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CHAPTER 1:  BASICS OF SIGNALS 

1. Continuous-time signal 

A signal x(t) is continuous-time (CT) signal, if t is a continuous variable. A continuous time signal 

is defined continuously with respect to time. 

 

2. Discrete-time signal 

If t is a discrete variable, then it is a discrete-time (DT) signal. A discrete time signal is often 

identified as a sequence of numbers, denoted by x[n], where n is an integer.  

 

3. BASIC OPERATIONS ON CONTINUOUS TIME SIGNAL 

3.1. Addition/Subtraction of signals 

The sum of two continuous-time signals can be obtained by adding their values at every 

instant of time. Similarly, the subtraction of two continuous-time signals can be obtained 

by subtracting their values at every instant of time.  

Example:  

 

IMPORTANT FORMULAS TO REMEMBER 
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(i) Addition 

 

From –10 < t < –3, amplitude of y(t) = x1(t) + x2(t) = 0 + 2 = 2  

From –3 < t < –3, amplitude of y(t) = x1(t) + x2(t) = 1 + 2 = 3 

From 3 < t < 10 amplitude of y(t) = x1(t) + x2(t) = 0 + 2 = 2  

(ii) Subtraction  

 

From –10 < t < –3, amplitude of y(t) = x1(t) – x2(t) = 0 – 2 = – 2 

From –3 < t < –3, amplitude of y(t) = x1(t) – x2(t) = 1 – 2 = – 1 

From 3 < t < 10, amplitude of y(t) = x1(t) – x2(t) = 0 – 2 = – 2 

 

3.2. Multiplication of signals 

The multiplication of two continuous signals can be obtained by multiplying their values 

at every instant.  
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Example: 

 

 

 

From -10 < t < -3, amplitude of y(t) = x1(t) × x2(t) = 0 × 2 = 0  

From -3 < t < 3, amplitude of y(t) = x1(t) × x2(t) = 1 × 2 = 2  

From 3 < t < 10, amplitude of y(t) = x1(t) × x2(t) = 0 × 2 = 0 

3.3. Amplitude scaling of signals  

The amplitude of a signal can be changed by amplitude scaling. If a signal x(t) is 

multiplied by a factor A, it is expressed as A x(t) which means that, at every instant t, 

the amplitude of x(t) is multiplied by A. 

Example: 

 

Note:  

Amplitude scaling signal A x(t) is identical in shape to the original signal x(t) but its 

amplitude is multiplied by A everywhere.  

https://byjusexamprep.com/


byjusexamprep.com 

5 

3.4. Transformation of signal 

i.  Time-Shifting  

Signal x(t – t0) represents a time shifted version of x(t) by t0 seconds. If t0 > 0, then the signal 

is delayed by t0 seconds. If t0 < 0, then x(t + t0) represents an advanced version of x(t). The 

time shifting operation is shown in figure.  

The waveform of x(t – t0) is identical to that of x(t), except for a shift of t0 time units towards 

the right-hand side. 

 

 

Figure: Time shifting operation (a) Original signal x(t) (b) Time delayed version of x(t) 

(c) Time advanced version of x(t) 

 

ii. Time scaling 

If the independent variable t is scaled by a parameter a, then x(at) is time scaled version of x(t). 

It is important to note that time scaling is performed on t-axis such that the values x(t) and 

x(at) at t = 0 are the name for both waveforms.  

 

Figure: Time scaling operations, (a) Original signal x(t), (b) Time expanded version, 

(c) Time compressed version of x(t) 

 

iii. Time-Reversal/Folding  

The signal x(–t) is called folded version of signal x(t) and is obtained by taking reflection of x(t) 

about vertical axis t = 0 as shown in figure.  
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(a) Signal x(t) (b) Reflection of x(t) 

  

4. MULTIPLE OPERATIONS ON CONTINEOUS-TIME SIGNALS 

Consider a signal x(t) with multiple transformation given as  

x(t) → A x(bt ± t0)  

where, a and b are assumed to be real numbers. The operations should be performed in the 

following order 

METHODOLOGY 1 

Step 1: First multiply signal by a constant A to obtained amplitude scaled version of x(t) that 

is A x(t).  

Step 2: Shift the signal A x(t) to the left or to right by t0 time units. This will produced shifted 

signal A x(t ± t0). 

Step 3: Scale the signal A x(t ± t0) by b, the resulting signal represents Ax(bt ± t0). 

Step 4: If b is negative, reflect the scaled signal Ax(bt ± t0) about the vertical axis.  

The correct sequence for the above transformation is  

x(t)
 A

amplitude
scaling

 

→           Ax(t)
 t→t−t0

time
shifting 

→             x(t − t0)
 t→bt

time
scaling 

→           Ax(bt − t0) 

If time scaling is done before time shifting it will produce incorrect results.  

x(t)
 A

amplitude
scaling

 

→           Ax(t)
 t→bt

time
scaling 

→           Ax(bt)
 t→t−t0

time
shifting 

→             Ax[b(t − t0)] ≠ Ax(bt − t0) 

For a different multiple transformation, different order of sequence is performed. Consider a 

signal x(t) with multiple transformation given as  

 x(t) → Ax (
t−t0

a
) 

For this sequence the simplest sequence of operation is given as follows.  

METHODOLOGY 2 

Step 1: First multiply signal by a constant A to obtained amplitude scaled version of x(t) that 

is Ax(t). 

Step 2: Scale the signal Ax(t) by 1/a, the resulting signal represents x(t/a). 

Step 3: If a is negative, reflect the scaled signal x(t/a) about the vertical axis.  

Step 4: Shift the scaled signal Ax(t/a) by t0 units to the left or to right by t0 time units. This 

will produced signal Ax[(t – t0) /a]. 

The correct sequence for the above transformation is  

https://byjusexamprep.com/


byjusexamprep.com 

7 

x(t)
 A

amplitude
scaling

 

→           Ax(t)
 t→t/a

time
scaling 

→            Ax (
t

a
)

 t→t−t0
time
shifting 

→             Ax (
t − t0
a
) 

If we change the order of sequence (time scaling is done after time shifting), then we would 

not get correct results.  

x(t)
 A

amplitude
scaling

 

→           Ax(t)
 t→t−t0

time
shifting 

→             Ax(t − t0)
 t→t/a

time
scaling 

→            Ax (
t

a
− t0) ≠ Ax (

t − t0
a
) 

It must be noted that the operation of reflecting and time scaling is commutative, whereas the 

operation of shifting and reflecting or shifting and time scaling is not.  

 

5. Some Important Signals 

Name Continuous Discrete 

Unit Step function 𝑢(𝑡) = {
1, 𝑡 ≥ 0
0, 𝑡 < 0

 𝑢[𝑛] = {
1, 𝑛 ≥ 0
0, 𝑡 < 0

 

Ramp signal 𝑟[𝑡] = {
𝑡, 𝑡 ≥ 0
0, 𝑡 < 0

 𝑟[𝑛] = 𝑛𝑢(𝑛) = {
𝑛, 𝑛 ≥ 0
0, 𝑛 < 0

 

Impulse function δ(t) = 0, t ≠ 0 𝛿[𝑛] = {
1, 𝑛 = 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Rectangular pulse function 𝑟𝑒𝑐𝑡 (
𝑡

𝜏
) = {

1, |𝑡| ≤ 𝜏/2

0, |𝑡| > 𝜏/2
 𝑟𝑒𝑐𝑡 [

𝑛

2𝑁
] = {

1, |𝑛| ≤ 𝑁
0, |𝑛| > 𝑁

 

Triangular pulse 𝑡𝑟𝑖 (
𝑡

𝜏
) = {

1 − |
𝑡

𝜏
| , 𝑡 ≤ |𝜏|

0, 𝑡 > |𝜏|
 𝑡𝑟𝑖 [

𝑛

𝑁
] = {1 −

|𝑛|

𝑁
, |𝑛| ≤ 𝑁

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

Signum signal 𝑠𝑔𝑛( 𝑡) = {
1, 𝑡 > 0
−1, 𝑡 < 0

 𝑠𝑔𝑛[ 𝑛] = {
1, 𝑛 > 0
−1, 𝑛 < 0

 

Sinusoidal signal x(t) = sin(2π f0t + θ) X[n] = sin(2π f0n +θ) 

Sinc function 𝑠𝑖𝑛(𝜔0𝑡) =
𝑠𝑖𝑛( 𝜋𝜔0𝑡)

𝜋𝜔0𝑡
 𝑠𝑖𝑛(𝜔0𝑛) =

𝑠𝑖𝑛( 𝜋𝜔0𝑛)

𝜋𝜔0𝑛
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6. Important Properties of Signals 

Signals in term of 

unit step and vice 

versa 

r(t) = tu(t) 

𝑢(𝑡) =
𝑑

𝑑𝑡
𝑟(𝑡) 

𝛿(𝑡) =
𝑑

𝑑𝑡
𝑢(𝑡) 

𝑢(𝑡) = ∫ 𝛿(𝜏)𝑑𝜏
𝑡

−∞

 

sgn = u(t) – u(–t) 

sgn = 2u(t) – 1 

∏(
𝑡

𝜏
) = 𝑢 (𝑡 +

𝑡

𝜏
)

− 𝑢 (𝑡 −
𝑡

𝜏
) 

Impulse 

properties 

∫ 𝛿(𝑡)𝑑𝑡 = 1
∞

−∞

 

𝛿(𝛼𝑡) =
1

|𝛼|
𝛿(𝑡) 

𝛿(𝛼𝑡 + 𝑏) =
1

|𝛼|
𝛿 (𝑡 +

𝑏

𝛼
) 

∫ 𝑓
∞

−∞

(𝑡)𝛿(𝑡 − 𝜆)𝑑𝑡 = 𝑓(𝜆) 

𝑓(𝑡)𝛿(𝑡 − 𝜆) = 𝑓(𝜆)𝛿(𝑡 − 𝜆) 

Time period of linear 

combination of two 

signals 

Sum of signals is 

periodic if 
𝑇1

𝑇2
=
𝑚

𝑛
= 

rational number 

The fundamental period 

of g(t) is given by nT1 = 

mT2 provided that the 

values of m and n are 

chosen such that the 

greastest common 

divisor (gcd) between m 

and n is 1 

odd and 

even & 

symmetry 

xe(t) = xe(–t) 

x0(t) = –x0(–t) 

x(t) = xe(t) +x0(t) 

𝑥𝑒(𝑡) =
1

2
[𝑥(𝑡) + 𝑥(−𝑡)] 

𝑥0(𝑡) =
1

2
[𝑥(𝑡) − 𝑥(−𝑡)] 

 

Combined operation 

x(t) ⇒ Kx(t) + C 

Scale by K then shift by 

C …. 

x(t) ⇒ x(αt – β) 

Shift by β : [x(t – β)] 

Then compress by a:[x 

(t – β) ⇒ x(αt – β)] 

Or, compress by α: 

[x(t)⇒x(at)] then shift 

by 
𝛽

𝛼
:𝑥 {𝛼 (𝑡 −

𝛽

𝛼
)}= x (αt – 

β)}] 

Derivative 

of impulse 

(doublet) 

𝑑

𝑑𝑡
𝛿(𝑡) = 𝛿′(𝑡)

= {
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑡 = 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝛿′(𝛼𝑡) =
1

𝛼|𝛼|
𝛿′(𝑡) 

∫ 𝑥(𝑡)𝛿′(𝑡 − 𝜆)𝑑𝑡
∞

−∞

= −𝑥′(𝜆) 

x(t)δ′(t) = x(0)δ′(t) – 

x′(0)δ(t) 

Energy and power 

Periodic signals have 

infinite energy hence 

power type signals. 
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Properties 

1. x(t) × δ(t) = x(t)                                                                       2.   x(t – α) × δ(t – β) = x(t – α – β) 

3. δ(t) × δ(t) = δ(t)                                                                       4. [δ(t) × δ(t) × δ(t) × -------] = δ(t) 

5. δ(t – α) × δ(t – β) = δ(t – α – β) 

 

A. u(t) × u(t) = r(t)                                       B. u(t – α) × u(t – β) = r(t - α – β) 

C. u(t) × u(t) = ρ(t) = 
t2

2
 u(t)                    D. r(t – α) × u(t – β) = ρ(t - α – β) = 

(𝑡 – 𝛼 – 𝛽)2

2
 𝑢(𝑡 –  𝛼 –  𝛽) 

 

7. Gaussian function 

The Gaussian function is defined by the expression  

𝑔𝑎(𝑡) = 𝑒
−𝑎𝑡2 −∞ < 𝑡 <∞ 

The function is extremely useful in probability theory.  

 

Figure: Gaussian function 

8. Sinusoidal signal 

A continuous-time sinusoidal signal is given by  

x(t) = A sin (Ωt + ϕ) 

where A is the amplitude, Ω is the frequency in radians per second and ϕ is the phase angle in 

radians. 
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Figure: Sinusoidal signal 

9. Real exponential signal 

A real exponential signal is defined as  

x(t) = Aeat 

where both A and a are real. Depending on the value of ‘a’ we get different signals. 

 

Figure: (a) A dc signal (b) exponentially growing signal (c) exponentially 

decaying signal. 

10. Complex exponential signal 

The most general form of complex exponential is given by  

x(t) = est 

Where, s is a complex variable defined as  

s = σ + jΩ 

Depending on the values of σ and Ω, we get different signals.  

A. If σ = 0 and Ω = 0 then x(t) = 1; that is the signal x(t) is a pure DC signal.  

B. If Ω = 0, then s = σ and x(t) = eσt, which decays exponentially for σ < 0 and grows 

exponentially for σ > 0.  

C. If σ = 0 then s = ±jΩ gives x(t) = ejΩt a sinusoidal signal with ϕ = 0.  
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D. If σ < 0 with finite Ω, then x(t) is a exponentially decaying sinusoidal signal. 

E. If σ > 0 with finite Ω, then x(t) is a exponentially growing sinusoidal signal. 

11. BASIC OPERATION ON DISCRETE TIME SIGNAL: 

11.1. Addition of discrete-time signals 

Addition of discrete time sequence is done by adding the signals at every instant of time 

[n]. 

11.2. Multiplication of discrete time signal  

The multiplication of two discrete time signals x1[n] and x2[n] is obtained by multiplying 

the signal values at each instant of time n. 

11.3. Amplitude scaling of discrete time Signals  

Amplitude scaling is obtained by multiplying the signal x[n] with a constant A at each 

instant of time n. The amplitude-scaled is represented as A x[n]. 

11.4. Time-Scaling of discrete time Signals 

Consider a discrete-time signal x[n], if the independent variable n is scaled by a factor 

of n then x[an] is the time-scaled version of x[n]. There are two types of time scaling  

Note: Time-scaling of discrete time signals is different from continuous time signals, since 

discrete time signals are defined only for integer values of time variable n. 

Time Compression: Decimation or Down-sampling  

Compression of discrete time signals is also referred to as decimation. If a sequence x[n] 

is compressed by a factor a, some data samples of x[n] are lost. For example, if we 

compress x[n] by a factor of 2, the compressed signal y[n] = x[2n] contains only the 

alternate samples x[0], x[2], x[4] and so on. This operation losses data, and that is why 

time compression is called decimation or down-sampling. 

Time Expansion: Interpolation or Up-sampling 

In the discrete time domain, expansion is also referred to as interpolation. Let x[n] is 

expanded by a factor of 2 and the expanded signal is given as y[n] = x[n/2]. It is known 

that x[n] is defined only for integer value of n and zero for all non-integer values of n. 

Therefore, y[n] contains samples y[0] = x[0], y[2] = x[1], y[4] = x[2] and so on. The 

odd numbered samples y[1], y[3], y[5] all are zero.  
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Figure: Time scaling of DT signal, (a) Original DT sequence x[n], (b) 

Compressed (decimated) version of x[n], (c) Expanded (interpolated) 

version of x[n] 

 

11.5.  Time-Shifting of discrete time Signals 

The steps to obtain a time shifted signal from the original signal is given below. 

(i) If x[n] is given, then x[n + n0] is plotted by shifting x[n] to the left by n0. 

(ii) If x[n] is given, then x[n – n0] is plotted by shifting x[n] to the right by n0. 

(iii) If x[–n] is given, then x[– n –n0] is plotted by shifting x[– n] to the left by n0. 

(iv) If x[– n] is given, then x[– n + n0] is plotted by shifting x[– n] to the right by n0. 

Note: The waveform of x[n + n0] is identical to that of x[n] except for a shift of n0 time 

units towards the left-hand side. 

11.6. Time-Reversal (folding) of discrete time signals 

The folding operation produces a signal x[–n] which is the mirror image of x[n] about the 

vertical axis. 

 

https://byjusexamprep.com/


byjusexamprep.com 

13 

 

Figure: Time folding of DT Signal, (a) Original DT Sequence x[n], 

(b) Folded Version of x[n]. 

12. MULTIPLE OPERATIONS ON DISCRETE TIME SIGNALS 

Consider a discrete time signal x[n] with multiple transformation given as  

x[n] → A x[bn ± n0]  

Where a and b are assumed to be real numbers. The operations should be performed in the 

following order. 

Methodology 

Step 1: First multiply signal by a constant A to obtained amplitude scaled version of x[n] that 

is A x[n]. 

Step 2: Shift the signal A x[x] to the left or to right by n0 time units. This will be produced 

shifted signal A x[n ± n0].  

Step 3: Scale the signal A x[n ± n0] by b, the resulting signal represents A x[bn ± n0]. 

Step 4: If b is negative, reflect the scaled signal A x[bn ± n0] about the vertical axis. 

The correct sequence for the above transformation is  

x[n]
 A

amplitude
scaling

 

→           Ax[n]
 n→n–n0

time
shifting 

→              Ax[n– n0]
 n→b

time
scaling 

→           Ax[bn– n0] 

If time scaling is done before time shifting it will produce incorrect results. 

x[n]
 A

amplitude
scaling

 

→           Ax[n]
 n→bn

time
shifting 

→            Ax[bn]
 n→n–n0

time
scaling 

→             Ax[b(n– n0)] ≠ Ax[bn– n0] 
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13. BASIC DISCRETE TIME SIGNALS 

13.1. Discrete Impulse Function  

The unit-impulse function in discrete time is defined as 

𝛿[𝑛] = { 0,
1, 𝑛≠0
𝑛=0 

𝛿[𝑛] = {. . .0,0,0, 1
↑
, 0,0,0. . . } 

So, δ [n] is referred as the unit sample occurring at n = 0. 

Similarly, for the shifted function δ [n – k] the unit sample occurring at n = k 

That is,  

𝛿[𝑛– 𝑘] = { 0,
1, 𝑛≠𝑘
𝑛=𝑘 

 

Figure: (a) DT Unit Impulse Function (b) DT Shifted Unit Impulse Function 

Properties 

Following are some of the important properties of unit impulse function. 

(i) Product property 

x[n] δ[n – n0] = x[n0] δ[n – n0] 

(ii) Shifting property  

∑

𝑛=–∞
∞

𝑥[𝑛]𝛿[𝑛– 𝑛0] = 𝑥[𝑛0] 

(iii) Scaling Property  

The discrete-time unit impulse does not have a property corresponding to the scaling 

property of continuous-time unit impulse. Therefore, δ [n] = δ [an] for any nonzero 

integer value of n. 

13.2. Discrete Unit Step Function  

The unit-step sequence shown in figure 29 (a) is defined as, 

𝑢[𝑛] = {
1,   𝑛  ≥  0

0,   𝑛  <  0
 

Or, 𝑢[𝑛] = {. . .0,0,0, 1
↑
, 1,1,1. . . }  

Similarly, the shifted unit-step sequence is defined as follows 

𝑢[𝑛– 𝑘] = {
1,   𝑛– 𝑘 ≥ 0 𝑜𝑟 𝑛 ≥ 𝑘

0,  𝑛– 𝑘 < 0 𝑜𝑟 𝑛 < 𝑘
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Figure: (a) DT Unit Impulse Function,(b) Shifted DT Unit Impulse Function 

Properties  

Following are some of the important properties of unit step function. 

(i) δ[n] = u[n] – u[n – 1] 

(ii) ∑

𝑘=–∞
∞

𝛿[𝑘] = 𝑢[𝑛] 

(iii) ∑

𝑘=–∞
∞

𝛿[𝑛– 𝑘] = 𝑢[𝑛] 

13.3. Discrete Unit-ramp Function  

The unit ramp sequence is defined as 

𝑟[𝑛] = {

𝑛 𝑓𝑜𝑟 𝑛 ≥  0

0 𝑓𝑜𝑟 𝑛  <  0
 

Or, 𝑟[𝑛] = 𝑛𝑢[𝑛] = {0
↑
, 1,2,3,4,5, . . . } 

The graphical representation of r(n) is shown in figure 30. 

 

Figure: DT unit Ramp Function 

13.4. Unit-Rectangular Function 

The discrete-time unit rectangular sequence is shown in figure 31. It is defined as 

𝑟𝑒𝑐𝑡 [
𝑛

2𝑁
] = {

1, |𝑛|  ≤  𝑁 

0, |𝑛|  >  𝑁
 

 

Figure: DT unit rectangular function 

The signal rect [n/2N] has (2N + 1) unit samples over the interval – N ≤ n ≤ N. 

13.5. Unit-Triangular Function  

The discrete-time unit triangular sequence shown in figure 32 is defined as 
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𝑡𝑟𝑖 (
𝑛

𝑁
) = {

1–
|𝑛|

𝑁
 |𝑛|  ≤  𝑁

0,       |𝑛|  >  𝑁

 

 

Figure 1: DT unit Triangular Function 

The signal tri[n/N] has (2N + 1) unit samples over the interval – N ≤ n ≤ N. 

13.6. Unit-Signum Function  

The discrete-time function corresponding to the continuous time signum function is 

defined in figure 33.  

𝑠𝑔𝑛[ 𝑛] = {
1,  𝑛  >  0
0,  𝑛  =  0
– 1,  𝑛  <  0

 

 

Figure: DT unit Signum Function 
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CHAPTER 2: CLASSIFICATION OF SIGNALS   

 

1. Periodic and Aperiodic signal 

1.1 Condition for continuous-time periodic signal 

x(t + T) = x(t),  –∞ < t < ∞  …(i) 

Where T is the fundamental period of a signal. 

Frequency of the periodic signal is given by  

𝑓 =
1

𝑇
 

Angular frequency, measured in radian per second, is defined as 

𝜔 =
2𝜋

𝑇
 

1.2 Condition for discrete-time periodic signal 

x(n + N) = x(n),  –∞ < n < ∞ …(ii) 

Where N is called the fundamental period of a signal. 

The fundamental angular frequency or simply fundamental frequency of x[n] is given by,  

𝛺 =
2𝜋

𝑁
𝑚 

where, N = fundamental period 

           m = Smallest integer. 

Important point 

• The sum of two or more periodic discrete-time sequence is always periodic.  

• A constant signal is periodic and its fundamental period is undefined.  

• The sum of two or more periodic continuous-time signals need not be periodic. They will be 

periodic if and only if the ratio of their fundamental periods is rational. 

1.3. Steps to determine whether the sum of two or more periodic signals is periodic or 

not. 

Step 1: Determine the fundamental period of the individual signals in the sum signal, say T1, T2 

…… 

Step 2: Find the ratio of the fundamental period of the first signal with the fundamental periods 

of every other signals. 

Step 3: If all the ratios are rational, then the sum signal is also periodic, and its fundamental 

period is  

LCM of Numerator of T1, 𝑇2. . . . . .

𝐻𝐶𝐹 of Denominator of T1, 𝑇2. . . . . .
 

1.4. Steps to determine whether the sum of two or more sequence periodic or not 

Step 1: Determine the fundamental period of individual sequence in the sum sequence, say N1, 

N2 …. 

Step 2: If all the individual sequences are periodic then fundamental period is  

N = LCM of N1, N2, ….. 

https://byjusexamprep.com/


byjusexamprep.com 

18 

Step 3: If any one or more sequence in sum is aperiodic then the resultant sequences are also 

aperiodic.  

2. Even and odd signals 

Even signals are symmetric about origin whereas odd signals are antisymmetric about origin.  

 

 

An arbitrary signal x(t) can always be expressed as a sum of even and odd signals as  

x(t) = xe(t) + xo(t) 

Where, xe(t) is called the even part of x(t) and is given by  

𝑥𝑒(𝑡) =
1

2
[𝑥(𝑡) + 𝑥(−𝑡)]  

and xo(t) is called the odd part of x(t) and is given by  

𝑥0(𝑡) =
1

2
[𝑥(𝑡) − 𝑥(−𝑡)] 

Basic properties  

• The sum of two even function is even and any constant multiple of an even function is even.  

• The sum of two odd function is odd, and any constant multiple of an odd function is odd.  

• The product of two even functions is an even function  

• The product of two odd function is an even function.  

• The product of an even function and an odd function is an odd function.  

• Due to anti symmetry property, odd signal is always zero at t = 0 

therefore,  xo(0) = yo(0) = 0  

   or,            xo[0] = yo[0] = 0  

• Integration of a continuous-time odd signal within the limits [–T, T] results in a zero value ie. 

∫ 𝑥0(𝑡)𝑑𝑡
𝑇

−𝑇

= ∫ 𝑦0(𝑡)𝑑𝑡 = 0
𝑇

−𝑇

 

• The integral of a continuous-time even signal within the limits [–T, T] can be simplified as 

follow: 

∫ 𝑥𝑒(𝑡)𝑑𝑡
𝑇

−𝑇

= 2∫ 𝑥𝑒(𝑡)𝑑𝑡
𝑇

0
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• Adding the samples of discrete-time odd sequence xo[n] within the range [–N, N] is 0 ie, 

∑ 𝑥𝑜[𝑛]

𝑁

𝑛=−𝑁

= 0 = ∑ 𝑦0[𝑛]

𝑁

𝑛=−𝑁

 

• Adding the samples of discrete-time even sequence xe[n] within the range [–N, N] simplifies 

to  

∑ 𝑥𝑒[𝑛]

𝑁

𝑛=−𝑁

= 𝑥𝑒[0] + 2∑𝑥𝑒[𝑛]

𝑁

𝑛=1

 

Note: Even and odd signals are mutually exclusive. That is, if a signal is an even signal, it 

cannot be odd and vice versa. however, there could be certain class of signals that could 

neither be termed odd nor even signal. 

                                  

                                         

3. Energy and power signal 

Signals which are classified on the basis of finite energy or finite average power are known as 

energy or power signal. 

Power signal 

Periodic signal is called power signal and for power signal, P∞ = finite & E∞ = ∞. 

Signal is referred to as power signal, if and only if the average power of the signal satisfies the 

condition  

0 < P < ∞  

 

Energy signal 

For energy signal, P∞ = 0 & E∞ = finite  

Signal is referred as energy signal, if and only if the total energy of the signal satisfies the 

condition, 

0 < E < ∞ 

https://byjusexamprep.com/


byjusexamprep.com 

20 

In case of Continuous-time signal 

Total energy is given by  

𝐸 =

{
 
 

 
 𝑙𝑖𝑚
𝑇→∞

∫ |𝑥(𝑡)|2𝑑𝑡
𝑇/2

−𝑇/2

∫ |𝑥(𝑡)|2𝑑𝑡
∞

−∞

 

Average power is given by, 

𝑃 = 𝑙𝑖𝑚
𝑇→∞

1

𝑇
∫ |𝑥(𝑡)|2𝑑𝑡
𝑇/2

−𝑇/2

 

Average power of a periodic signal x(t) of fundamental period T is given by, 

𝑝 =
1

𝑇
∫ |𝑥(𝑡)|2𝑑𝑡
𝑇/2

−𝑇/2

 

In the case of discrete time signal 

Energy of signal is given as 

𝐸 = ∑ |𝑥[𝑛]|2
∞

𝑛=−∞

 

Average power is defined by, 

𝑃 = 𝑙𝑖𝑚
𝑁→∞

1

2𝑁 + 1
∑ |𝑥[𝑛]|2
𝑛=𝑁

𝑛=−𝑁

 

Average power in a periodic signal x(n) with fundamental period N is given by  

𝑝 =
1

𝑁
∑|𝑥[𝑛]|2
𝑁−1

𝑛=0
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4. Energy and Power Continuous time Signals 

 Energy Signal  Power Signal 

1. 
The total energy is obtained using 

𝐸 = 𝑙𝑖𝑚
𝑇→ ∞

∫ |𝑥(𝑡)|2𝑑𝑡
𝑇

−𝑇
 

1. 
The average power is obtained using 𝑃 =

𝑙𝑖𝑚
𝑇→ ∞

1

2𝑇
∫ |𝑥(𝑡)|2𝑑𝑡
𝑇

−𝑇
 

2. 

For the energy signal 

0 < E < ∞, and the average power 

P = 0. 

2. 

For the power signal 

0 < P < ∞, and the energy 

E = ∞. 

3. 
Non-periodic signals are energy 

signals. 
3. 

Periodic signals are power signals. However, all 

power signals need not be periodic. 

4. Energy signals are not time limited. 4. Power signals exist over infinite time. 

 

Properties of Power signal: 

1) Power signal has infinite energy 

2) 
𝑥(𝑡) 

  
→   𝑃

𝑥(– 𝑎𝑡  +  𝑏) 
  
→   𝑃

                                                                 

{
 
 

 
 𝐴  𝑠𝑖𝑛 𝑡 

  
→   

𝐴2

2

𝐴  𝑠𝑖𝑛   (2𝑡) 
  
→   

𝐴2

2

𝐴 𝑠𝑖𝑛   (2𝑡  −⋅ 
𝜋

6
)

  
→   

𝐴2

2

 

3) K x(𝑎𝑡  +  𝑏) 
  
→   𝐾2𝑃 

 

5. Causal and non-causal signal 

A continuous-time signal x(t) is said to be causal if x(t) = 0 for t < 0, otherwise the signal 

is non-causal. For an anti-causal signal x(t) = 0 for t > 0. 

Similarly, a discrete-time signal x(n) is said to be causal if x(n) = 0 for n < 0; otherwise 

the signal is non- causal. For an anti-causal discrete-time signal x(n) = 0 for n > 0. 
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CHAPTER 3: CLASSIFICATION OF SYSTEMS 

1. Linear, nonlinear systems 

A linear system is one which satisfies the principle of superposition and homogeneity or 

scaling. 

Consider a linear system characterized by the transformation operator T[]. Let x1, x2 are the 

inputs applied to it and y1, y2 are the outputs. Then the following equations hold for a linear 

system 

                                          y1 = T[x1], y2 = T[x2]         

Principle of homogeneity: T [a*x1] = a*y1, T [b*x2] = =b*y2 

           Principle of superposition: T [x1] + T [x2] = a*y1+b*y2 

           Linearity: T [a*x1] + T [b*x2] = a*y1+b*y2 

Where a, b are constants. 

2. Time variant, time invariant systems 

A system is said to be time variant system if its response varies with time. If the system 

response to an input signal does not change with time such system is termed as time invariant 

system. The behaviour and characteristics of time variant system are fixed over time. 

In time invariant systems if input is delayed by time t0 the output will also gets delayed by t0. 

Mathematically it is specified as follows 

y(t-t0) = T[x(t-t0)] 

For a discrete time invariant system the condition for time invariance can be formulated 

mathematically by replacing t as n*Ts is given as 

y(n-n0) = T[x(n-n0)] 

Where n0 is the time delay.  

Methodology  

1. Let y(t, t0) denotes the output corresponding to a delayed input x(t –t0). This can be obtained 

by substituting x(t) → x(t – t0) in the given input-output relation 

2. Now, obtain the delayed output y(t – t0), by directly substituting t → t – t0 in the given input-

output relation 

3. If y(t, t0) = y(t – t0), then the system is time invariant. Otherwise it is a time-varying system 

Similarly can be checked for discrete time signals also. 

3. Systems with and without memory (Dynamic and Static systems) 

A system is said to be static or memory less if its output at any instant depends on the input at 

that and does not depend on the past or future values of input. Otherwise, if the output at any 
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instant depends on the past or future values of input, then the system is said to be dynamic or 

with memory. 

4. Causal and Non-causal Systems 

A system is said to be causal, if the present value of the output signal depends only on the 

present value or past value or a combination of present and past values of the input signal. A 

system is said to be non-causal if it is not causal i.e., the present value of output depends on 

the future values of input. For example: (i) y(t) = x(t) + x(t – 1) is a causal system.  

(ii) The system y[t] = x[n] + x[n — 1] is causal  

NOTE: All memory less systems are causal systems because the output at any time instant 

depends only on the input at that time instant. Systems with memory can either be causal or 

non-causal. 

5. Invertible and Non-Invertible Systems 

A system is said to be invertible if the input to the system can be uniquely determined from the 

output. In order to have a system to be invertible, it is necessary that distinct inputs produce 

distinct outputs i.e., two different inputs cannot produce the same output. 

If the system is invertible, there exists an inverse system. If these two systems are cascaded as 

shown in the figure, then final output is same as the input. 

 

 

Figure:  CT Invertible System 

 

 

Figure:  DT Invertible System 

NOTE: Invertible system 

A system is invertible if for the given to inputs x1(t) and x2(t) with x1(t) ≠ x2(t), it must be true 

that y1(t) ≠ y2(t)  

 

6. Stable and Unstable systems 

A system is said to be bounded input and bounded output (BIBO) stable if and only if every 

bounded input produces a bounded output. 

The input signal x(t) is said to be bounded if there exists a finite number Mx such that |x(t)| ≤ 

Mx < ∞, for all t The system is BIBO stable if for any bounded input x(t) the output signal y(t) 

is also bounded i.e., |y(t)| ≤ My < ∞, for all t. If the system produces unbounded output for 

bounded input then it is unstable. 

A Discrete Time system is said to be BIBO stable if for any bounded input, it produces a bounded 

output.  
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The system is BIBO stable if for any bounded input x[n] the output signal y[n] is also bounded 

i.e. 

|y[n] |< My < ∞, for all n 

If the system produces unbounded output for a bounded input then it is unstable. 

7. Properties of LTI systems in Terms of impulse Response 

7.1. Memory less LTI system 

A CT system is said to be memory less if its output at any time depends only on the value of the 

input at the same time. A memory less, linear time invariant system has an input output relation 

that is of the form  

y(t) = Kx(t) 

where K is any arbitrary constant. By substituting x(t) = δ(t) in equation, memory less LTI 

system has the impulse response  

h(t) = Kδ(t) 

NOTE: Memory less LTI continuous system 

An LTI continuous system will be memory less if and only if its impulse response h(t) = 0 for t 

≠ 0. 

7.2. Causal LTI System 

An LTI system is said to be causal if the output at any instant depends only on the present and 

past values of the input. Consider a continuous-time LTI system whose output y(t) can be 

obtained using convolution integral given by  

𝑦(𝑡) = ∫ ℎ(𝜏)𝑥(𝑡– 𝜏)𝑑𝜏
∞

–∞

 

At t = 0 the output can be written as 

𝑦(0) = ∫ ℎ(𝜏)𝑥(– 𝜏)𝑑𝜏
∞

–∞

 

For a causal system the output depends only on present and past values of input. From equation, 

we can see that, if τ ≥ 0, the output depends on present and past values of input and the system 

is causal. But if τ < 0, then output depends on future values of input, therefore the system will 

be causal if h(τ) = 0 for τ < 0. 

NOTE: 

An LTI system will be causal if and only if its impulse response h(t) = 0  

for t < 0. 

7.3. Invertible LTI system 

An LTI system is said to be invertible if the input of the system can be recovered from the output. 

As we discussed earlier. if the inverse system is connected in cascade with the original system, 

then final output will be same as the input. This can be illustrated in below figure. 
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Figure:  An LTI inverse system 

NOTE: 

An LTI system is invertible if its impulse response satisfies h–1(t) * h(t) = δ(t) 

NOTE: 

An LTI system is BIBO stable if the impulse response is absolutely integrable 

∫ |𝒉(𝝉)|𝒅𝝉 <∞
∞

–∞

 

8. Table Showing Comparison of Different Signals with Their Properties 

S.No. 
Relationship between 

output and input 
Linearity Causality 

Static or 

Dynamic 

Time-

Variancy 

1. y(t) = x(t – t0) Linear Causal Dynamic 
Time-

invariant 

2. y(t) = t.x(t) Linear Causal Static Time-variant 

3. y(t) = x(t) + A 
Non-

linear 
Causal Static 

Time-

invariant 

4. y(t) = x(αt) Linear 
Non-

causal 
Dynamic Time-variant 

5. y(t) = =x2(t) 
Non-

linear 
Causal Static 

Time-

invariant 

6. y(t) = x(t2) Linear 
Non-

causal 
Dynamic Time-variant 

7. 𝑦(𝑡) =
𝑑𝑥(𝑡)

𝑑𝑡
 Linear Causal Dynamic 

Time-

invariant 

8. 𝑦(𝑡) = ∫ 𝑥(𝜏)𝑑𝜏
𝑡

−∞

 Linear Causal Dynamic 
Time-

invariant 

9. 𝑦(𝑡) = ∫ 𝑥(𝜏)𝑑𝜏
𝑎𝑡

−∞

 Linear 
Non-

causal 
Dynamic Time-variant 

10. y(t) = cos[x(t)] 
Non-

linear 
Causal Static 

Time-

invariant 
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11. y(t) = x(-t) Linear 
Non-

causal 
Dynamic Time-variant 

12. 
y(t) = cosω0t.x(t) 

 
Linear Causal Static Time-variant 

 

Note: 

⇒ All the static systems are causal systems but converse is not true.  

⇒ All the non-causal systems are dynamic systems but the converse is not true.  
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CHAPTER 4: LTI SYSTEM (CONVOLUTION))) 

 

1. Convolution Integral 

 

𝒚(𝒕) = ∫ 𝒙(𝝉)𝒉(𝒕 − 𝝉)𝒅𝝉
∞

∞

 

          or 

𝑦(𝑡) = 𝑥(𝑡) ⊗ ℎ(𝑡)  

𝑢(𝑡 + 𝛼) ⊗ 𝑢(𝑡 + 𝛽) = 𝑟(𝑡 + 𝛼 + 𝛽)  

𝒚(𝒕) = 𝒖(𝒕) ∗ 𝒓(𝒕) =
𝒕𝟐

𝟐
𝒖(𝒕)  𝑷𝒂𝒓𝒂𝒃𝒐𝒍𝒊𝒄𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 

𝑢(𝑡 + 𝛼)|⊗ 𝑟(𝑡 + 𝛽)| =
(𝑡 + 𝛼 + 𝛽)2

2
𝑢(𝑡 + 𝛼 + 𝛽)  

2. Properties of convolution Integral 

i. Commutative property 

𝑦(𝑡) = 𝑥(𝑡) ⊗ ℎ(𝑡) = ℎ(𝑡) ⊗ 𝑥(𝑡)  

ii. Distributive property 

x(t) ⊗ [h1(t)⊗ h2 (t)] = x(t) ⊗ h1 (t) + x(t) ⊗ h2(t)  

iii. Associative property 

[x(t) ⊗ h1(t)] ⊗ h2(t) = x(t) ⊗ [h1(t) ⊗ h2(t)] 

iv. Property based on time invariancy 

a. x(t) ⊗ h(t) = y(t) 

b. x(t + α) ⊗ h(t) = y(t + α) 

c. x(t) ⊗ h(t + β) = y(t + β) 

d. x(t + α) ⊗ h(t + β) = y(t + α + β)  

       v)  Differentiation property: 

If x(t) * h(t) = y(t) 

Then,  

dx(t)

dt
∗ h(t) =

dy(t)

dt
 

x(t) ∗
dh(t)

dt
=
dy(t)

dt
 

dx(t)

dt
∗
dh(t)

dt
=
d2y(t)

dt2
 

 

vi. When two equal width rectangular pulses of duration ‘T’ are convoluted, resultant signal is 

always a triangular pulse of duration “2T”. 
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vii. When two unequal width rectangular pulses of duration T1 and T2 are    convoluted, then the 

resultant signal is always a trapezoidal pulse of duration T1 +T2. 

viii. Invertibility of continuous time signals 

ℎ(𝑡) = ℎ1(𝑡) ⊗ ℎ2(𝑡) = 𝛿(𝑡)  

ix. Scaling property of convolution 

𝑥(𝑎𝑡) ⊗ ℎ(𝑎𝑡) =
1

𝑎
𝑦(𝑎𝑡)  

x. Stability 

For a continuous time LTI system to be stable, its impulse response should be absolutely 

integrable. i.e. 

∫ |ℎ(𝑡)|𝑑𝑡 <∞
∞

−∞

 

xi. System in cascade connection 

ℎ𝑐𝑎𝑠𝑐𝑎𝑑𝑒(𝑡) = ℎ1(𝑡) ⊗ ℎ(𝑡)  

xii. System in parallel connection 

ℎ𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑡) = ℎ1(𝑡) + ℎ2(𝑡)  

3. Discrete Time LTI System 

𝑥[𝑛] → 𝐿𝑇𝐼 𝑠𝑦𝑠𝑡𝑒𝑚 → 𝑦[𝑛] = 𝑥[𝑛] ⊗ ℎ[𝑛] 

output response of a LTI system to an input x[n] 

𝑦[𝑛] = 𝑥[𝑛] ⊗ ℎ[𝑛] = ∑ 𝑥[𝐾]ℎ[𝑛 − 𝐾]

∞

𝐾=−∞

 

convolution sum 

4. Properties of convolution sum 

i. Commutative property 

x[n] ⊗ h[n] = h[n] ⊗ x[n] 

ii. Distributive property 

x[n] ⊗ (h1[n] + h2[n]) = x[n] ⊗ h1[n] + x[n] ⊗ h2[n]  

iii. Associative property 

x[n] ⊗ h1[n] ⊗ h2[n] = x[n] ⊗ (h1[n] ⊗ h2[n])  

iv. Shifting property 

If y[n] = x[n] ⊗ h[n] 

then, x[n – n0] ⊗ h n [n – n1] = y[n – n0 – n1]  

v. Duration of convolution 

Let M be the duration (length) of sequence x[n] and N be the duration (length) of sequence h[n], 

then the duration of convolution sum. 

y[n] = x[n] ⊗ h[n] is M+N-1 

vi. Generalized Results 

a.  If x[n] = u(n)  

h[n] = u(n)  

then y[n] = x[n] ⊗ h[n] = u[n] ⊗ u[n] = (n + 1) u[n]  
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b. u[n + α] ⊗ u[n + β] = [n + α + β + 1] u [n + α + β] 

vii. Systems in parallel 

h[n] = h1[n] + h2[n] 

viii. System in cascade 

h[n] = h1[n] ⊗ h2[n] 
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CHAPTER 5: CONTINUOUS TIME FOURIER SERIES (CTFS)) 

1. Existence of Fourier Series 

The Fourier series for a periodic signal x(t) exists if it satisfies the following conditions which 

are knows as Dirichlet conditions: 

• The function x(t) has a finite number of maxima and minima in one period. 

• The function x(t) has a finite number of discontinuities in one period. 

• The function x(t) is absolutely integrable over one period, that is, 

∫ |𝑥(𝑡)|𝑑𝑡 <∞
𝑇

0

 

2. Fourier Series 

Fourier Series Form Mathematical Expression Coefficients 

Trigonometric 

x(t) = a0 

+∑(𝑎𝑛 𝑐𝑜𝑠 𝑛 𝜔0𝑡 + 𝑏𝑛 𝑠𝑖𝑛 𝑛𝜔0𝑡)

∞

𝑛=1

 

𝑎0 =
1

𝑇0
∫ 𝑥(𝑡)𝑑𝑡
𝑇0

 

𝑎𝑛 =
2

𝑇0
∫ 𝑥(𝑡) 𝑐𝑜𝑠(𝑛𝜔0𝑡) 𝑑𝑡
𝑇0

 

𝑏𝑛 =
2

𝑇0
∫ 𝑥(𝑡)(𝑠𝑖𝑛 𝑛𝜔0𝑡)𝑑𝑡
𝑇0

 

Exponential 𝑥(𝑡) = ∑ 𝑐𝑛𝑒
𝑗𝑛𝜔0𝑡

∞

𝑛=−∞

 𝑐𝑛 =
1

𝑇0
∫ 𝑥(𝑡)𝑒−𝑗𝑛𝜔𝑜𝑡𝑑𝑡
𝑇0

 

Polar or Cosine Form 

x(t) = A0 

+∑𝐴𝑛 𝑐𝑜𝑠(𝑛𝜔0𝑡 + 𝜃𝑛)

∞

𝑛=1

 

A0 = a0 

𝐴𝑛 = √𝑎𝑛
2 + 𝑏𝑛

2 

𝜃𝑛 = 𝑡𝑎𝑛
–1 (
𝑏𝑛
𝑎𝑛
) 

 
 

NOTE: 𝑐𝑛 =
1

2
(𝑎𝑛 − 𝑗𝑏𝑛), 

𝑐–𝑛 =
1

2
(𝑎𝑛 + 𝑗𝑏𝑛),. 

3. Properties of Fourier Series 

S.N. Property CTFS Coefficients 

1 Linearity 𝑝𝑥1(𝑡) + 𝑞𝑥2(𝑡)
 𝐶𝑇𝐹𝑆 
↔     𝑝𝑐𝑛 + 𝑞𝑑𝑛 

2 Time shifting 𝑥(𝑡 − 𝑡0)
 𝐶𝑇𝐹𝑆 
↔     𝑒−𝑗𝑛𝜔0𝑡0𝑐𝑛 

3 Time reversal 𝑥(−𝑡)
 𝐶𝑇𝐹𝑆 
↔     𝑐−𝑛 

4 Time scaling 
𝑥(𝑎𝑡)

 𝐶𝑇𝐹𝑆 
↔     𝑐𝑛 , 

With period aT0 

5 Multiplication 𝑥1(𝑡)𝑥2(𝑡)
 𝐶𝑇𝐹𝑆 
↔     ∑ 𝑎𝑙𝑏𝑛−𝑙

∞

𝑙=−∞

 

https://byjusexamprep.com/


byjusexamprep.com 

31 

6 Conjugation and conjugate symmetry 
𝑥 ∗ (𝑡)

 𝐶𝑇𝐹𝑆 
↔     𝑐−𝑛

∗  and 

𝑐−𝑛 = 𝑐𝑛
∗ for x(t) is real 

7 Time Differentiation 
𝑑𝑥(𝑡)

𝑑𝑡

 𝐶𝑇𝐹𝑆 
↔     𝑗𝑛𝜔0𝑐𝑛 

8 Time Integration ∫ 𝑥(𝜏)
𝑡

−∞

𝑑𝜏
 𝐶𝑇𝐹𝑆 
↔     

𝑐𝑛
𝑗𝑛𝜔0

 

9 Convolution 𝑥1(𝑡) ∗ 𝑥2(𝑡)
 𝐶𝑇𝐹𝑆 
↔     𝑇0𝑐𝑛𝑑𝑛 

10 
Parseval’s Theorem 

If x1(t) = x2(t) = x(t) 

∫ 𝑥1(𝑡)𝑥2
∗(𝑡)𝑑𝑡 = 𝑇0 ∑ 𝑐𝑛𝑑𝑛

∗

∞

𝑛=–∞

𝑇0

0

 

∫ |𝑥(𝑡)2|𝑑𝑡 = 𝑇0 ∑ |𝑐𝑛|
2

∞

𝑛=–∞

𝑇0

0

 

11 Frequency Shifting 𝑒𝑗𝑘𝜔0𝑡𝑥(𝑡)
 𝐶𝑇𝐹𝑆 
↔     𝑐𝑛−𝑘 

 

4. Condition for periodic signals to be symmetry 
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CHAPTER 6: CONTINUOUS TIME FOURIER TRANSFORM (CTFT)  

1. Fourier Transform 

Fourier transform is a transformation technique which transforms non-periodic signals from the 

continuous-time domain to the corresponding frequency domain. The Fourier transform of a 

continuous-time non periodic signal 𝑥(𝑡) is defined as  

𝑋(𝑗𝜔) = 𝐹[𝑥(𝑡)] = ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

 

If the frequency is represented in terms of cyclic frequency f (in Hz), then the above equation 

is written as 

𝑋(𝑗𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞

 

 

2. Existence of Fourier Transform 

Dirichlet Conditions 

(i) 𝑥(𝑡) is absolutely integrable. That is, 

∫ |𝑥(𝑡)|𝑑𝑡 <∞
∞

−∞

 

(ii) 𝑥(𝑡) has a finite number of maxima and minima and a finite number of discontinuities 

within any finite interval. 

3.MAGNITUDE AND PHASE SPECTRA 

The Fourier transform 𝑋(𝑗𝜔) of a signal 𝑥(𝑡) is in general, complex form can be expressed as 

𝑋(𝑗𝜔) = |𝑋(𝑗𝜔)| 𝑋(𝑗𝜔)  

The plot of |𝑋(𝑗𝜔)| versus 𝜔is called magnitude spectrum of x(t) and the plot of 𝑋(𝑗𝜔) versus 

𝜔is called phase spectrum. The amplitude (magnitude) and phase spectra are together called 

Fourier spectrum which is nothing but frequency response of 𝑋(𝑗𝜔) for the frequency range 

−∞ < 𝜔 <∞. 

 

4. Inverse Fourier Transform 

The inverse Fourier transform of 𝑋(𝑗𝜔) is given as 

𝑥(𝑡) =
1

2𝜋
∫ 𝑥(𝑗𝜔)𝑒𝑗𝜔𝑡𝑑𝜔

∞

−∞

 

 

5. Fourier Transform of Some Basic Signals 

 

S. No. Time Domain 𝒙(𝒕) Fourier Transform 𝑿(𝒋𝝎) 

1. 1 2𝜋𝛿(𝜔) 

2. 𝛿(𝑡) 1 

3. 𝑢(𝑡) 𝜋𝛿(𝜔) +
1

𝑗𝜔
 

4. 𝑒−𝑎𝑡𝑢(𝑡) 
1

𝑎 + 𝑗𝜔
 

5. 𝑒−𝑎|𝑡| 
2𝑎

𝑎2 + 𝜔2
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6. 𝑡𝑒−𝑎𝑡𝑢(𝑡) 
1

(𝑎 + 𝑗𝜔)2
 

7. 𝑡𝑛𝑒−𝑎𝑡𝑢(𝑡) 
𝑛!

(𝑎 + 𝑗𝜔)𝑛+1
 

8. 𝑠𝑔𝑛(𝑡) = {
1
−1
𝑡 > 0
𝑡 < 0

 
2

𝑗𝜔
 

9. 𝑒𝑗𝜔𝑜𝑡

 

2𝜋𝛿(𝜔 − 𝜔0)
 10. 𝑐𝑜𝑠(𝜔0𝑡)

 

𝜋[𝛿(𝜔 − 𝜔0) + 𝛿(𝜔 + 𝜔0)]
 

11. 𝑠𝑖𝑛(𝜔0𝑡)

 

𝜋

𝑗
[𝛿(𝜔 − 𝜔0) − 𝛿(𝜔 + 𝜔0)]

 

12. 𝑒−𝑎𝑡 𝑐𝑜𝑠(𝜔0𝑡) 𝑢(𝑡)

 

𝑎 + 𝑗𝜔

(𝑎 + 𝑗𝜔)2 + 𝜔0
2

 

13. 𝑒−𝑎𝑡 𝑠𝑖𝑛(𝜔0𝑡) 𝑢(𝑡)

 

𝜔0
(𝑎 + 𝑗𝜔)2 + 𝜔0

2

 

14. rect (
𝑡

𝜏
) = {

1
0

|𝑡| ≤ 𝜏/2
|𝑡| > 𝜏/2

 

𝜏 𝑠𝑖𝑛 𝑐 (
𝜔𝜏

2𝜋
)
 

15. 
𝑊

𝜋
𝑠𝑖𝑛 𝑐 (

𝑊𝑡

𝜋
)

 

rect (
𝜔

2𝑊
) = {

1
0

|𝜔| ≤ 𝑊
|𝜔| > 𝑊

 

16. 
𝛥 (
𝑡

𝜏
) = {1 −

|𝑡|

𝜏
|𝑡| ≤ 𝜏

0𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝜏 𝑠𝑖𝑛 𝑐2 (
𝜔𝜏

2𝜋
)
 

17. ∑ 𝛿(𝑡 − 𝑘𝑇0)

∞

𝑘=−∞  

𝜔0 ∑ 𝛿(𝜔 −𝑚𝜔0)

∞

𝑚=−∞  

18. 𝑒−𝑡
2/2𝜎2

 

𝜎√2𝜋𝑒−𝜎
2𝜔2/2

  

6. Properties of Fourier Transform 

 

S. No. Properly Time Signal x(t) Fourier Transform X(j 𝜔) 

1. Linearity ax1(t) + bx2(t) aX1(j𝜔) + bX2(j𝜔) 

2. Time Shifting X(t – t0) e-j𝜔t
0 X(j𝜔) 

3. Conjugation X*(t) X*(-j𝜔) 

4. Time Scaling X(at) 
1

|𝑎|
𝑋 (𝑗

𝜔

𝑎
) 

5. Differentiation in time 
𝑑𝑛𝑥(𝑡)

𝑑𝑡𝑛
 (j𝜔)n X(j𝜔) 

6. Differentiation in frequency domain t x(t) 𝑗
𝑑𝑋(𝑗𝜔)

𝑑𝜔
 

7. Time Integration ∫ 𝑥(𝜏)
𝑡

−∞

𝑑𝜏 
1

𝑗𝜔
𝑋(𝑗𝜔) + 𝜋𝑋(0)𝛿(𝜔) 

8. Frequency Shifting X(t) ej𝜔t X[j(𝜔 -𝜔0)] 

9. Duality X(t) 2𝜋𝑥(−𝑗𝜔) 

10. Time convolution X(t)*h(t) X(j𝜔) H(j𝜔) 

11. Frequency Convolution x1(t)x2(t) 
1

2𝜋
[𝑋1(𝑗𝜔) ∗ 𝑋2(𝑗𝜔)] 

12. Parseval’s theorem 𝐸𝑥 = ∫ |𝑥(𝑡)|2𝑑𝑡
∞

−∞

 𝐸𝑥 =
1

2𝜋
∫ |𝑋(𝑗𝜔)|2𝑑𝜔

∞

−∞

 

13. Time reversal X(-t) X(-j𝜔) 
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7. Important Points 

(i) If 𝑥(𝑡) is a real and even symmetric function, then its Fourier transform 𝑋(𝑗𝜔) is also 

real and even. 

(ii) If 𝑥(𝑡) is real and odd symmetric signal, its Fourier transform 𝑋(𝑗𝜔) is imaginary and 

odd symmetric. 

(iii) If 𝑥(𝑡) is an imaginary and even symmetric function, then its Fourier transform 𝑋(𝑗𝜔) 

is also imaginary and even symmetric. 

(iv) If 𝑥(𝑡) is imaginary and odd symmetric signal, its Fourier transform 𝑋(𝑗𝜔) is real and 

odd symmetric. 
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CHAPTER 7: LAPLACE TRANSFORM 

1. The Bilateral or Two-Sided Laplace Transform  

The bilateral or two-sided Laplace transform of a continuous-time signal x(t) is defined as 

𝑋(𝑠) = 𝐿{𝑥(𝑡)} = ∫ 𝑥(𝑡)𝑒–𝑠𝑡𝑑𝑡
∞

–∞

 

2. The Unilateral Laplace Transform  

The Laplace transform for causal signals and systems is referred to as the unilateral Laplace 

transform and is defined as follows: 

𝑋(𝑠) = 𝐿{𝑥(𝑡)} = ∫ 𝑥(𝑡)𝑒–𝑠𝑡𝑑𝑡
∞

0

 

Comparison table for unilateral and bilateral Laplace transform: 

             Bilateral LT 

 

          Unilateral LT 

1. X(s) ∫ 𝑥(𝑡)𝑒−𝑠𝑡
∞

−∞
𝑑𝑡 = 𝐿𝑇[𝑥(𝑡)] 1.  𝑋(𝑠) = ∫ 𝑥(𝑡)𝑒−𝑠𝑡

∞

0−
𝑑𝑡 = 𝑈𝐿𝑇[𝑥(𝑡)] \ 

 

2. Limits of integration: −∞ 𝑡𝑜  +∞ 

 

2. Limits of integration: 0− 𝑡𝑜 ∞ 

3. ROC is must 3. No need to specify ROC (ROC must 

always be RHS of s- plane) 

 

 

4. BLT is unique if ROC is specified 4.ULT is unique 

 

 

5. Handles both causal and non-

causal systems 

 

5.Handles only causal systems 

 

3. THE EXISTENCE OF LAPLACE TRANSFORM 

The bilateral Laplace transform of a signal x(t) exists if the following integral converges (i.e. 

finite) 

𝑋(𝑠) = ∫ 𝑥(𝑡)𝑒–𝑠𝑡𝑑𝑡
∞

–∞

 

Substituting s = σ + jω in above equation  

𝑋(𝑠) = ∫ 𝑥(𝑡)𝑒–(𝜎+𝑗𝜔)𝑡𝑑𝑡
∞

–∞

 

       

= ∫ [𝑥(𝑡)𝑒–𝜎𝑡]𝑒–𝑗𝜔𝑡𝑑𝑡
∞

–∞
 

The above integral converges if  

 

∫ |𝑥(𝑡)𝑒–𝜎𝑡|𝑑𝑡 <∞
∞

–∞
 

Hence, the Laplace transform of x(t) exists if x(t) e–σt is absolutely integrable.  

 

4. REGION OF CONVERGENCE 

Laplace transform of x(t) i.e. X(s) exists if 

∫ |𝑥(𝑡)𝑒–𝜎𝑡|𝑑𝑡 <∞
∞

–∞
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The range of values of σ (i.e. real part of s) for which the Laplace transform converges is known 

as Region of Convergence (ROC). 

 

5. Laplace Transform of Some Basic Function 

 

S. No. CT signal x(t) 

Laplace Transform 

𝑋(𝑠) = ∫ 𝑥(𝑡)𝑒–𝑠𝑡𝑑𝑡
∞

–∞

 
ROC 

1. δ(t) 1 Entire s-plane 

2. u(t) 
1

𝑠
 Re{s} > 0 

3. u(t) – u(t –a) 
1

𝑠
(1– 𝑒–𝑎𝑠) Re{s} > 0 

4. e–at u(t) 
1

𝑎 + 𝑠
 Re {s} > – a 

5. t u(t) 
1

𝑠2
 Re {s} > 0 

6. t nu(t) 
𝑛!

𝑠𝑛 + 1
 Re {s} > 0 

7. te–at u(t) 
1

(𝑎 + 𝑠)2
 Re {s} > – a 

8. tne–at u(t) 
𝑛!

(𝑎 + 𝑠)𝑛+1
 Re {s} > – a 

9. cos(ω0t)u(t) 
𝑠

𝜔0
2 + 𝑠2

 Re{s} > a 

10. sin(ω0t)u(t) 
𝜔

𝜔0
2 + 𝑠2

 Re {s} > 0 

11. x(t) = cos2(ω0t)u(t) 
(2𝜔0

2 + 𝑠2)

𝑠(4𝜔0
2 + 𝑠2)

 Re {s} > 0 

12. x(t) = sin2(ω0t) u(t) 
2𝜔0

2

𝑠(4𝜔0
2 + 𝑠2)

 Re {s} > 0 

13. 
x(t) = exp (–at) cos(ω0t) 

u(t) 

𝑎 + 𝑠

(𝑎 + 𝑠)2 +𝜔0
2 Re {s} > – a 

14. x(t)=exp(–at) sin(ω0t) u(t) 

𝑤0

(𝑎 + 𝑠)2 + 𝑤0
2

  
Re {s} > – a 

 

6. Properties of Laplace Transform 

S.N. Property Time function x(t) ROC 

1. Linearity 𝑎𝑥1(𝑡) + 𝑏𝑥2(𝑡)
 𝐿 
↔  𝑎𝑋1(𝑠) + 𝑏𝑋2(𝑠) At least R1 ∩ R2 

2. Time scaling 𝑥(𝑎𝑡)
 𝐿 
↔  

1

|𝑎|
𝑋 (
𝑠

𝑎
) aRx 

3. Time shifting 𝑥(𝑡 − 𝑡0)
 𝐿 
↔  𝑒−𝑠𝑡0𝑋(𝑠) Rx 

4. Frequency shifting 𝑒𝑠0𝑡𝑥(𝑡)
 𝐿 
↔  𝑋(𝑠 − 𝑠0) Rx + Re(s0) 
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5. Time differentiation 
𝑑𝑥(𝑡)

𝑑𝑡

 𝐿 
↔  𝑠𝑋(𝑠) − 𝑥(0) Rx 

6. time integration ∫ 𝑥(𝜏)
𝑡

0

𝑑𝜏
 𝐿 
↔  

𝑋(𝑠)

𝑠
 R ∩ Re(s) >0 

7. s-domain differentiation −𝑡𝑥(𝑡)
 𝐿 
↔  

𝑑𝑋(𝑠)

𝑑𝑠
 Rx 

8. Conjugation x*(𝑡)
 𝐿 
↔  X*(𝑠 ∗) Rx 

9. Time convolution 𝑥1(𝑡) ∗ 𝑥2(𝑡)
 𝐿 
↔  𝑋1(𝑠)𝑋2(𝑠) atleast R1 ∩ R2 

10. s-domain convolution 𝑥1(𝑡)𝑥2(𝑡)
 𝐿 
↔  

1

2𝜋𝑗
[𝑋1(𝑠) ∗ 𝑋2(𝑠)] atleast R1 ∩ R2 

11. Initial value theorem 𝑥(0+) = 𝑙𝑖𝑚
𝑡→0+

𝑥(𝑡) = 𝑙𝑖𝑚
𝑠→∞

𝑠𝑋(𝑠)  

12. Final value theorem 𝑥(∞) = 𝑙𝑖𝑚
𝑡→∞

𝑥(𝑡) = 𝑙𝑖𝑚
𝑠→0
𝑠𝑋(𝑠)  

13. Time Reversal 𝑥(−𝑡)
 𝐿 
↔  𝑋(−𝑠) –Rx 

 

7.IMPULSE RESPONSE AND TRANSFER FUNCTION 

Let 𝑥(𝑡)
 𝐿 
↔  𝑋(𝑠) is the input and 𝑦(𝑡)

 𝐿 
↔  𝑌(𝑠) is the output of an LTI continuous time system 

having impulse response ℎ(𝑡)
 𝐿 
↔  𝐻(𝑠). The response y(t) of the continuous time system is given 

by convolution integral of input and impulse response as 

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡– 𝜏)
∞

–∞

𝑑𝜏 

Using convolution property of Laplace transform the above equation can be written as. 

Y(s) = X (s) H (s) 

Thus  𝐻(𝑠) =
𝑌(𝑠)

𝑋(𝑠)
 

Where, H(s) defined as the transfer function of the system. It is the Laplace transform of the 

impulse response.  

Impulse response is  

ℎ(𝑡) = 𝐿–1{𝐻(𝑠)} = 𝐿–1 {
𝑌(𝑠)

𝑋(𝑠)
} 
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8. STABILITY AND CAUSALITY  

For a causal system the ROC of its rational transfer function H(s) is to the right of the righter 

most pole. 

For the system to be stable (i.e. the ROC of its system function H(s) includes the entire jω-

axis) the righter most pole of H(s) must be to the left of jω axis. 

NOTE: A causal system with rational transfer function H(s) is stable is and only if all its poles 

lie in the negative half of s-plane. 

  9. SYSTEM FUNCTION FOR INTERCONNECTED LTI SYSTEMS 

1. Parallel Connection 

The parallel interconnection of two LTI continuous systems having impulse responses 

h1(t) and h2 (t) is shown in the below figure. 

 

Figure: Parallel connection of LTI system  in s-domain 

2. Cascaded Connection  

Two systems with impulse responses h1(t) and h2 are connected in cascaded configuration 

as shown in below figure. 

 

Figure: Cascaded connection of LTI system in s-domain 

10. ZERO INPUT RESPONSE AND ZERO-STATE RESPONSE 

The Laplace transform gives total response which includes zero input response and zero state 

response components. 

Total response = Zero input response + Zero state response 

10.1 Zero- input response: 

The input is considered as zero and response is due to the initial conditions i.e. initial 

conditions generates the output. 

10.2  Zero state response: 

The initial conditions are considered as zero (i.e. zero state) and response is due to 

applied input. The term zero state signifies the system is initially released. 

This is also termed as forced response as we are applying input (i.e., force to the 

system) with zero initial condition.  
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CHAPTER 8: Z TRANSFORM 

 

1. The Bilateral or Two-sided Z-transform 

The z-transform of a discrete time sequence x[n], is defined as 

𝑋(𝑧) = 𝛧{𝑥[𝑛]} = ∑ 𝑥[𝑛]𝑧−𝑛
∞

𝑛=−∞

 

2. The unilateral or One-sided z-transform 

The z-transform for causal signals and systems is referred to as the unilateral z-transform. For 

a causal sequence 

z[n] = 0, for n < 0 

Therefore, the unilateral z-transform is defined as 

𝑋(𝑧) = ∑𝑥[𝑛]𝑧−𝑛
∞

𝑛=0

 

3. EXISTENCE OF Z-TRANSFORM 

For existence of z-transform 

|X(z)| < ∞ 

∑ 𝑥[𝑛]𝑟−𝑛 <∞

∞

𝑛=−∞

 

 

4. Standard z transforms with their respective ROCs. 

S.No. DT sequence x[n] z-transform ROC 

1. δ[n] 1 Entire z-plane 

2. δ [n – n0] Z–n0 
Entire z-plane except 

z = 0 

3. u[n] 
1

1– 𝑧–1
=

𝑧

𝑧– 1
 |z| > 1 

4. αnu[n] 
1

1–𝛼𝑧–1
=

𝑧

𝑧–𝛼
 |z| > |α| 

5. αn–1u[n – 1] 
𝑧–1

1–𝛼𝑧–1
=

𝑧

𝑧–𝛼
 |z| > |α| 

6. nu[n] 
𝑧–1

(1– 𝑧–1)2
=

𝑧

(𝑧– 1)2
 |z| > 1 

7. nαnu[n] 
𝛼𝑧–1

(1–𝛼𝑧–1)2
=

𝛼𝑧

(𝑧– 𝛼)2
 |z| > α 

8. cos (Ω0n) u[n] 

1– 𝑧–1 𝑐𝑜𝑠 𝛺0
1– 2𝑧–1 𝑐𝑜𝑠 𝛺0 + 𝑧

–2
𝑜𝑟 

𝑧[𝑧– 𝑐𝑜𝑠 𝛺0]

𝑧2– 2𝑧 𝑐𝑜𝑠 𝛺0 + 1
 

|z| > 1 

9. sin(Ω0n) u[n] 

𝑧–1 𝑠𝑖𝑛 𝛺0
1– 2𝑧–1 𝑐𝑜𝑠 𝛺0 + 𝑧

–2
𝑜𝑟 

𝑧 𝑠𝑖𝑛 𝛺0
𝑧2– 2𝑧 𝑐𝑜𝑠 𝛺0 + 1

 

|z| > 1 

10. αn cos(Ω0n)u[n] 
1– 𝛼𝑧–1 𝑐𝑜𝑠 𝛺0

1– 2𝛼𝑧–1 𝑐𝑜𝑠 𝛺0 + 𝛼
2𝑧–2

𝑜𝑟 

|z| > |α| 
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𝑧[𝑧– 𝛼 𝑐𝑜𝑠 𝛺0]

𝑧2– 2𝛼𝑧 𝑐𝑜𝑠 𝛺0 + 𝛼
2
 

11. αn sin(Ω0n) u[n] 

𝛼𝑧–1 𝑠𝑖𝑛 𝛺0
1– 2𝛼𝑧–1 𝑐𝑜𝑠 𝛺0 + 𝛼

2𝑧–2
𝑜𝑟 

𝛼𝑧 𝑠𝑖𝑛 𝛺0
𝑧2– 2𝛼𝑧 𝑐𝑜𝑠 𝛺0 + 𝛼

2
 

|z| > α 

12. 
r αnsin (Ω0n + θ) 

u[n] with α ϵ R 

𝐴 + 𝐵𝑧–1

1 + 2𝛾𝑧–1 + 𝛼2𝑧–2
𝑜𝑟 

𝑧(𝐴𝑧 + 𝐵)

𝑧2 + 2𝛾𝑧 + 𝛾2
 

|z| ≤ |α|(n) 

 

5. Properties of z- transform 

Properties Time domain z-transform ROC 

Linearity ax1[n] + bx2[n] aX1(z) + bX2(z) at least R1 ∩ R2 

Time shifting 

(bilateral or non-

causal) 

x[n – n0] 𝑍−𝑛0𝑋(𝑧) Rx except for the 

possible deletion or 

addition of z = 0 or z 

= ∞ x[n + n0] 𝑍𝑛0𝑋(𝑧) 

Time shifting 

(unilateral or causal) 

x[n – n0] 𝑧−𝑛0 (𝑋(𝑧) + ∑ 𝑥[−𝑚]𝑧𝑚

𝑛0

𝑚=1

) 
Rx except for the 

possible deletion or 

addition of z = 0 or z 

= ∞ 
x[n + n0] 𝑧𝑛0 (𝑋(𝑧) − ∑ 𝑥[𝑚]𝑧−𝑚

𝑛0−1

𝑚=1

) 

Time reversal x[–n] 𝑋 (
1

𝑧
) 1/Rx 

Differentiation in z 

domain 
nx[n] −𝑧

𝑑𝑋(𝑧)

𝑑𝑧
 Rx 

Scaling in z domain anx[n] 𝑋 (
𝑧

𝑎
) |𝑎|𝑅𝑥 

Time scaling 

(expansion) 
xk [n] = x[n/k] X(zk) (Rx)1/k 

Time differencing x[n] – x[n – 1] (1 – z–1) X(z) 

 

Rx, except for the 

possible deletion of 

the origin 

Time convolution x1[n] * x2[n] X1(z)X2(z) at least R1 ∩ R2 

Conjugations x*[n] X*(z*) Rx 
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Initial-value theorem  𝑥[0] = 𝑙𝑖𝑚
𝑧→∞

𝑋(𝑧) provided x[n] = 0 for 

n < 0 

Final-value theorem  

x[∞] 

= 𝑙𝑖𝑚
𝑛→∞

𝑥(𝑛) 

= 𝑙𝑖𝑚
𝑥→1
(𝑧 − 1)𝑋(𝑧) 

provided x[∞] exists 

 

6.Causality 

A linear time-invariant discrete time system is said to be causal if the impulse response 

h[n] = 0, for n < 0 and it is therefore right-sided. The ROC of such a system H(z) is 

the exterior of a circle. If H(z) is rational then the system is said to be causal if 

1. The ROC is the exterior of a circle outside the outermost pole; and 

2. The degree of the numerator polynomial of H9z) should be less than or equal to the 

degree of the denominator polynomial. 

NOTE: ∑ |ℎ[𝑛]|∞
𝑛=−∞ <∞ condition for the stability. 
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CHAPTER 9: DISCRETE TIME FOURIER TRANSFORM (DTFT) 

1. DTFT 

The DTFT of a non-periodic sequence x[n] is given by  

 𝑋(𝑒𝑗𝛺) = 𝐹{𝑥[𝑛]} = ∑ 𝑥[𝑛]𝑒−𝑗𝛺𝑛∞
𝑛=−∞   

 

2. Magnitude and Phase Spectra  

The Fourier transform X(ejΩ) of x[n] is, in general, complex and can be expressed as 

X(ejΩ) = |X(ejΩ)| ∠X(ejΩ) 

The plot of |X(ejΩ)| versus Ω is called magnitude spectrum of x[n] and the plot of ∠X(ejΩ) 

versus Ω is called phase spectrum. The amplitude (magnitude) and phase spectra are 

together called Fourier spectrum of signal x[n].  

 

3. Existence of DTFT 

The DTFT X(ejΩ) of a DT sequence x[n] exists, if x[n] is absolutely summable i.e.  

 ∑ |𝒙[𝒏]| <∞∞
𝒏=−∞  

4. Inverse DTFT 

The inverse discrete time Fourier transform of X(ejΩ) is defined as: 

 𝑥[𝑛] =
1

2𝜋
∫ 𝑋(𝑒𝑗𝛺)𝑒𝑗𝛺𝑛𝑑𝛺
𝜋

−𝜋
 

5. Special forms of DTFT 

 

 

 

 

 

 

 

 

 

 

6. DTFT of some basic DT signals 

Signal Fourier Transform 

1 2𝜋 ∑ 𝛿(𝛺– 2𝜋𝑘)

∞

𝑘=−∞

 

δ[n] 1 

u[n] 
1

1– 𝑒–𝑗𝛺
+ ∑ 𝜋𝛿(𝛺– 2𝜋𝑘)

∞

𝑘=–∞

 

𝑎𝑛𝑢[𝑛], |𝑎| < 1 
1

1– 𝑎𝑒–𝑗𝛺
 

Discrete Sequence x[n] DTFT X(ejΩ) 

Real and Even Real and Even 

Real and Odd Imaginary and Odd 

Imaginary and Even Imaginary and Even 

Imaginary and Odd Real and Odd 
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𝛿[𝑛– 𝑛0] 𝑒–𝑗𝛺𝑛0 

𝑒–𝑗𝛺0𝑛 2𝜋 ∑ 𝛿(𝛺–𝛺0– 2𝜋𝑘)

∞

𝑘=−∞

 

𝑐𝑜𝑠 𝛺0 𝑛 𝜋 ∑ {𝛿(𝛺–𝛺0– 2𝜋𝑘) + 𝛿(𝛺 + 𝛺0– 2𝜋𝑘)}

∞

𝑘=–∞

 

𝑠𝑖𝑛 𝛺0 𝑛 
𝜋

𝑗
∑ {𝛿(𝛺–𝛺0– 2𝜋𝑘)– 𝛿(𝛺 + 𝛺0– 2𝜋𝑘)}

∞

𝑘=–∞

 

∑ 𝛿[𝑛–𝑘𝑁]

+∞

𝑘=−∞

 
2𝜋

𝑁
∑ 𝛿 (𝛺–

2𝜋𝑘

𝑁
)

∞

𝑘=−∞

 

(𝑛 + 1)𝑎𝑛𝑢[𝑛] 
|𝑎| < 1 

1

(1– 𝑎𝑒–𝑗𝛺)2
 

 

7. Properties of DTFT 

S. No. Property Sequence DTFT 

1. Linearity a1x1[n] + a2x2[n] a1X1(ejΩ) + a2X2(ejΩ) 

2. Periodicity x[n] X(ejΩ) = X(ej(Ω+2π)) 

3. Time shifting x[n – k] e–jΩk X(ejΩ) 

4. Frequency shifting 𝑒𝑗𝛺0𝑛𝑥[𝑛] 𝑋(𝑒𝑗(𝛺−𝛺0)) 

5. Time reversal x[–n] X(e-Ω) 

6. Time expansion 
X[n/k], n is a multiple 

integer of k 
X(ejkΩ) 

7. 
Differentiation in the 

frequency domain 
nx[n] 𝑗

𝑑

𝑑𝛺
𝑋(𝑒𝑗𝛺) 

8. Conjugation x*[n] X*(e–jΩ) 

9. 
Convolution in time 

Domain 
x1[n] * x2 [n] X1(ejΩ) X2(ejΩ) 

10. 
Convolution in the 

frequency domain 
x1[n]x2[n] 

1

2𝜋
[𝑋1(𝑒

𝑗𝛺) ∗ 𝑋2(𝑒
𝑗𝛺)] 

11. Time differencing x[n] – x[n – 1] (1 – e–jΩ) X(ejΩ) 

12. Time accumulation ∑ 𝑥[𝑛]

∞

𝑛=–∞

 

1

(1– 𝑒–𝑗𝛺)
𝑋(𝑒𝑗𝛺) 

+𝜋𝑋(0) ∑ 𝛿(𝛺–2𝜋𝑚)

∞

𝑚=−∞

 

13. Parseval’s Theorem 
energy of the sequence x[n] is given as ∑ |𝑥[𝑛]|2 =∞

𝑛=−∞
1

2𝜋
∫ |𝑋(𝑒𝑗𝛺)|

2
𝑑𝛺

𝜋

−𝜋
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888.88 8. Transfer Function & Impulse Response 

Let 𝑥[𝑛]
 𝐷𝑇𝐹𝑇 
↔      𝑋(𝑒𝑗𝛺) be the input sequence and 𝑦[𝑛]

 𝐷𝑇𝐹𝑇 
↔      𝑌(𝑒𝑗𝛺) be the output sequence 

of the system. Then, response (output) of the system is given by following convolution 

sum. 

𝑦[𝑛] = 𝑥[𝑛] ∗ ℎ[𝑛] 

by taking DTFT using the convolution property, we have  

Y(ejΩ) = X(ejΩ) H(ejΩ) 

𝐻(𝑒𝑗𝛺) =
𝑌(𝑒𝑗𝛺)

𝑋(𝑒𝑗𝛺)
 (Transfer function) 

NOTE: X(ejΩ) exists if the ROC of X(z) includes the unit circle. We know that ROC does not 

contain any poles. Therefore, it is concluded that DTFT of any sequence x[n] can be obtained 

from its z-transform X(z) if the poles of X(z) are inside the unit circle. 
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CHAPTER 10: SAMPLING THEOREM 

1. Sampling  

It is the process of converting a continuous time-signal x(t) into a discrete time signal x[n] by 

taking samples of the continuous time signal at discrete intervals of time. That is, 

𝑥[𝑛]  =  𝑥(𝑡)|𝑡=nT𝑠 

      Where, n is any integer. 

2. SAMPLING THEOREM 

The sampling theorem states that, a band-limited signal x(t) having the highest frequency 

component fm Hz can be exactly recovered or reconstructed from its samples taken at a rate of 

2fm samples per second. Hence, the sampling rate or sampling frequency must satisfy this 

condition, 

fs > 2fm 

The sampling interval  

𝑇𝑠 =
1

𝑓𝑠
≤
1

2𝑓𝑚
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CHAPTER 11: DISCRETE FOURIER TRANSFORM (DFT) 

1. Discrete Fourier Transform 

The discrete-time Fourier transform of the sequence x[n] is given by 

𝑋𝐷𝐹𝑇[𝑘] = ∑ 𝑥[𝑛]𝑒
−𝑗2𝜋𝑘𝑛
𝑁

𝑁−1

𝑛=0

 

where k = 0, 1, 2, …., (N – 1) 

Discrete Fourier transform XDFT[k] is also denotes as X[k] or DFT{x[n]} 

 

 

2. INVERSE DISCRETE FOURIER TRANSFORM (IDFT) 

The inverse Discrete Fourier transform of XDFT(k) is defined as 

𝑥[𝑛] =
1

𝑁
∑ 𝑋[𝑘]𝑒𝑗2𝜋𝑛𝑘/𝑁
𝑁−1

𝑘 = 0

 

 

3. Properties of DFT 

Discrete Sequence x[n] DFT X[k] 

Real and Even Real and Even 

Real and Odd Imaginary and Odd 

Imaginary and Even Imaginary and Even 

Imaginary and Odd Real and Odd 

 

S. No. Properties Discrete time Signal Discrete Fourier Transform 

1 Linearity ax1[n] + bx2[n] aX1[k] + bX2[k] 

2 Periodicity x[n + N] = x[n] X[k + N] = X[k] 

3 Circular time shift x[n –n0 ]N 𝑋(𝑘)𝑒
−𝑗2𝜋𝑘𝑛0

𝑁  

4 Time reversal x[N – n] X(N – k) 

5 Conjugation x*[n] X*[N – k] 

6. Circular frequency shift 𝑥[𝑛]𝑒
𝑗2𝜋𝑘0𝑛
𝑁  X[(k – k0)]N 

7. Multiplication x1[n] x2[n] 
1

𝑁
(𝑋1[𝑘] ∗ 𝑋2[𝑘]) 

8 Circular Convolution x1[n] ⊛ x2[n] 

 
X1[k] X2[k] 

9 Circular correlation 

�̄�𝑥𝑦(𝑚)
 

= ∑𝑥[𝑛]𝑦 ∗ [𝑛–𝑚]𝑁

𝑁−1

𝑛=0

 
X(k)Y*(k) 

10 Parseval’s relation ∑𝑥1[𝑛]𝑥2
∗[𝑛]

𝑁−1

𝑛=0

 
1

𝑁
∑𝑋1[𝑘]𝑋2

∗[𝑘]

𝑁−1

𝑘=0
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CHAPTER 12: FAST FOURIER TRANSFORM (FFT)  

 

1. Properties of Twiddle factor: 

(i) Symmetry property:  

𝑊𝑁
𝑘+
𝑁
2 = −𝑊𝑁

𝑘 

(ii) Periodicity property: 

𝑊𝑁
𝑘+𝑁 = 𝑊𝑁

𝑘 

Note: The fast Fourier transform algorithm exploits the two basic properties of the twiddle factor 

and reduces the number of complex multiplications required to perform DFT from N2 to 
𝑁

2
𝑙𝑜𝑔2 𝑁. 

2. IDFT USING FFT ALGORITHM 

FFT algorithm can be used to compute an inverse DFT without any change in the algorithm. 

The inverse DFT of an N-point sequence X(k), k = 0, 1, …., N – 1 is defined as 

𝑥(𝑛) =
1

𝑁
∑𝑋(𝑘)𝑊−𝑛𝑘

𝑁−1

𝑘=0

 

Where, W = e-j2π/N 

Take complex conjugate and multiply by N, we obtain 

𝑵𝒙 ∗ (𝒏) =
𝟏

𝑵
∑𝑿 ∗ (𝒌)𝑾−𝒏𝒌

𝑵−𝟏

𝒌=𝟎

 

The desired output sequence x(n) can then found by complex conjugating the DFT and dividing 

by N to give 

𝑥(𝑛) =
1

𝑁
[∑𝑋 ∗ (𝑘)𝑊−𝑛𝑘

𝑁−1

𝑘=0

]

∗
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CHAPTER 13: DIGITAL FILTERS   

b 

1. There are two class of digital filters, depending on the duration of the impulse response. 

1.(i) Finite-duration impulse response (FIR) digital filter, the operation of which 

governed by linear constant coefficient difference equations of a non-recursive nature. 

The transfer function of FIR digital filter is a polynomial in z-1. 

It has three important properties. 

• They have finite memory and therefore, any transient start up is of limited duration. 

• They are always BIBO stable. 

• They can realize a desired magnetic response with exactly linear phase (i.e. with no phase 

distortion.) 

1.(ii) Infinite-duration impulse response (IIR) digital filter, whose input output 

characteristics are governed by linear constant coefficient difference equations of recursive 

nature. 

2. Basic Elements of Block Diagram 

Elements of Block 

diagram 
Time Domain Representation s-domain Representation 

Adder 

  

Constant multiplier 

 

 

Unit delay element 
  

Unit advance element 
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3. COMPARISION BETWEEN FILTERS 

Table 2: Comparison Between Non-Recursive & Recursive filter 

Non-Recursive filters Recursive filters 

𝑦(𝑛) = ∑ 𝑎𝑘𝑥(𝑛 − 𝑘)

∞

𝑘=−∞

 

for causal system 

=∑𝑎𝑘𝑥(𝑛 − 𝑘)

∞

𝑘=0

 

For causal i/p sequence 

𝑦(𝑛) = ∑𝑎𝑘𝑥(𝑛 − 𝑘)

𝑁

𝑘=0

 

It gives FIR output. All zero filter. 

It is always stable. 

𝑦(𝑛) = ∑ 𝑎𝑘𝑥(𝑛 − 𝑘)

𝑁𝑝

𝑘–𝑁𝑓

−∑𝑏𝑘𝑦(𝑛 − 𝑘)

𝑀

𝑘=1

 

for causal system 

𝑦(𝑛) =∑𝑎𝑘𝑥(𝑛 − 𝑘)

𝑁𝑝

𝑘0

−∑𝑏𝑘𝑦(𝑛 − 𝑘)

𝑀

𝑘=1

 

It gives IIR output but not always. 

Ex: y(n) = x(n) – x(n – 3) + y(n – 1) 

General TF:𝐻(𝑧) =
∑ 𝑎𝑘𝑧

−𝑘𝑁𝑝
𝑘=–𝑁𝐹

1−∑ 𝑏𝑘𝑧
−𝑘𝑀

𝑘=1
 

bk = 0 for Non-Recursive 

Nf = 0 for causal system 

 

 

4. Comparison Between FIR & IIR Filters 

FIR filters IIR filters 

1. Linear phase no phase distortion. Linear phase, phase distortion. 

2. Used in speech processing, data transmission 

& correlation processing. 

Graphic equalizers for digital audio, tone 

generators filters for digital telephone 

3. Realized non recursively. Realized recursively. 

4. Stable 

Stable or unstable. 

H(n) = an(n),   a < 1 stable 

= 0,       a > 1 unstable 

5. Filter order is more Less 

6. More co-efficient storage Less storage 

7. Quantization noise due to finite precision 

arithmetic can be made negligible 
Quantization noise 

8. Co-efficient accuracy problem is less severe. More 

9. Used in multi rate DSP (variable sampling 

rate) 
 

 

 

**** 
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