Computer Science \& IT

Compiler Design

SHORT NOTES

푸미이미I!

Short Notes — COMPILER DESIGN

- Definition: It converts high level language to low level language.

- High Level Language can perform more than one operation in single statement.
- Analysis and synthetic model of compiler:

- There are 6 phases of the compiler.

1. Lexical Analyzer:

Program of DFA, it checks for spelling mistakes of the program.
2. Syntax Analyzer :

It checks grammatical errors of the program. (Parser)

* Parser is a DPDA.

3. Semantic Analyzer:

Checks for meaning of the program.
[Eg. Type miss match, stack overflow]

* w/o Error handler, compiler can still work.

4. Intermediate Code generator :

This phase is used to make the work of next 2 phases much easier.
Enforces reusability and portability.
5. Code Optimization :

1. Loop invariant construction
2. Common sub expression elimination
3. Strength Reduction
4. Function in Lining
5. Dead code elimination

6. Symbol Table:

1. Data about data (meta data)
2. Date structure used by compiler and shared by all the phases.

* w/o symbol table compiler cannot work.
- CD - Grammar
\Rightarrow In compiler we only use: Type - 2 (CFG) and Type - 3 (RG) Grammers.
\Rightarrow Compiler $=$ Program of Grammar
\Rightarrow Compiler $=$ Membership Algorithm
* Every programming Language is CSG. (CSL)
- Parse Tree and Syntax Tree :

$$
\begin{aligned}
& \mathrm{G}: \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} / \mathrm{T} \rightarrow \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{T} \rightarrow \mathrm{~T}+\mathrm{T} \rightarrow \mathrm{~T} * \mathrm{~F}+\mathrm{T} \rightarrow \mathrm{~F} * \mathrm{~F}+\mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T} * \mathrm{~F} \mid \mathrm{F} \rightarrow 2 * \mathrm{~F}+\mathrm{T} \rightarrow 2 * 3+\mathrm{T} \rightarrow 2 * 3+\mathrm{F}
\end{aligned}
$$

* To check the priority / Associativity :

Randomly derive till you have enough operations, then check which one done first.

* If priority of 2 operators is same and both are Left and Right associative \rightarrow Ambiguous Grammar.
[USELESS]
- Type of item in Bottom up : [CD - Parser]

- CD - Syntax Analysis Parsing

Grammatical errors are checked with the help of parsers.

[^0]

- Mathematical Model of Parser:

* Parsers generate parse tree, for a given string by the given grammar.
- Top down parser (LL (1)):
* It uses LMD and is equivalent to DFS in Graph.
- Algorithm to construct parsing table :

1. Remove Left Recursion if any.
2. Remove Left Factoring if any. [Remove common prefix.]
3. Find $1^{\text {st }}$ and follow set.
4. Construct the Table.

* If we increase the look ahead symbol:
\rightarrow strength of parser \uparrow
\rightarrow complexity of parser \uparrow
* [Due to common prefix: Back track]
[Due to left Recursion : ∞ RCC.]

Removal of common Prefix : (Left factor).

1. $\mathrm{S} \rightarrow \mathrm{a}|\underline{a b}| \underline{a} \mathrm{~A}$
$\Rightarrow S \rightarrow a Y$
$\mathrm{Y} \rightarrow \in \mathrm{B} \mid \mathrm{A}$.

$$
\text { 2. } \begin{aligned}
\mathrm{A} & \rightarrow \underline{\mathrm{ab}} \mathrm{~A}|\underline{\mathrm{a}} \mathrm{~A}| \mathrm{b} . \\
\Rightarrow \mathrm{A} & \rightarrow \mathrm{ax}|\mathrm{~b}| \mathrm{A} \rightarrow \mathrm{Ax} \mid \mathrm{b} \\
\mathrm{X} & \rightarrow \mathrm{bA}|\mathrm{~A}| \mathrm{x} \rightarrow \underline{\mathrm{~b}} \mathrm{~A}|\mathrm{ax}| \underline{\mathrm{b}}
\end{aligned}
$$

* Indirect common perfix

$$
\begin{aligned}
\Rightarrow \mathrm{A} & \rightarrow \mathrm{ax} \mid \mathrm{b} \\
\mathrm{x} & \rightarrow \mathrm{ax} \mid \mathrm{bY} \\
\mathrm{Y} & \rightarrow \mathrm{~A} \mid \in
\end{aligned}
$$

- First and Follow:
\circ First set \rightarrow The extreme Left terminal from which the string of that variable starts.
* It never contains variables, but may contain ' ϵ '.
* We can always find the first of any variable.
- Follow set \rightarrow Follow set contains terminals and $\$$.

It can never contain variable and " ϵ ".
How to find follow set?

1. Include $\$$ in follow of start variable.
2. If production is of type \rightarrow
$A \rightarrow a B \beta[a, \beta \rightarrow$ strings of grammar symbol.]

$$
\text { follow }(B)=\text { first }(\beta)
$$

If, $\beta \xrightarrow{*} \in$, ie $A \rightarrow \alpha \beta$, then follow $(B)=$ follow (A)
Production Like $: A \longrightarrow \mathbf{a A}_{\boldsymbol{A}}$ gives No follow set.

- Examples of first and follow set :

1.

$S \rightarrow A B \mid C D$
$A \rightarrow a A \mid a$
$B \rightarrow b B \mid b$
$\mathrm{C} \rightarrow \mathrm{cC} \mid \mathrm{c}$
$\mathrm{D} \rightarrow \mathrm{dD} \mid \mathrm{d}$

	First	Follow
S	a,c	\$
A	A	b
B	B	$\$$
C	C	d
D	D	$\$$

- Entry into Table : Top down :

1. No of rows $=$ No of unique variables in Grammar.
2. No. of columns $=$ [Terminals $+\$]$
3. For a variable (ROW) fill the column (terminal) if it is there in its first's w/o the production reqd.
4. If ϵ is in first put $V \rightarrow \epsilon$ under $\$$ and its follows.

* If any cell has multiple times, then it not possible to have $\operatorname{LL}(1)$ parser. Since that will be ambiguous.
* [In top down we do : derivation]
[In Bottom up we do : Reduction]

2. Construct $\operatorname{LL}(1)$ Parsing Table for the given grammar:

$$
\underset{\sim}{E} \rightarrow \underset{\sim}{E}+\mathbf{T I T} ; \underset{\sim}{\mathbf{T}} \rightarrow \mathbf{T} * \mathbf{F}|\mathbf{F} ; \mathbf{F} \rightarrow(\mathrm{E})| \text { id } ;\} \mathrm{G}_{0}
$$

- Removing Left Recursion :

$\mathrm{E} \rightarrow \mathrm{TE}{ }^{\prime}$
$\mathrm{E}^{\prime} \rightarrow+\mathrm{TE} \mathrm{E}^{\prime} \mid \epsilon$
$\mathrm{T} \rightarrow \mathrm{FT}^{\prime} \quad \mathrm{G}_{1}$
$\mathrm{T}^{\prime} \rightarrow{ }^{*} \mathrm{FT}^{\prime} \mid \in$
$F \rightarrow(E) \mid$ id

	First	Follow
E	c, id	$\$)$,
E^{\prime}	,$+ \epsilon$	$\$$,)
T	c, id	,$+ \$$,)
T^{\prime}	$*_{,} \epsilon$	$+, \$)$,
F	c, id	$*_{,}+, \$$

* left factoring not required.
- Construction of Table : [LL (1)]

	$\boldsymbol{+}$	$*$	$\mathbf{(}$	$\mathbf{)}$	id	\$
E	error	error	$\mathrm{E} \rightarrow \mathrm{TE}^{\prime}$	error	$\mathrm{E} \rightarrow \mathrm{TE}^{\prime}$	error
E^{\prime}	$\mathrm{E}^{\prime} \rightarrow+\mathrm{TE}$	error	error	$\mathrm{E}^{\prime} \rightarrow \epsilon$	Error	$\mathrm{E}^{\prime} \rightarrow \epsilon$
T	error	error	$\mathrm{T} \rightarrow \mathrm{FT}^{\prime}$	error	$\mathrm{T} \rightarrow \mathrm{FT}^{\prime}$	error
T^{\prime}	$\mathrm{T}^{\prime} \rightarrow \epsilon$	$\mathrm{T}^{\prime} \rightarrow * \mathrm{FT}^{\prime}$	error	$\mathrm{T}^{\prime} \rightarrow \epsilon$	error	$\mathrm{T}^{\prime} \rightarrow \epsilon$
F	error	error	$\mathrm{F} \rightarrow(\epsilon)$	error	$\mathrm{F} \rightarrow$ id	error

* Since for G_{1}, Table constructed w/o no multiple entries, hence successfully completed.

Hence G_{1} is $\operatorname{LL}(1)$.
Q. Construct $\mathrm{LL}(1)$ Parsing Table for the following grammar:
$S \rightarrow L=R|R ; L \rightarrow * R| i d ; R \rightarrow L\} G_{0}$

- Left Factoring :

$$
\left.\begin{array}{l|l}
\mathbf{S} \rightarrow \mathbf{L}=\mathbf{R} \mid \mathbf{L} \\
\mathbf{L} \rightarrow * \mathbf{R} \mid \mathrm{id} \\
\mathbf{R} \rightarrow \mathbf{L}
\end{array} \Rightarrow \begin{array}{l}
\mathbf{S} \rightarrow \mathbf{L} \mathbf{X} \\
\mathbf{X} \Rightarrow=\mathbf{R} \mid \in \\
\mathbf{L} \rightarrow \text { * } \mid \mathrm{id} \\
\mathbf{R} \rightarrow \mathbf{L}
\end{array}\right\} \mathbf{G}_{1}
$$

	First	Follow
\mathbf{S}	$*$, id	$\$$
\mathbf{X}	$=, \epsilon$	$\$$
\mathbf{L}	$*$, id	$\$_{r}=$
\mathbf{R}	$*$, id	$\$,=$

- Construction of Table :

	$*$	$=$	id	\$
S	$\mathrm{S} \rightarrow \mathrm{LX}$	error	$\mathrm{S} \rightarrow \mathrm{LX}$	error
L	$\mathrm{L} \rightarrow * \mathrm{R}$	error	$\mathrm{L} \rightarrow \mathrm{id}$	error
R	$\mathrm{R} \rightarrow \mathrm{L}$	error	$\mathrm{R} \rightarrow \mathrm{L}$	error
X	Error	$\mathrm{X} \rightarrow=\mathrm{R}$	error	$\mathrm{X} \rightarrow \epsilon$

* G_{1} is a $\mathrm{LL}(1)$ Grammar.
- Hierarchy of Parsers : [for ϵ-free Grammar]

* For ϵ-producing grammars, every $\operatorname{LL}(1)$ may not be LALR(1).
-

NOTE:-
We can't construct any parser for ambiguous grammar.
Except : operator precedence, parser possible for some ambiguous grammar.

* There are some unambiguous grammar, for which there are no parsers.
- Example:

1. $G: S \rightarrow a S a|b s b| a \mid b$
$L(G)=w(a+b) w R$
(odd palindrome)

- Unambiguous but no parser.
\Rightarrow Every RG is not $\operatorname{LL}(1)$ as it may be ambiguous, or recursive or having common prefix.
\Rightarrow Parsers exist only for the grammar if the Lang. is DCFL.
* There are some grammar whose Lang is DCFL but no parser is possible for it.
- Operation Precedence Grammar :

Format :

1. No 2 or more variable should come side by side.
2. No \in production.

- Example:

1. $\mathrm{E} \rightarrow \mathrm{E}=\mathrm{T} \mid \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F} \mid \mathrm{F}$
$F \rightarrow(E) \mid$ id
O.G.
2. $E \rightarrow E+E$
$E \rightarrow E \times E$
$E \rightarrow a \mid b$
O.G.
3. $S \rightarrow A B$

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{a} \mid \epsilon \\
& \mathrm{B} \rightarrow \mathrm{~b} \mathrm{~B} \mid \epsilon
\end{aligned}
$$

\{Not O.G.\}

- Checking LL(1) w/o table:
$A \rightarrow \alpha_{1}\left|\alpha_{2}\right| \alpha_{3}, \quad$ then \rightarrow
$\mathrm{A} \rightarrow \alpha_{1}\left|\alpha_{2}\right| \alpha_{3} \mid \in$
first $\left(\alpha_{1}\right) \cap$ first $\left(\alpha_{2}\right)=\phi$
$\operatorname{first}\left(\alpha_{1}\right) \cap$ first $\left(\alpha_{3}\right)=\phi$
$\operatorname{first}\left(\alpha_{2}\right) \cap \operatorname{first}\left(\alpha_{3}\right)=\phi$
first $\left(\alpha_{1}\right) \cap$ first $\left(\alpha_{2}\right)=\phi$
first $\left(\alpha_{1}\right) \cap$ first $\left(\alpha_{3}\right)=\phi$
first $\left(\alpha_{2}\right) \cap$ first $\left(\alpha_{3}\right)=\phi$
follow $(\mathrm{A}) \cap$ first $\left(\alpha_{1}\right)=\phi$
follow $(\mathrm{A}) \cap$ first $\left(\alpha_{2}\right)=\phi$
follow $(\mathrm{A}) \cap$ first $\left(\alpha_{1}\right)=\phi$
- BOTTOM - UP Parsers:
\rightarrow It uses RMD in reverse and has no problem w/o:
(a) Left Recursion
(b) Common Prefix. $\}$
\rightarrow No Parser possible for ambiguous grammar.
\rightarrow There are some unambiguous grammar for which, there are no Parser.
\rightarrow The Language of the grammar must be DCFL.
$L R(1)=\operatorname{LR}(0)+1$ look a head.

- Basic Algorithm for Construction :

\rightarrow Augment the grammar and expand it and give numbers to it.
\rightarrow Construct LR(0) or LR(1) items.
\rightarrow From these items fill the entries in the Table accordingly.

1. Shift Entries :

Transitions on terminals

a. \in Terminal $\mathrm{I}_{0} \mathrm{I}_{1}$: item sets.

2. State entry :

Transition on non-terminal (variables)

entry :

entry :

* Shift entries are same for all

* Same for all Bottom up Parser.

Bottom-up Parser.

(2) Reduce Entry :

Done for each separate production in the item set of type :
$i>x \rightarrow \alpha$.

$$
\text { where }\left[\begin{array}{l}
\mathrm{i} \rightarrow \text { Prod. No } \\
\mathrm{X} \rightarrow \text { Producing var. } \\
\alpha \rightarrow \text { Grammar String. }
\end{array}\right]
$$

In :

(a) LR(0) Parser:
Put R_{i} in every cell
Of the set in action
Table
(ALL)
(b) SLR(1) Parser :

Put Ri_{i} only in the follow(x) from the Grammar.
(Follow (x))
(c) LALR(1) and CLR(1):

Put Ri_{i} only in the look-
ahead of the production
(Lookaheads)

- Conflicts :

LR(0) Parser :

SR : Shift Reduce Conflict

RR: Reduce

Reduce conflict, then RR. RR

Follow (x) \cap follow $(y) \neq \Phi$

- LALR(1) and CLR(1) :

Same as SLR(1), but instead \qquad use the provided lookahead.

SR

$t \in L_{2}$

RR

$L_{1} \cap L_{2} \neq \varphi$

- Inadequate Static : A static having ANY conflict is called a conflicting static or inadequate static. NOTE The static $S^{\prime} \rightarrow$. or $S^{\prime} \rightarrow S ., \$$ is excepted static, and this is not a reduction.
* The only difference $b / w \operatorname{CLR}(1)$ and $\operatorname{LALR}(1)$ is that, the states with the similar items, but different lookaheads are merged together to reduce space.

\# state in	$=$ \#Staticin	$=$ \#Staticin	$=\leq$ \#Staticin
LR (0)	SLR (1)	$\operatorname{LALR}(1)$	$\operatorname{CLR}(1)$

- Important Points :

1. If CLR (1) doesn't have any conflict, then conflict may or may not arise after merging in LALR(1)
2. If LALR (1) has SR-conflict, then we can conclude that CLR(1) also has SR-conflicts.
3. LALR (1) has SR-conflict if and only if CLR (1) also has SR.

* We can construct Parser for every unambiguous regular grammar [CLR (1) Parser].

S	L	R	(1)
Simple	L to R scan	Using Rev. RMD	Lookahead

L	A	L	R	(1)
Look	ahead	L to R scan	Rev RMD	Lookahead

C	L	R	(1)
Canonical	L to R Scan	Rev. RMD	Lookahead

- Very Important Point :

LALR (1) Parser can parse non LALR (1) grammar which only has SR-conflict by favouring shift over reduce.
Eg.
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}|$ id $\mid 2+3 * 5 \Rightarrow \mathrm{E}+\mathrm{E} . * 5$

- CD - Lexical Analysis

Char. Stream \downarrow		
Lexical .A. Token Stream	Token Generators Scanner	defn: Scan the whole program, char. by char
	Linear Phase and producer the	
	Token Recognixer	corresponding token.

* Also produce/reports the text Lexical Errors (if any)
- Functions of Lexical Analyzer:
i) Scans all the characters of the program.
ii) Token Recognizer.
iii) Ignores the comment \& spaces
iv) Maximal Matching Rule [Longest prefix match].
- NOTE:

The Lexical analyser uses, the Regular Expression.

- Prioritization of Rules.
- Longest Prefix match

Lexeme \rightarrow Smallest unit of program or Logic

Lexmes

Token \rightarrow Internal representation of Lexeme. LA
Tokens

Types of Token:

1. Identifier
2. Keywords
3. Operators
4. Literals/constants
5. Special symbol

Token Separation:

1. Spaces
2. Punctuation

Implementation:

\rightarrow LEX tool \Rightarrow Lex. yy. C

* All identifier will have entry in symbol Table, LA, gives entries into the symbol Table.
[Regular Expression \rightarrow DPA \rightarrow Lexical Analyzer]
- Find no. of Tokens :

1. void main ()
\{ printf ("gate");
[10 Tokens]
2. int x , * P ;

X = 10;
$\mathrm{P}=$ \& x ;
x + +;
[18 tokens]
3. int x ;
$x=y$;
$\mathrm{x}=\mathrm{=} \mathrm{y}$;
[11 Tokens]
4. int $1 \times 2,3$;
[Lexical Error]
5. Char ch = 'A' ;
[5 Token]
6. char ch = 'A ;

Lexical Error
7. char * $\mathrm{P}=$ "gate";
[6 Tokens]
8. char * $\mathrm{P}=$ "gate";
[Error]
9. int $x=10$;
/* comment
$x=x+1 ;$
Error
10. int $x=10$;

Comment * /
$x=x+1 ;$
[14 Tokens]

- CD - Syntax Directed Translation

CFG + Translation
SDT :
CFG + Translation
\Rightarrow Syntax + Translation

- Example:
$S \rightarrow S_{1} S_{2}$ [S. count $=S_{1}$ count $+S_{2}$ count]
$S \rightarrow\left(S_{1}\right)$ [S. count $=S_{1}$ count +1]
$S \rightarrow \in[S$. count $=0]$
* Count is an attribute for non-terminal.
- Application of SDT :

1. Used to perform Semantic Analysis
2. Produce Parse Tree
3. Produce intermediate Rep.
4. Evaluate an expression
5. Convert infix to prefix or postfix.

- Attributes :

1. Inherited Attribute
2. Synthesized Attribute

- Inherited Attribute : (RHS)
$\mathbf{S} \rightarrow \mathbf{A}$ B $\{A . x=f(B . x \mid S . x)\}$
The computation at any node (non-terminal) depends on parent or sibling(s).
* In Above example x is inherited attribute.
- Synthesized Attribute : (LMS)
$\underset{S}{\rightarrow} \rightarrow \mathbf{A}$ B $\{S . x=f(A . x \mid B . x\}$
x is synthesized attribute.
The computation of any node (non-terminal) depends on children.
- Identifying Attribute Type :
* Always check every Translation.

1.

$$
\begin{aligned}
& \mathrm{D} \rightarrow \mathrm{~T}: \mathrm{L} \text {; \{L. Type = } \mathrm{T} . \text { Type }\} \text { inherited. } \\
& \mathrm{L} \rightarrow \text { id }
\end{aligned}
$$

Type in neither inherited nor syntesized.
2.

Val is synthesized attribute.
3.
$S \rightarrow A B\{A a=B \cdot x ; S . y=A . x\} x$ is inherited $\mid y$ is synth $A \rightarrow a\{A, y=a\} y$ is synth $B \rightarrow b\{B . y=a . y\} y$ is synth
$\mathbf{x} \Rightarrow$ Inherited
$y \Rightarrow$ Synthesized
4.
$D \rightarrow$ (L) $\{\mathrm{L}$. in $=\mathrm{T}$. type $\}$ inherited(in)
$T \rightarrow$ int $\{$ T. type] int $\}$ synth (type).
L \rightarrow id \{Add Type (id. entry, L. in)\}
in \Rightarrow Inherited
type \Rightarrow Synthesized

- Syntax Directed Definitions (SDDs) : (Attribute Grammar)

1. L-Attributed Grammar :
\rightarrow Attribute is synthesized or restricted inherited.

\rightarrow Translation can be appended any where is RHS of production.
2. S-attributed Grammar :
\rightarrow Attribute is synthesized only
\rightarrow The translation is placed only at the end of production.

$$
\begin{array}{ll}
S \rightarrow A V\{A . x=S . x+2\} & \text { Eg. } S \rightarrow A B\{S . x=f(A x \mid B x)\} \\
\text { or, } S \rightarrow A B\{B . x=f(A . x \mid S . x)\} & \rightarrow \text { Evaluation : Rev. RMD (Bottom up Parsing) } \\
\text { or, } S \rightarrow A B\{S . x=f(A . x \mid B . x)\} & L-\text { Attri. } \\
\text { S - Attri. }
\end{array}
$$

- Identify SDD :

(E) \rightarrow id
$\{\mathrm{E}$. type $=$ lookup (id .entry) $\}$ else type error. Synth.
\therefore type is synthesized, hence S-Attribute and also L-attributed Grammar.
* Every S-attributed Grammar is also L-attributed Grammar.
* For L-attributed Evaluation, use the In-order of annotated Pares Tree.
* For S-attributed, Reverse of RMD is used.
\rightarrow Find RMD order
\rightarrow Consider in Reverse
- CD- Intermediate Representation

- Example expression : $(y+z) *(y+z)$

$$
\begin{aligned}
& \text { Postfix } \rightarrow y z+y z+* \\
& 3 A C \rightarrow \begin{array}{l}
t_{1}=y+z \\
t_{2}=t_{1} * t_{1}
\end{array}
\end{aligned}
$$

Syntax Tree \rightarrow

DAG \rightarrow

 Reverse the atready existing common sub expression.

- 3-Address Code : Code in which, at most 3 addresses.
[including LHS]

0	*	z	y
1	+	y	(0)
2	-	(1)	a
3	$=$	(2)	

0	\mathbf{x}	z	y	t_{1}
1	+	y	t_{1}	t_{2}
2	-	t_{2}	a	t_{3}
3	$=$	t_{1}		x

	(0)
	(1)
8	(2)
	(3)

\rightarrow Indirect Notation pointers to the rows of Triple.

Triple Notation

\rightarrow Space efficient
\rightarrow time in inefficient

* 3AC done using operator precedence.
- Find min no of variable reqd. in equivalent 3 AC :

\therefore Minimum :
$\left\{\begin{array}{l}\mathrm{b}=\mathrm{b}+\mathrm{b} \\ \mathrm{c}=\mathrm{b}+\mathrm{c} \\ \mathrm{a}=\mathrm{c}+\mathrm{d}\end{array}\right\} \Rightarrow \begin{aligned} & \text { only } 3 \text { variable } \\ & {[\text { Most optimal] }}\end{aligned}$
- Static Single Assignment code (SSA code) :

Every variable (addr) in the code has single assignment.
[Single meaning] + 3 AC.
(1)

(2)

- Control flow Graphs :

Basic Blocks: Seq. of 3-addr code, which control entire from $1^{\text {st }}$ stmt and exists from last.

* Basic blocks can never contain jump statement in b/w.

Find Leaders to identify basic blocks.
$\rightarrow 1^{\text {st }} 3 \mathrm{AC}$ is leader
\rightarrow Target of Jumps are Leader
\rightarrow Statement Just below Jump are Leaders
\rightarrow Jump is itself a Leader.

- Example:

1. $i=1-L \quad B_{1}$
2. $\mathbf{j = 1}-\mathbf{L} \mathbf{B}_{2}$
3. $\mathbf{t}_{1}=\mathbf{t} * \mathbf{i}-\mathbf{L} \quad B_{3}$
4. $\mathbf{t}_{2}=\mathbf{t}_{1}+\mathbf{5}$
5. $t_{3}=4 * t_{2}$
6. $\mathbf{t}_{4}=\mathbf{t}_{3}$
7. $a\left[t_{4}\right]=1$
8. $\mathbf{j}=\mathbf{j}+1$
9.

10.

$$
i=i+1-L B_{5}
$$

11. if $\mathrm{i}<\mathbf{5}$ goto $2-L B_{6}$

- CD - Code Optimization
\rightarrow Saves space/time. (Basic Objective)

- Optimization Methods :

1. Constant folding
2. Copy propagation
3. Strength reduction
4. Dead code elimination
5. Common sub expr elimination
6. Loop optimization

1. Constant Folding :

Folding

2. Copy Propagation :

i) Variable propagation :
$x=y ;$
$z=x+2 ; \quad z \quad z=y+2 ;$
$\mathbf{x}=\mathbf{2 + y * 3]}$ Can't fold the constants.
ii) Constant propagation :
$x=3$
$z=x+a ; \Rightarrow z=3+a ;$
3. Strength Reduction :

Replace expensive statement/instruction with cheaper one.

$x=y / \delta ; \Rightarrow x=y \gg 3 ;$
4. Dead code Elimination :

* Hence, its a code, that never execute, during execution. We can always delete such code.

5. Common Subexpression elimination

DAT is used to eliminate common sub expression.
Eg. $x=(\underline{a+b})+(\underline{a+b})+c ; \Rightarrow \quad t_{1}=a+b$

$$
x=t_{1}+t_{1}+c
$$

6. Loop Optimization :
(i) Code Motion - Freq Reduction :

Move the loop invariant code outside of Loop.

$$
\begin{aligned}
& x=10 ; \\
& y=y+i ;
\end{aligned}
$$

$$
\text { for }(i=0 ; i<n ; i++)\}
$$

x = 10;

$$
\}
$$

(ii) Induction Variable elimination :
$\mathrm{i}_{1}=\mathbf{0}$;
$\mathrm{i}_{2}=\mathbf{0}$;
for ($\mathbf{i}=\mathbf{0} \mathbf{;} \mathbf{i}<\mathbf{n} \mathbf{i} \mathbf{i}+\boldsymbol{+}$) $\{$
$A\left[\mathbf{i}_{1}++\right]=\mathbf{B}\left[\mathbf{i}_{2}++\right] ;$
\}

$\mathrm{i}, \mathrm{i}_{1}, \mathrm{i}_{2}: \mathbf{3}$ induction variables

$\Rightarrow \quad A[i]=B[i] ;$
for ($\mathbf{i}=\mathbf{0} \boldsymbol{i} \mathbf{i}<\mathbf{n} \boldsymbol{i} \mathbf{i + +}$) $\{$ \}

Only 1 induction variable: i
(iii) Loop Merging/combining : (Loop Jamming)

$3 \mathrm{n}+2$	for ($\mathbf{i}=\mathbf{0} \mathbf{i} \mathbf{i}<\mathbf{n} \mathbf{i} \mathbf{i + +}$)	for ($\mathrm{i}=\mathbf{0} \mathbf{i} \mathbf{i}<\mathbf{n} \mathbf{i} \mathbf{i + +}$) \boldsymbol{f}
3n + 2	$A[i]=i+1 ;$	$A[i]=i+1$
$6 \mathrm{n}+4$	B [j] = j + 1;	

(iv) Loop cooling:
(1)

$$
\text { for }(i=0 ; i<3 ; i++) \quad \Rightarrow
$$

print f ("CD");
$3 \times 3+2=11$ Statements

Print f("CD");
Print f("CD");
3 statements
(2)
for ($\mathrm{i}=0 ; \mathrm{i}<2 \mathrm{n} ; \mathrm{i}++$) \{ \Rightarrow print f("CD");
\{
$(2 \times 3 n+2)=6 n+2$

Reduced

[^0]: * Parsers are basically DPDA's.

