-sided Z-transform

The z-transform of a discrete time sequence x[n], is defined as

[ee]

X(2) = Z{x[n]} = Z x[n]z~"

n=-—00

The unilateral or One-sided z-transform

E BYJU'S

The z-transform for causal signals and systems is referred to as the unilateral z-transform. For

a causal sequence
z[n]=0,forn<0

Therefore, the unilateral z-transform is defined as

[ee]

X(2) = Z x[n]z™"

n=0
EXISTENCE OF Z-TRANSFORM
For existence of z-transform
IX(z)] < o

[ee]

Z x[njr"<oo

n=—co

Standard z transforms with their respective ROCs.

S.No. DT sequence x[n] z-transform ROC
1. o[n] 1 Entire z-plane
_ Entire z-plane except
— n0
2. O [N - no] 4 =0
1 z
3- U[n] 1_2_122_— |Z| > 1
1 z
4. a"u[n] Torl= 72 |z| > |a]
-1
5. a"tu[n - 1] #zi 1z| > |a]
z 1 z
6. nuln] L = 1 [z] > 1
7 na"uln] @ |z]| > a
' (1-az1)?  (z-a)?
1-z71cos 0,
or
1-2z1cos 0y + z72
8. cos (Qon) u[n] 212- cos ] [z] > 1
z%2-2zcos g+ 1
zlsinQ,
_ 1 ) or
9. sin(Qon) u[n] 1 Zzzsi‘;;’fzfoﬂ 1z| > 1
z2-2zcos g+ 1
n
10. a” cos(Qon)uln] 1- azt cos 2 |z| > |a]
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z[z- a cos Q]
z2-2az cos N, + a?
az lsinf,
. 1-2az 1 cos 2y + a?z2 or
11. a"sin(Qon) uln] azsin {1, |z] > a
z2-2az cos N, + a?
A+ Bzt
12. r avsin (<2on + 6) T+2yz7 fatz? |z| < |a|™
u[n] withaeR z(Az + B)
z2 + 2yz +y?
5. Properties of z- transform
Properties Time domain z-transform ROC
Linearity axi[n] + bxz[n] aXi(z) + bXza(z) at least R1 N Rz
_ -n
Time shifting X[n = no] Z7™X(z) Rx e_:xcept f0|_* the
. possible deletion or
(bilateral or non- o ~
causal) A additionofz=0o0rz
No
X[n = no] z | X(2) + Z x[—m]z™
< . Rx except for the
Time shifting possible deletion or
(unilateral or causal) - addition of z=0o0r z
= 00
X[n + no] z™ | X(z) — x[m]z™™
m=1
. 1
Time reversal X[-n] X(—) 1/Rx
Z
leferentlat'lon inz nx[n] , dX(z) R,
domain dz
. . . VA
Scaling in z domain a"x[n] X(E) la|R,
Time scaling _ K 1/k
(expansion) xk [n] = x[n/k] X(zX) (Rx)
. ) . _ Rx, except for the
- - _ 1 14
Time differencing x[n] = x[n - 1] (1 -z1Y X(2) possible deletion of
the origin
Time convolution x1[n] x xz2[n] X1(2)X2(2) at least R1 N R2
Conjugations x*[n] X*(z*) Rx
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Initial-value theorem

x[0] = lirgoX(z)

provided x[n] = 0 for
n<o0

Final-value theorem

x[oo]

= limx(n)
n—-oo

= lim(z - 1X(2)

provided x[oo] exists

6.Causality

A linear time-invariant discrete time system is said to be causal if the impulse response
h[n] = 0, for n < 0 and it is therefore right-sided. The ROC of such a system H(z) is
the exterior of a circle. If H(z) is rational then the system is said to be causal if

1. The ROC is the exterior of a circle outside the outermost pole; and

2. The degree of the numerator polynomial of H9z) should be less than or equal to the

degree of the denominator polynomial.

NOTE: Y2 _ |h[n]| < o condition for the stability.
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CHAPTER 9: DISCRETE TIME FOURIER TRANSFORM (DTFT

1. DTFT
The DTFT of a non-periodic sequence x[n]
X(e) = F{x[n]} = Ll _c x[n]e "

2, Magnitude and Phase Spectra

The Fourier transform X(e¥?) of x[n] is, in general, complex and can be expressed as

is given by

X(e)?) = |X(e®)] £X(e))

The plot of |X(ei®?)| versus Q is called magnitude spectrum of x[n] and the plot of 2X(el?)
versus Q is called phase spectrum. The amplitude (magnitude) and phase spectra are

together called Fourier spectrum of signal x[n].

3. Existence of DTFT

The DTFT X(ei®) of a DT sequence x[n] exists, if x[n] is absolutely summable i.e.

Yne-wlx[n]| < 00
4. Inverse DTFT

The inverse discrete time Fourier transform of X(ei®) is defined as:

x[n] = if_nnX(ej”)ej””d.Q
5. Special forms of DTFT

Discrete Sequence x[n] DTFT X(ei?)

Real and Even

Real and Even

Real and Odd

Imaginary and Odd

Imaginary and Even

Imaginary and Even

Imaginary and Odd

Real and Odd

6. DTFT of some basic DT signals

Signal Fourier Transform
1 2n Z 5(0-21k)
k=-00
o[n] 1
1 (o]
ufn] m-l- Z w8 (- 2mk)
k=-c0
a™u[n],lal <1 ;
1-ae/?
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5[n-ny] e Jmo
e Jfon 2 5(02-0,y-2mk)
2
cos Dy - Z (8(0-0y-2k) + 8(Q + 0y 27k)}
k=-c0
sinyn ; Z (8(0-0y-21k)- (2 + 0y 27k)}
k=-c0
- 2m 2k
> 8ln-kN] = 5(9-—
N
k=—o00 k=—
(n + Da™u[n] 1
la] <1 (1- ae/?)2
7. Properties of DTFT
S. No. Property Sequence DTFT
1. Linearity aixi[n] + ax2xz2[n] aiX1(e1?) + axX2(ei?)
2. Periodicity x[n] X(el?) = X(ei?+2m)
3. Time shifting x[n = k] e ik X (e®)
4. Frequency shifting e/%nx[n] X (el (2=
5. Time reversal x[-n] X(e-%)
: . X[n/k], n is a multiple ikQ
6. Time expansion integer of k X(el?)
Differentiation in the . d i
% frequency domain nx[n] Jan X
8. Conjugation x*[n] X*(e719)
Convolution in time . .
2 Domain x1[n] * x2 [n] X1(e1?) Xa(e?)
Convolution in the 1 0 0
10. frequency domain x1[n]xz[n] E[Xl(e/ ) * X, (e/H)]
11. Time differencing x[n] - x[n - 1] (1 - e9) X(el?)
1 )
— 2
. e X
12. Time accumulation Z x[n] ©
ko +1X(0) Z 8(0-2mm)
m=—00
energy of the sequence x[n] is given as Y3 _o|x[n]|? =
13. Parseval’s Theorem 1 (m Y
— LX) dn
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8. Transfer Function & Impulse Response

Let x[n] ﬂX(ef”) be the input sequence and y[n] LN Y (e/?) be the output sequence
of the system. Then, response (output) of the system is given by following convolution
sum.

y[n] = x[n] * h[n]
by taking DTFT using the convolution property, we have
Y(e?) = X(e?) H(e?)

Y(eJ)
X(eJ?)

H(e’?) = (Transfer function)

NOTE: X(e®) exists if the ROC of X(z) includes the unit circle. We know that ROC does not
contain any poles. Therefore, it is concluded that DTFT of any sequence x[n] can be obtained

from its z-transform X(z) if the poles of X(z) are inside the unit circle.
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CHAPTER 10: SAMPLING THEOREM

1. Sampling
It is the process of converting a continuous time-signal x(t) into a discrete time signal x[n] by
taking samples of the continuous time signal at discrete intervals of time. That is,

x[n] = x(O)¢=n,
Where, n is any integer.

2. SAMPLING THEOREM
The sampling theorem states that, a band-limited signal x(t) having the highest frequency
component fm Hz can be exactly recovered or reconstructed from its samples taken at a rate of

2fm samples per second. Hence, the sampling rate or sampling frequency must satisfy this

condition,
fs > 2fm
The sampling interval
nolo L
fs 2fm
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CHAPTER 11: DISCRETE FOURIER TRANSFORM (DFT

1. Discrete Fourier Transform
The discrete-time Fourier transform of the sequence x[n] is given by

N-1
—j2mkn
Xperlk] = Z x[nle” N

n=0

wherek=0,1, 2, ..., (N-1)
Discrete Fourier transform Xper[k] is also denotes as X[k] or DFT{x[n]}

2. INVERSE DISCRETE FOURIER TRANSFORM (IDFT)

The inverse Discrete Fourier transform of Xprr(k) is defined as

N-1
Z X[k]ejZn:nk/N
k=0

x[n] =

=2 -

3. Properties of DFT

E BYJU'S

Discrete Sequence x[n] DFT X[k]

Real and Even Real and Even

Real and Odd Imaginary and Odd

Imaginary and Even Imaginary and Even

Imaginary and Odd Real and Odd
S. No. Properties Discrete time Signal | Discrete Fourier Transform
1 Linearity axi[n] + bxz[n] aXi[k] + bXz[k]
2 Periodicity X[n + N] = x[n] X[k + N] = X[k]
3 Circular time shift x[n -no In X(k)e_jznk""
4 Time reversal X[N = n] X(N - k)
5 Conjugation x*[n] X*[N - k]
6. | Circular frequency shift x[nle W X[(k - ko)In
1
7. Multiplication x1[n] xz2[n] N(Xl [k] * X,[k])
8 Circular Convolution xi[n] & x2[n] X1[k] X2[k]
Ty (M)
N-1

9 Circular correlation X(k)Y*(k

= > xinly * [n-mly (o ()

n=0
N-1 N-1
. 1
10 Parseval’s relation X1 [n]x5[n] NE X1 [k]X5[k]
n=0 k=0
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CHAPTER 12: FAST FOURIER TRANSFORM (FFT)

1. Properties of Twiddle factor:

(i) Symmetry property:

(ii) Periodicity property:
Wi = w
Note: The fast Fourier transform algorithm exploits the two basic properties of the twiddle factor

and reduces the number of complex multiplications required to perform DFT from N2 to glogzN.

2. IDFT USING FFT ALGORITHM

FFT algorithm can be used to compute an inverse DFT without any change in the algorithm.

The inverse DFT of an N-point sequence X(k), k =0, 1, ...., N - 1 is defined as
1 N-1
= -nk
x(n) =+ ;X(k)w

Where, W = e12WN

Take complex conjugate and multiply by N, we obtain
N-1
1
Nx+(n) = NZX* (yw-nk
k=0

The desired output sequence x(n) can then found by complex conjugating the DFT and dividing

by N to give

*

;x * (k)w-"kl

1
x(n) = N
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CHAPTER 13: DIGITAL FILTERS
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1. There are two class of digital filters, depending on the duration of the impulse response.

1.(i) Finite-duration impulse response (FIR) digital filter, the operation of which

governed by linear constant coefficient difference equations of a non-recursive nature.

The transfer function of FIR digital filter is a polynomial in z1.

It has three important properties.

e They have finite memory and therefore, any transient start up is of limited duration.

e They are always BIBO stable.

e They can realize a desired magnetic response with exactly linear phase (i.e. with no phase

distortion.)

1.(ii) Infinite-duration impulse response (IIR) digital filter, whose input output

characteristics are governed by linear constant coefficient difference equations of recursive

nature.

2. Basic Elements of Block Diagram

Elements of Block
diagram

Time Domain Representation

s-domain Representation

Adder

x,[n] x,[n] + x,[n]

x,[n]

X.[z]

X,[z]

X,[z] + X,[z]

Constant multiplier

x[n]4>D—>3X[n]

X[z]—bb—ba)([z]

Unit delay element

x[n]—» z? ——»x[n-1]

X[z] —»| Zz

——» z'X[2]

Unit advance element

X[n]—» Z |—»x[n+1]

X[z] —>

—» zX[z]

48


https://byjusexamprep.com/

byjusexamprep.com

E BYJU'S
3. COMPARISION BETWEEN FILTERS

Table 2: Comparison Between Non-Recursive & Recursive filter

Non-Recursive filters Recursive filters
yw =Y auxn-1) ym) = Y ax(n—k)= ) hey(n—k)
k=—oc0 k—Nf k=1
for causal system for causallv system
oo} 14 M
=) @ - y(m) = ) ax(n =) = > bey(n— k)
k=0 Ko k=1
For causal i/p sequence It gives IIR output but not always.
N
Ex: y(n) =x(n) =x(n-3) +y(nh-1)
y) = ) axn— i) e
k=0 General TF:H(z) = ——/F——
It gives FIR output. All zero filter. B 1=Zk=1 bz
It is always stable. bk = 0 for Non-Recursive
Nf = O for causal system

4. Comparison Between FIR & IIR Filters

FIR filters IIR filters
1. Linear phase no phase distortion. Linear phase, phase distortion.
2. Used in speech processing, data transmission | Graphic equalizers for digital audio, tone
& correlation processing. generators filters for digital telephone
3. Realized non recursively. Realized recursively.
Stable or unstable.
4. Stable H(n) = a"(n), a < 1 stable
=0, a > 1 unstable
5. Filter order is more Less
6. More co-efficient storage Less storage

7. Quantization noise due to finite precision

arithmetic can be made negligible Quantization noise

8. Co-efficient accuracy problem is less severe. | More

9. Used in multi rate DSP (variable sampling
rate)

% %k %k %k
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