

Electrical Engineering

Basic of Power Electronics

SHORT NOTES

1. Basics of power electronics

Important Fourier series representations:

S.	Signal	Fourier series expansion
No		
1.	$ \begin{array}{c c} V_0 \\ \hline A \\ \hline -A \\ \end{array} $ ωt	$V_0 = \sum_{n=1,3,5} \frac{4A}{n\pi} \sin n\omega t$
2.	$ \begin{array}{c c} & V_0 \\ & A \\ \hline & A \\ & A \\ \hline & A \\ \hline & A \\ & A \\ \hline & A \\ & A \\ \hline & A \\ & A \\ \hline $	$V_0 = \sum_{n=1,3,5} \frac{4A}{n\pi} Sin(n\omega t - n\alpha)$
3.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_0 = \sum_{n=1,3,5} \frac{4A}{n\pi} \cos\left(\frac{n\alpha}{2}\right) \sin(n\omega t - \frac{n\alpha}{2})$
4.	A \$\frac{1}{A} \frac{1}{A} \fr	$V_0 = \sum_{n=1,5,7} \frac{6A}{n\pi} Sinn\omega t :$ Each pulse width of 60^0 Duration

• For output of half wave uncontrolled rectifier Fourier series expression is

$$V_0 = \frac{A}{\pi} + \frac{A}{2} \sin \omega t + \sum_{n=2,4,6} \frac{2A}{\pi (1-n^2)} \cos n\omega t \qquad ; \quad \text{Where A= Amplitude of signal}$$

• For output of Full wave uncontrolled rectifier Fourier series expression is

$$V_0 = \frac{2A}{\pi} + (fundamental = 0) + 2\sum_{n=2,4,6} \frac{2A}{\pi(1-n^2)} \cos n\omega t$$

• Two switching quarter per cycle (topic of inverters):

Fourier series expansion is $V_0 = \frac{4A}{n\pi} (1 - 2\cos n\alpha_1 + 2\cos n\alpha_2)$

2. Power semiconductor devices

S.No	Device	Features
1	Diode	Uncontrolled device
		Unipolar and unidirectional
2	BJT/MOSFET/IGBT	Fully controlled
		 Unipolar and unidirectional (Without body
		diodes)
3	SCR and GTO	SCR-Semi controlled
		GTO- Fully controlled
		Both are Bipolar and unidirectionaL
4	TRIAC	Semi controlled device
		Bipolar and Bidirectional

- Conduction losses in BJT is less than MOSFET.
- Switching time in MOSFET is less than BJT.
- Majority carrier devices: MOSFET and Schottky diode are having positive temperature coefficient property.
- Minority carrier devices: SCR, BJT, GTO, IGBT, Power diode and having Negative Temperature Coefficient property.
- IGBT was developed in 1988 by combining the advantage of both BJT and MOSFET. IGBT possesses high input impedance like a MOSFET and has low on-state voltage as in a BJT. It does not suffer from secondary breakdown problems. The turn-on speed can be controlled by the rate of change of gate-source voltage.
- The turn-off time of IGBT consists of three intervals: (i) delay time, (ii) initial fall time (iii) final fall time.
- SIT is a high-power high-frequency solid-state semiconductor device. It is basically n⁺ n⁻ n device with a buried grid-like p⁺ gate structure
- The <u>SIT</u> has been used in audio, VHF/UHF and microwave amplifiers. The reliability, noise, switching speed and radiation hardness of <u>SIT</u> are claimed to be superior to <u>MOSFET</u>. It has lower gate-to-source capacitance and resistance.
- SCR is a four-layer, three junctions, p-n-p-n switching device. It has three terminals namely anode, cathode, and gate. It is called SCR because silicon is used for construction and its operation is similar to a rectifier i.e., very low resistance in forward conduction and very high resistance in a reverse direction.
- SCR is a unidirectional device as the current can be low only from anode to cathode and it is a bilateral switch which means it can block the voltage of either direction. SCR does not allow conduction in forward direction until its gate terminal gets a proper triggering signal.
- SCR has three modes of operations:
 - i. Forward blocking mode
 - ii. Forward conduction mode
 - iii. Reverse blocking mode

- SCR can be turned-on by following methods:
 - i. Forward voltage triggering
 - ii. $\frac{dv}{dt}$ triggering
 - iii. gate triggering
 - iv. light triggering
- SCR turn-off means that it has changed from on to off state. SCR turn-off contains two steps:
- (a) Reducing the anode current below holding current
- (b) Removal of stored charges from the semiconductor layer
- Circuit turn-off time (t_c) is defined as the time between the instant anode current becomes zero and the instant reverse voltage due to the practical circuit reaches zero.
- For reliable turn-off t_c should be greater than t_q, otherwise the device may turn on at an undesired instant, a process called commutation failure.
- For reliable and satisfactory operation of SCR, it must be protected against all abnormal conditions. These conditions are over voltages, over currents, high $\frac{di}{dt}$, false triggering

due to high value of $\frac{dv}{dt}$ and spurious signal across gate-cathode terminal may lead to unwanted turn-on.

- By using a small inductor called a limiting inductor in series with the anode circuit can be used for $\frac{di}{dt}$ protection.
- If the rate of rise of the suddenly applied voltage across the thyristor is high the device may get turned on. Such phenomena of turning on a thyristor called $\frac{dv}{dt}$ turn-on, it must be avoided as it leads to false operation. False turn-on of an SCR by large change of voltage even without application of gate signal can be prevented by using a snubber circuit in parallel with the device.
- To suppress these over voltages, voltage clamping device is used. a voltage clamping
 device is a non-linear resistor connected across SCR. Voltage clamping device has falling
 resistance characteristic with increasing voltage. Under normal conditions the device has
 a high resistance and draws only a small leakage current. When a voltage surge appears,
 the voltage clamping device operates in lower assistance region and produces a short
 circuit across SCR.
- To protect SCR from overcurrent we can use two devices namely fast acting current limiting fuse (FACLF), circuit Breakers.
- During conduction power loss occurs in SCR due to
 - i) Forward conduction loss
 - ii) gate triggering loss
 - iii) Switching loss
 - iv) loss due to leakage current

1. Static V-I characteristics of SCR:

- Latching Current: Minimum current required for conduction even after the gate pulse is removed.
- · Holding Current: Minimum Current below which SCR is turned off
- Usually Latching current is 1.5 to 3 times of Holding current

2.Thermal equivalent circuit:

 θ_{JC} is the thermal resistance between the junction and case θ_{CS} is the thermal resistance between the case and sink

 θ_{SA} is the thermal resistance between the sink and ambiance

$$P_{avg} = \frac{T_J - T_C}{\theta_{JC}} = \frac{T_C - T_S}{\theta_{CS}} = \frac{T_S - T_A}{\theta_{SA}}$$

Rating of thyristor $\propto \sqrt{P_{avg}}$

3.Charge stored in depletion region:

Let Q_R be the charge stored in depletion region of power diode.

$$\begin{split} Q_R &= \frac{1}{2}.I_{RM}.t_{rr} \\ I_{RM} &= \frac{2Q_R}{t_{rr}} = t_a.\frac{di}{dt} \end{split}$$

$$\begin{split} &If~t_{a}\approx t_{rr},~t_{rr}=\sqrt{\frac{2Q_{R}}{di~/~dt}}\\ &I_{RM}=t_{rr}.\frac{di}{dt}=\sqrt{2Q_{R}\left(\frac{di}{dt}\right)}\\ &t_{rr}~\propto \sqrt{Q_{R}}\\ &Q_{R}~\propto I_{f}\\ &t_{rr}~\propto \sqrt{I_{f}}\\ &I_{RM}~\propto \sqrt{I_{f}} \end{split}$$

4.Design of Snubber circuit:

For Inductor (L):

$$\left(\frac{di}{dt}\right)_{max} = \frac{V_s}{L}$$

$$L = \frac{V_s}{\left(\frac{di}{dt}\right)_{max}}$$

For resistor (R):

$$\left(\frac{dv_s}{dt}\right)_{max} = R\left(\frac{di}{dt}\right)_{max}$$
or $R = \frac{L}{V_s} \left(\frac{dv_s}{dt}\right)_{max}$

For Capacitor (C):

$$C = \left(\frac{2\xi}{R}\right)^2 L \qquad \qquad \text{where } 0.5 < \xi < 1$$

5. Series and parallel operation of SCR:

• String efficiency = $\frac{\text{Actual voltage/current rating of string.}}{\text{n} \times \text{individual voltage/current rating of SCR}}$

Where n is the number of SCR in string.

Derating factor, DRF=1- string efficiency.

• Series operation:

Static equalizing resistance R = $\frac{nV_{bm} - V_{s}}{(n-1)\Delta I_{b}}\Omega$

Dynamic equalizing capacitance C = $\frac{(n-1)\Delta Q}{nV_{hm} - V_s}$ F

• Parallel operation.

When current required by the load is more than the rated current of a single thyristor, SCRs are connected in parallel.

String efficiency =
$$\frac{I_1 + I_2}{2I_1} = \frac{1}{2} \left(1 + \frac{I_2}{I_1} \right)$$

6.Ratings of Thyristors:

 $1)I_{\mathsf{Trms}}$ Rating: The actual Thyristor rms in a converter must always be less than thyristor RMS ratings.

I_{Trms} value in a converter < I_{frms} rating.

2)I_{Tavg} Rating: (average on-state current ratings)

$$(I_{Tavg})$$
 rating = $\frac{(I_{T})_{rms}}{Form Factor of thyristor current waveform}$

Average rating of a thyristor depends on:

- Conduction angle of thyristor increases which decrease the form factor and then increase the average thyristor rating.
- Type of load: Smoothness of thyristor current waveform increase the FF decreases and therefore $(I_{Tavg})_{Rating}$ increases.
- Type of converter: because FF of thyristor waveform depends on average value of converter.

3)I²t Rating of thyristor: specified to select a proper fuse for overcurrent protection.

 I^2t current Rating of thyristor > I^2t current Rating of Fuse.

4)Surge current rating of thyristor:

General values

$$(I_T)_{rms} = 35A$$

$$(I_S)_{rms} = 2000A$$
 for one cycle and 3000A for 2MW

<u>N-cycle surge current rating:</u> (I_m) : It is the surge current that the SCR can withstand for n-cycles.

$$I_{Sn}^2 \left(\frac{nT}{2}\right) = I^2 t$$
 rating of thy from the equation, we can find the value of I_{Sn}'

One-cycle surge current rating (Is): It is the surge current that the SCR can withstand for a cycle. $I_{s1}^2 = (I_{sn})^2 \qquad \boxed{I_{S_1} = \sqrt{n} \, I_{sn}}$

Sub-cycle surge current rating: It is the surge current that the SCR can withstand for

1/nth period of a cycle.
$$(I_{s/n})^2 = (I_{sn})^2$$

$$\frac{I_s}{n} = \sqrt{n} I_{s1}$$

BYJU'S

3. RECTIFIERS

• For n-pulse converter:

Source current has $nk \pm 1$ Harmonics k=1,2,3...

Output voltage has nk Harmonics.

1.Single Phase Half Wave controlled rectifier:

R-load:

Average output voltage
$$V_{o,avg} = \frac{V_m}{2\pi} (1 + \cos \alpha)$$

RMS output voltage
$$V_{o,rms} = \sqrt{\frac{V_m^2}{4\pi} \left(\left(\pi - \alpha \right) + \frac{sin 2\alpha}{2} \right)}$$

RL-Load:

Average output voltage
$$V_{o,avg} = \frac{V_m}{2\pi} (\cos \alpha - \cos \beta)$$

RMS output voltage
$$V_{o,avg} = \frac{V_m}{2\sqrt{\pi}} \left(\sqrt{(\beta - \alpha) + \frac{1}{2}(sin2\alpha - sin2\beta)} \right)$$

Circuit Turnoff time: $t_c = \frac{2\pi - \beta}{\omega}$

For a constant output current refer below table:

	1-φ Full conv.	3 φ Full conv.	1 φ Semi conv.	3 ¢ semi conv.
Output voltage	$\frac{2V_{m}}{\pi}\cos\alpha$	$\frac{3V_{m,line}}{\pi}\cos\alpha$	$\frac{V_m}{\pi} \big(1 + \cos \alpha \big)$	$\frac{3V_{m,line}}{2\pi} (1 + \cos \alpha)$
Fundamental	$\frac{2\sqrt{2}}{\pi}I_0$	$\frac{\sqrt{6}}{\pi}I_0$	$\frac{2\sqrt{2}}{\pi}I_0\cos\left(\frac{\alpha}{2}\right)$	$\frac{\sqrt{6}}{\pi} I_0 \cos\left(\frac{\alpha}{2}\right)$
source current	π 10	π 10	$\pi^{-10}\cos(2)$	$\pi^{-10}\cos(2)$
RMS (I _{s1})				
Source current	I ₀	$\sqrt{\frac{2}{3}}I_0$	$I_0\sqrt{\frac{\pi-lpha}{\pi}}$	$\alpha < 60^{\circ} \rightarrow I_{\circ} \sqrt{\frac{2}{2}}$
RMS (I _s)		√3 0	10 √ π	« = 00 / 10√3
				$\alpha \le 60^{0} \to I_{0} \sqrt{\frac{2}{3}}$ $\alpha > 60^{0} \to I_{0} \sqrt{\frac{\pi - \alpha}{\pi}}$
Displacement	COSα	COSα	$\cos\left(\frac{\alpha}{2}\right)$	$\cos\left(\frac{\alpha}{2}\right)$
power factor			2)	(2)
(DPF)				

≻

- Distortion factor (DF) = $\frac{I_{s1}}{I_s}$
- Input power Factor= DF*DPF
- Total Harmonic distortion = $\sqrt{\left(\frac{1}{DF}\right)^2 1}$

For R-Load refer below table:

	3	3 ∮ full wave rectifier
Continuous	$\alpha < 30^{0}$	$\alpha < 60^{\circ}$
	$\frac{3V_{m,line}}{2\pi}\cos\alpha$	$\frac{3V_{m,line}}{\pi}\cos\alpha$
	Hint: Integrate from $30+\alpha$ to $150+\alpha$ and Time period $T=120^{\circ}$ and function take in phase, you will get above formula Like this $\frac{1}{\left(\frac{2\pi}{3}\right)}\int_{30+\alpha}^{150+\alpha} V_{m,phase} \sin \omega t \ dwt$	Hint: Integrate from $60+\alpha$ to $120+\alpha$ and Time period $T=60^0$ and function take in line, you will get above formula
Discontinuous	$\alpha \geq 30^0$ $V_0 = \frac{3V_{m,phase}}{2\pi} \left(1 + \cos\left(\alpha + \frac{\pi}{6}\right)\right)$ Hint: Integrate from $30 + \alpha$ to 180^0 and Time period $T = 120^0$ and function take in phase, you will	$\alpha \geq 60^0$ $V_0 = \frac{3V_{m,line}}{\pi} \left(1 + \cos\left(\alpha + \frac{\pi}{3}\right)\right)$ $\textbf{Hint:}$ $Integrate from 60 + \alpha to 180^0$ and $Time period T = 60^0 and$ $function take in line, you will$
	get above formula	get above formula

Effect of Source Inductance:

$$V_0 = \frac{V_m}{2\pi} \big(1 + cos \, \alpha \big) - f L_s I_0$$

$$I_0 = \frac{V_m}{\omega L_S} (\cos \alpha - \cos(\alpha + \mu))$$

• **1** ♦ Full wave:

$$V_0 = \frac{2V_m}{\pi} \cos \alpha - 4fL_sI_0$$

$$I_0 = \frac{V_m}{2\omega L_S} \left(\cos\alpha - \cos(\alpha + \mu\right)$$

Regulation =
$$\frac{\cos \alpha - \cos(\alpha + \mu)}{2\cos \alpha}$$

Displacement power factor: $\cos\left(\alpha + \frac{\mu}{2}\right)$

➤ 3\psi Full Wave:

$$V_0 = \frac{3V_{\text{m,line}}}{\pi} \cos \alpha - 6fL_s I_0$$

$$I_0 = \frac{V_{m,line}}{2\omega L_S} (\cos \alpha - \cos(\alpha + \mu))$$

Single Phase Full converter:

Source current waveform:

Fundamental source current is $i_{s1} = \frac{2\sqrt{2}}{\pi}I_0$

Single phase half controlled or Semi converter:

Source current waveform:

• In this there are two configurations:

Symmetrical configuration: On one leg one thyristor and one diode Unsymmetrical configuration: on one leg two thyristors or two diodes

 γ represents conduction in below table

D- Diode, T-Thyristor, α -Firing angle

Symmetrical	Unsymmetrical	Full converter with
configuration	configuration	Freewheeling diode
$\gamma_{T} = \pi$	$\gamma_{T} = \pi - \alpha$	$\gamma_{T} = \pi - \alpha$

$\gamma_{D} = \pi$	$\gamma_{D} = \pi + \alpha$	$\gamma_D = 2\alpha$

3-Phase:

3Phase half wave-controlled rectifiers:

- Take phase voltage reference in the integration function for the below mentioned limits for calculations
- For R-Load $\alpha < 30^{0}$

 α < 30°: Continuous conduction: 30+ α to 150+ α

 $\alpha \ge 30^{0}$: Discontinuous conduction: 30+ α to 180⁰

• For current stiff load:

Without Freewheeling diode: 30+ α to 150+ α

With Freewheeling diode: $\alpha < 30^{\circ}:30 + \alpha$ to 150+ α

 $\alpha \geq 30^{0}$: 30+ α to 180°

 Mentioned limits are useful while calculating output voltage average or RMS values for those particular conditions. Use phase as reference while doing calculations of average and RMS

3Phase full wave-controlled Rectifiers:

- Take Line voltage reference in the integration function for the below mentioned limits for calculations
- Limits are 60+ α to 120+ α for calculating output voltage average or RMS value
- Circuit Turnoff time:

$$\alpha \le 60^{\circ}$$
, $t_c = \frac{240^{\circ} - \alpha}{\circ}$

$$\alpha > 60^{0}$$
 , $t_c = \frac{180^{0} - \alpha}{\omega}$

3Phase semi converter:

 $\alpha < 60^{0}$ it is 6 Pulse converter

 $\alpha \ge 60^{\circ}$ it is 3 Pulse converter

Freewheeling Action Duration:

 $\alpha < 60^{\circ}$, Duration = zero (No freewheeling action)

$$\alpha \ge 60^{0}$$
, Duration= $3\left(\alpha - \frac{\pi}{3}\right)$

• Limits for calculating output voltage average or RMS values (Line voltages are reference)

$$\alpha < 60^{\circ}$$
: $60^{\circ} + \alpha$ to $120^{\circ} \rightarrow V_{AB}$ reference

:
$$120^{\circ}$$
 to $180^{\circ} + \alpha \rightarrow V_{\Delta C}$ reference

$$\alpha \geq 60^{0}$$
 : $60^{0} + \alpha$ to $240^{0} \rightarrow V_{AC}$ reference

4. Commutation Techniques

1) Class A Commutation (Load Commutation/self-commutation)

- For successful Load commutation, circuit must be under damped
- For under damped $I = I_n e^{-\alpha t} \sin \omega_r t$

$$I_p = \frac{V_s}{\omega_r L} \text{, } \alpha = \text{Dampingfactor} = \frac{R}{2L} \text{, } \omega_r^2 = \omega_0^2 - \alpha^2$$

 ω_r is ringing frequency, ω_0 = Natural frequency = $\frac{1}{\sqrt{LC}}$

• Conduction time of thyristor, $t_c = \frac{\pi}{\omega_r}$

2) Class B Commutation/Current Commutation/Resonant pulse commutation:

- Voltage across capacitor $V_c = V_s \cos \omega_0 t$
- Circuit turn-off time for the main thyristor (T_1); tc = $C \frac{V_{ab}}{I_0}$

$$V_{ab} = V_s \cos \omega_0 (t_3 - t_2)$$

Where t_3 = time when the main thyristor is turned off t_2 = time when auxiliary thyristor is turned off

$$\omega_0(\mathsf{t}_3 - \mathsf{t}_2) = \mathsf{sin}^{-1} \left(\frac{\mathsf{I}_0}{\mathsf{I}_p} \right)$$

- Main thyristor peak current =I₀
- Auxiliary Thyristor peak current= $V_s \sqrt{\frac{C}{L}}$
- Conduction time of auxiliary thyristor= $\pi\sqrt{LC}$

• Conduction time of main thyristor = $\pi \sqrt{\text{LC}} + \sqrt{\text{LC}} \sin^{-1}\!\left(\frac{I_0}{I_p}\right)$

Minimum Conduction time of main thyristor= $\pi\sqrt{LC}$

Maximum Conduction time of main thyristor = $\frac{3}{2}\pi\sqrt{LC}$

- Time for which capacitor current exists = $\frac{C}{I_0} (V_{ab} + V_s)$
- 3) Class C Commutation (Impulse/Complementary commutation):

When T_1 is turned on at t=0

- The charging current $I_s = \frac{V_s}{R_z}$. $e^{-t/R_2 C}$
- Voltage across capacitor

$$V_c(t) = V_s(1 - e^{-t/R_2 C})$$

When T_1 is to be turned-off, T_2 is turned-on at T_1

- The charging current $I_c(t) = -\frac{2V_s}{R_1} \cdot e^{-t/R_1C}$
- The Voltage across capacitor

$$V_c(t) = V_s[2e^{-t/R_1C} - 1]$$

• Maximum current though thyristor T₁

$$I_{T_1(max)} = V_s \left[\frac{1}{R_1} + \frac{2}{R_2} \right]$$

• Maximum current though thyristor T2,

$$I_{T_2(max)} = V_s \left[\frac{2}{R_1} + \frac{1}{R_2} \right]$$

Circuit turn-off time t_{c_1} for thyristor T_1

$$t_{c_1} = R_1 C \ln(2)$$

Circuit turn-off time $\,t_{c_{\scriptscriptstyle 2}}$ for thyristor T_2

$$t_{c_2} = R_2 C \ln(2)$$

4) Class D Commutation (Voltage commutation):

- Maximum thyristor current Peak= $I_0 + V_s \sqrt{\frac{C}{L}}$
- Auxiliary Thyristor peak current= I_0
- Capacitor peak current = $V_s \sqrt{\frac{C}{L}}$
- \bullet Circuit turn-off time for main thyristor T_1 is $\,t_{_{C}}=C\frac{V_{_{S}}}{I_{_{0}}}$

• Circuit turn-off time for main thyristor (TA)

$$t_{c_1} = \frac{\pi}{2\omega_0}$$

5. DC-DC Converters

Buck Converter:

In Buck regulator, the average output voltage V_{0} is less than the input voltage $V_{\text{S}}.$

$$\Delta I = \frac{\left(V_{S} - V_{0}\right)T_{ON}}{L}$$

$$\Delta I = \frac{V_0 T_{OFF}}{L}$$

$$V_{0}\,=\,V_{S}\,\frac{T_{ON}}{T}=V_{S}\alpha$$

Where ΔI = I_2 – I_1 is the peak-to-peak current ripple of the inductor L.

The peak-to-peak ripple current is
$$\Delta I = \frac{V_{\text{S}}\alpha\left(1-\alpha\right)}{\text{fl.}}$$

The peak to ripple voltage of the capacitor is $\Delta V_{C} = \frac{V_{S}\alpha\left(1-\alpha\right)}{8LCf^{2}}$

Condition for continuous inductor current and capacitor voltage:

If I_L is average inductor current, the inductor ripple current $\Delta I = 2I_L$, which gives the critical value of the inductor L_C as $L_C = L = \frac{(1-\alpha)R}{2f}$

If V_C is the average capacitor voltage, the capacitor ripple voltage $\Delta V_C=2V_0$, which gives the critical value of capacitor C_C as $C_C=C=\frac{1-\alpha}{16Lf^2}$

Boost Converter:

$$\Delta I = \frac{V_{\text{S}} T_{\text{ON}}}{L} = \frac{\left(V_{\text{0}} - V_{\text{S}}\right) T_{\text{OFF}}}{L}$$

where $\Delta I = I_2$ – I_1 is peak to peak ripple current of the inductor L. The average output voltage,

$$V_0 = V_S \frac{T}{T_{OFF}} = \left(\frac{1}{1-\alpha}\right) V_S$$

The peak to peak current ripple is, $\Delta I = \frac{V_S \alpha}{fl}$

The peak to peak ripple voltage of capacitor, $\Delta V_C = \frac{I_0 \alpha}{fC}$

Condition of continuous inductor current and capacitor voltage:

If V_C is the average capacitor voltage, the capacitor ripple voltage $\Delta V_C=2V_0$, which gives the critical value of the capacitor C_C as $C_C=\frac{\alpha}{2fR}$

If I_L is average inductor current, the inductor ripple current $\Delta I=2I_L$, which gives the critical value of the inductor L_C as $L_C=L=\frac{\alpha \left(1-\alpha\right)^2R}{2f}$

Buck Boost Converter:

$$\Delta I = \frac{V_{\text{S}}T_{\text{ON}}}{I} = \frac{-V_{\text{0}}T_{\text{OFF}}}{I}$$

where ΔI = I_2 - I_1 is the peak to peak ripple current of inductor L.

The average output voltage is, $V_0 = -\frac{V_S \alpha}{1 - \alpha}$

The peak to peak current ripple is, $\Delta I = \frac{V_S \alpha}{fL}$

peak to peak ripple voltage of the capacitor is, $\Delta V_{\text{C}} = \frac{I_{0}\alpha}{\text{fC}}$

Condition of continuous inductor current and capacitor voltage:

If V_C is the average capacitor voltage, the capacitor ripple voltage, $\Delta V_C = 2V_0$, which gives the critical value of the capacitor C_C as $C_C = \frac{\alpha}{2fR}$.

If I_L is average inductor current, the inductor ripple current $\Delta I=2I_L$, which gives the critical value of the inductor L_C as $L_C=L=\frac{\left(1-\alpha\right)^2R}{2f}$

Expression for V ₀	BUCK	BOOST	BUCK BOOST
In CCM	$V_0 = \alpha V_s$	$V_0 = \frac{V_s}{1 - \alpha}$	$V_0 = -\frac{\alpha V_s}{1 - \alpha}$
In DCM	$V_0 = \frac{\alpha}{\beta} V_s$	$V_0 = \frac{\beta V_s}{\beta - \alpha}$	$V_0 = -\frac{\alpha V_s}{\beta - \alpha}$

Steady State analysis of Type A Chopper:

Average output voltage

$$V_0 = \alpha V_s$$

 $V_{or} = \sqrt{\alpha} \ V_{S}$ (Rms value of output voltage)

$$I_{\text{max}} = \frac{V_{\text{S}}}{R} \left[\frac{1 - e^{-T_{\text{on}}/T_{\text{a}}}}{1 - e^{-T/T_{\text{a}}}} \right] - \frac{E}{R}$$

$$I_{\text{min}} = \frac{V_{\text{S}}}{R} \Bigg\lceil \frac{e^{T_{\text{on}}/T_{\text{a}}} - 1}{e^{T/T\text{a}} - 1} \Bigg\rceil - \frac{E}{R}$$

Where, $T_a = load$ time constant

$$T_a = \frac{L}{R}$$

Current ripple,

$$\left(\Delta I\right) = I_{\text{max}} - I_{\text{min}}$$

$$\Delta I = \frac{\text{V}_{\text{S}}}{R} \Bigg[\frac{\left(1 - e^{-\text{T}_{\text{on}}/\text{T}_{\text{a}}}\right) \! \left(1 - e^{-\text{T}_{\text{off}}/\text{T}_{\text{a}}}\right)}{\left(1 - e^{-\text{T}/\text{T}_{\text{a}}}\right)} \Bigg] \label{eq:deltaI}$$

$$T_{on} = \alpha T$$

$$T_{off} = (1 -) \alpha T$$

Per unit ripple (or) Ripple is a function of duty cycle ' α '. Ripple is minimum at $\alpha=0$, increases maximum at $\alpha=0.5$ and decrease at $\alpha=1.0$. For $\alpha=0.5$, ripple would be maximum.

$$\left(\Delta I\right)_{max} = \frac{V_{S}}{R} \Biggl(\frac{\left(1 - e^{-0.5x}\right)\left(1 - e^{-0.5x}\right)}{1 - e^{-x}} \Biggr) \qquad \qquad \left(\text{Let, } \frac{T}{T_{a}} = x\right)$$

$$\left(\Delta I\right)_{max} = \frac{V_{\text{S}}}{R} tanh \left(\frac{R}{4 f L}\right)$$

6. Inverters

Series Inverters: In a series inverter, the commutating elements L and C are connected in series with the load resistance R. The load resistance R can also be in parallel with C. The value of L and C are such that those form an underdamped circuit i.e.

$$R^2 < \frac{4L}{C}$$

$$f = \left[\frac{1}{2\left(\frac{T}{2} + T_{\text{off}}\right)} \right] \text{is the frequency of output voltage.}$$

Where, $\frac{T}{2}$ is the time period of oscillations.

Toff is the time gap between turn-off one thyristor and turn-on of the second thyristor.

$$\frac{T}{2} = \frac{\pi}{\sqrt{\left(\frac{1}{LC} - \frac{R^2}{4L^2}\right)}}$$

The period of oscillation

Bridge Inverter: Bridge circuits are commonly used in DC-AC conversion. Moreover, an output transformer is not essential in a bridge circuit.

14 Half Bridge Inverter - The output voltage volt $V_0 = \sum_{n=1,3,5...}^{\infty} \frac{2V_s}{n\pi} \sin n\omega t$

1 o Full Bridge Inverter- The output voltage

$$V_0 = \sum_{n=1,3,5,\dots}^{\infty} \frac{4V_s}{n\pi} \sin n\omega t$$

Where, n = order of harmonic

 $\omega = 2\pi f$, is frequency of the output voltage in red/sec

Key points:

• The load impedance (Zn) is

$$Z_n = \left\lceil R^{2+} \left(n \omega L - \frac{1}{n \omega C} \right)^2 \right\rceil^{1/2}$$

• Phase angle, $\phi_n = \tan^{-1} \frac{\left[n\omega L - \frac{1}{n\omega C}\right]}{R}$

3phase Full Bridge VSI:

	180 ^o Conduction	120 ^o Conduction
Line Voltage RMS	$V_s\sqrt{\frac{2}{3}}$	$V_s \frac{1}{\sqrt{2}}$
Phase voltage RMS	$V_s \frac{\sqrt{2}}{3}$	$V_s \frac{1}{\sqrt{6}}$
Fundamental line voltage RMS	$V_s \frac{\sqrt{6}}{\pi}$	$V_s \frac{3}{\pi\sqrt{2}}$
Fundamental phase voltage RMS	$V_s \frac{\sqrt{2}}{\pi}$	$V_s \frac{1}{\pi} \sqrt{\frac{3}{2}}$

180º Conduction:

1) Pole Voltages =
$$V_{A0} = \sum_{n=1,3,5...}^{\infty} \frac{2V_s}{n\pi} \sin n\omega t$$

2) Line Voltages =
$$\sum_{n=1,3,5} \left(\frac{4V_s}{n\pi} \cos \left(n \frac{\pi}{6} \right) \right) \sin(n(\omega t + 30^0))$$

When n=3, 9, 15 Line voltage= 0, So Line voltages are free from Triplet harmonics

3) Phase Voltage=
$$\sum_{n=6k\pm1} \frac{2V_{dc}}{n\pi} \sin n\omega t$$

$$n = 6k \pm 1$$
 is due to stepped waveform

120º Conduction:

- 1) Pole and Phase Voltage are of same waveform
- 2) Triplet harmonics are absent in Phase and pole voltages
- 3) Line voltage contains $n=6k\pm 1$ Harmonics

Pulse Width Modulation:

Let N= number of pulses per half cycle

Each pulse width =
$$\frac{2d}{N}$$

Then Output voltage Expression is

$$V_0 = \sum_{n=1,3,5} \left(N \frac{4V_s}{n\pi} \sin n\gamma \sin \frac{nd}{N} \right) \sin n\omega t$$

Where
$$\gamma = \frac{\pi - 2d}{N + 1} + \frac{d}{N}$$

• Number of pulses per half cycle N = $\frac{f_c}{2f}$

f= reference input frequency

f_c= Carrier input frequency

- $\bullet \quad \text{Modulation Index } m_a = \ \frac{V_{Re\,f}}{V_{carrier}}$
- Relation between Pulse width and modulation index

$$\frac{2d}{N} = \frac{\pi}{N} (1 - m_a)$$

Amplitude Modulation Depth:

$$m_0 = \frac{\hat{V}_m}{\hat{V}_c}$$

Where V_m , V_c are the modulating and carrier signal voltage peak values For sinusoidal PWM, the amplitude modulation depth must be less than 1.0

Output Voltages by Sinusoidal PWM:

- In single phase half bridge VSI $\text{Fundamental peak output voltage} = V_{Ao1}^{\wedge} = m_a \, \frac{V_s}{2}$
- In Three phase Full bridge VSI

Peak Fundamental Phase voltage $\hat{V}_{an1} = m_a \, \frac{V_{DC}}{2}$

The fundamental line-line rms voltage is given by

$$V_{LLO_1} = \frac{\sqrt{3}}{2\sqrt{2}} \, m_a V_{DC}$$

If peak value of carrier input and zero crossing of reference sinusoidal coincidence then, Number of Pulses per half cycle will be $N = \frac{f_c}{2f}$

If Zero Crossing of carrier input and reference sinusoidal coincidence then, Number of Pulses per half cycle will be $N=\frac{f_c}{2f}-1$

If N is the number of pulses per half cycle then the predominant harmonics in the output is $2N\pm 1\,$