
byjusexamprep.com

1

https://byjusexamprep.com/
https://byjusexamprep.com/

byjusexamprep.com

2

• Definition: It converts high level language to low level language.

• High Level Language can perform more than one operation in single statement.

• Analysis and synthetic model of compiler:

• There are 6 phases of the compiler.

1. Lexical Analyzer :

Program of DFA, it checks for spelling mistakes of the program.

2. Syntax Analyzer :

It checks grammatical errors of the program. (Parser)

* Parser is a DPDA.

3. Semantic Analyzer :

Checks for meaning of the program.

[Eg. Type miss match, stack overflow]

* w/o Error handler, compiler can still work.

4. Intermediate Code generator :

This phase is used to make the work of next 2 phases much easier.

Enforces reusability and portability.

Short Notes — COMPILER DESIGN

https://byjusexamprep.com/

byjusexamprep.com

3

5. Code Optimization :

1. Loop invariant construction

2. Common sub expression elimination

3. Strength Reduction

4. Function in Lining

5. Dead code elimination

6. Symbol Table :

1. Data about data (meta data)

2. Date structure used by compiler and shared by all the phases.

* w/o symbol table compiler cannot work.

• CD – Grammar

⇒ In compiler we only use: Type – 2 (CFG) and Type – 3 (RG) Grammers.

⇒ Compiler = Program of Grammar

⇒ Compiler = Membership Algorithm

* Every programming Language is CSG. (CSL)

• Parse Tree and Syntax Tree :

G: E → E + T/T E → T + T → T + T → T * F + T → F * F + T

 T → T * F | F → 2 * F + T → 2 * 3 + T → 2 * 3 + F

 → +E 2 *3 4

https://byjusexamprep.com/

byjusexamprep.com

4

• Parse Tree : Syntax Tree :

* To check the priority / Associativity :

Randomly derive till you have enough operations, then check which one done first.

* If priority of 2 operators is same and both are Left and Right associative → Ambiguous Grammar.

[USELESS]

• Type of item in Bottom up : [CD – Parser]

• CD – Syntax Analysis Parsing

Grammatical errors are checked with the help of parsers.

* Parsers are basically DPDA’s.

https://byjusexamprep.com/

byjusexamprep.com

5

• Mathematical Model of Parser:

* Parsers generate parse tree, for a given string by the given grammar.

• Top down parser (LL (1)):

* It uses LMD and is equivalent to DFS in Graph.

• Algorithm to construct parsing table :

1. Remove Left Recursion if any.

2. Remove Left Factoring if any. [Remove common prefix.]

3. Find 1st and follow set.

4. Construct the Table.

* If we increase the look ahead symbol:

→ strength of parser ↑

→ complexity of parser ↑

* [Due to common prefix: Back track]

 [Due to left Recursion : ∞ RCC.]

https://byjusexamprep.com/

byjusexamprep.com

6

Removal of common Prefix : (Left factor).

1. →S a| ab| aA 2. →A abA | aA |b.

 →S aY  → →A ax|b| A Ax|b

→Y |b| A. → →X bA | A | x bA |ax |b

 * Indirect common perfix

  →A ax|b

 →x ax|bY

 → Y A |

• First and Follow:

o First set → The extreme Left terminal from which the string of that variable starts.

* It never contains variables, but may contain ‘ϵ’.

* We can always find the first of any variable.

o Follow set → Follow set contains terminals and $.

It can never contain variable and “ϵ”.

How to find follow set?

1. Include $ in follow of start variable.

2. If production is of type →

A → α B β [α, β → strings of grammar symbol.]

() ()= follow B first

If, ⎯⎯⎯→
*

, ie → A , then () ()= follow B follow

* Production Like : gives No follow set.

o Examples of first and follow set :

1.

S → AB|CD

A → aA|a

B → bB|b

C → cC|c

D → dD|d

 First Follow

S a,c $

A A b

B B $

C C d

D D $

https://byjusexamprep.com/

byjusexamprep.com

7

o Entry into Table : Top down :

1. No of rows = No of unique variables in Grammar.

2. No. of columns = [Terminals + $]

3. For a variable (ROW) fill the column (terminal) if it is there in its first’s w/o the production

reqd.

4. If ϵ is in first put V → ϵ under $ and its follows.

* If any cell has multiple times, then it not possible to have LL(1) parser. Since that will be

ambiguous.

* [In top down we do : derivation]

[In Bottom up we do : Reduction]

2. Construct LL(1) Parsing Table for the given grammar:

• Removing Left Recursion :

()

→


→ + 


→ 
→ 

→ 

1

E TE'

E' TE' |

T FT' G

T' *FT' |

F E | id

 First Follow

E c, id $,)

E’ +, ϵ $,)

T c, id +, $,)

T’ *, ϵ +, $,)

F c, id *, +, $

* left factoring not required.

• Construction of Table : [LL (1)]

 + * () id $

E error error E → TE' error E → TE' error

E' E'→ + TE' error error E' → ϵ Error E' → ϵ

T error error T → FT' error T→ FT' error

T' T' → ϵ T' → * FT' error T' → ϵ error T' → ϵ

F error error F → (ϵ) error F → id error

https://byjusexamprep.com/

byjusexamprep.com

8

* Since for G1, Table constructed w/o no multiple entries, hence successfully completed.

Hence G1 is LL(1).

Q. Construct LL(1) Parsing Table for the following grammar :

S → L = R | R ; L → * R| id ; R → L } G0

• Left Factoring :

• Construction of Table :

 * = id $

S S → LX error S → LX error

L L → *R error L → id error

R R → L error R → L error

X Error X → =R error X → ϵ

* G1 is a LL(1) Grammar.

• Hierarchy of Parsers : [for ϵ-free Grammar]

* For ϵ-producing grammars, every LL(1) may not be LALR(1).

o NOTE:-

We can’t construct any parser for ambiguous grammar.

Except : operator precedence, parser possible for some ambiguous grammar.

* There are some unambiguous grammar, for which there are no parsers.

o Example:

1. G : S → a S a | b s b | a | b

 L(G) = w(a + b) wR

 (odd palindrome)

https://byjusexamprep.com/

byjusexamprep.com

9

• Unambiguous but no parser.

⇒ Every RG is not LL(1) as it may be ambiguous, or recursive or having common prefix.

⇒ Parsers exist only for the grammar if the Lang. is DCFL.

* There are some grammar whose Lang is DCFL but no parser is possible for it.

• Operation Precedence Grammar :

Format :

1. No 2 or more variable should come side by side.

2. No ϵ production.

o Example:

1. E → E = T | T 2. E → E + E 3. S → a S a | b S b | a | b.

 T → T * F | F E → E × E O.G.

 F → (E) | id E → a|b

 O.G. O.G.

4. S → A B

 A → a A | ϵ

 B → b B | ϵ {Not O.G.}

• Checking LL(1) w/o table :

→    →1 2 3A | | , then →    1 2 3A | | |

() ()

() ()

() ()

   = 

   = 

   = 

1 2

1 3

2 3

first first

first first

first first

() ()

() ()

() ()

() ()

() ()

() ()

   = 

   = 

   = 

  = 

  = 

  = 

1 2

1 3

2 3

1

2

1

first first

first first

first first

follow A first

follow A first

follow A first

• BOTTOM – UP Parsers:

→ It uses RMD in reverse and has no problem w/o :

()

()





a Left Recursion

b Common Prefix.

 → No Parser possible for ambiguous grammar.

→ There are some unambiguous grammar for which, there are no Parser.

→ The Language of the grammar must be DCFL.

() ()= +LR 1 LR 0 1 look a head.

https://byjusexamprep.com/

byjusexamprep.com

10

• Basic Algorithm for Construction :

→ Augment the grammar and expand it and give numbers to it.

→ Construct LR(0) or LR(1) items.

→ From these items fill the entries in the Table accordingly.

1. Shift Entries : 2. State entry :

* Shift entries are same for all * Same for all Bottom up Parser.

Bottom-up Parser.

(2) Reduce Entry :

Done for each separate production in the item set of type :

 → i x . where

→ 
 

→ 
  → 

i Prod. No

X Producing var.

Grammar String.

In :

(a) LR(0) Parser: (b) SLR(1) Parser : (c) LALR(1) and CLR(1) :

Put Ri in every cell Put Ri only in the Put Ri only in the look-

Of the set in action follow(x) from the ahead of the production

Table Grammar.

(ALL) (Follow (x)) (Lookaheads)

• Conflicts :

LR(0) Parser : SLR (1) Parser

SR : Shift Reduce Conflict SR

 RR : Reduce

Reduce conflict, then RR. RR

https://byjusexamprep.com/

byjusexamprep.com

11

 Follow (x) ∩ follow (y) ≠ Φ

• LALR(1) and CLR(1) :

Same as SLR(1), but instead --------- use the provided lookahead.

SR RR

t ϵ L2 L1 ∩ L2 ≠ ϕ

• Inadequate Static : A static having ANY conflict is called a conflicting static or inadequate static.

NOTE The static →S' S. or →S' S.,$ is excepted static, and this is not a reduction.

* The only difference b/w CLR(1) and LALR(1) is that, the states with the similar items, but

different lookaheads are merged together to reduce space.

() () () ()

= = #state in = #Static in #Stat ic in #Static in

LR 0 SLR 1 LALR 1 CLR 1

• Important Points :

1. If CLR (1) doesn’t have any conflict, then conflict may or may not arise after merging in LALR(1)

2. If LALR (1) has SR-conflict, then we can conclude that CLR(1) also has SR-conflicts.

3. LALR (1) has SR-conflict if and only if CLR (1) also has SR.

* We can construct Parser for every unambiguous regular grammar [CLR (1) Parser].

https://byjusexamprep.com/

byjusexamprep.com

12

• Very Important Point :

LALR (1) Parser can parse non LALR (1) grammar which only has SR-conflict by favouring shift

over reduce.

Eg.

E → E + E | E * E | id | 2 + 3 * 5 ⇒ E + E. * 5

• CD – Lexical Analysis

* Also produce/reports the text Lexical Errors (if any)

https://byjusexamprep.com/

byjusexamprep.com

13

• Functions of Lexical Analyzer:

i) Scans all the characters of the program.

ii) Token Recognizer.

iii) Ignores the comment & spaces

iv) Maximal Matching Rule [Longest prefix match].

o NOTE:

The Lexical analyser uses, the Regular Expression.

- Prioritization of Rules.

- Longest Prefix match

Lexeme → Smallest unit of program or Logic

Token → Internal representation of Lexeme.

Lexmes

LA

Tokens

Types of Token: Token Separation:

1. Identifier 1. Spaces

2. Keywords 2. Punctuation

3. Operators

4. Literals/constants Implementation:

5. Special symbol → LEX tool ⇒ Lex. yy. C

* All identifier will have entry in symbol Table, LA, gives entries into the symbol Table.

→ →  Regular Expression DPA Lexical Analyzer

• Find no. of Tokens :

1. void main ()

 { printf (“gate”);

[10 Tokens]

2. int x, * P ;

X = 10;

P = & x;

x + +;

[18 tokens]

3. int x;

x = y ;

x = = y;

[11 Tokens]

4. int 1 x 2, 3 ;

[Lexical Error]

https://byjusexamprep.com/

byjusexamprep.com

14

5. Char ch = ‘A’ ;

[5 Token]

6. char ch = ‘A ;

Lexical Error

7. char * P = “gate”;

[6 Tokens]

8. char * P = “gate”;

[Error]

9. int x = 10 ;

/* comment

x = x + 1;

Error

10. int x = 10;

Comment * /

x = x + 1;

[14 Tokens]

• CD - Syntax Directed Translation

o Example :

S → S1 S2 [S. count = S1 count + S2 count]

S → (S1) [S. count = S1 count + 1]

S → ϵ [S. count = 0]

* Count is an attribute for non-terminal.

• Application of SDT :

1. Used to perform Semantic Analysis

2. Produce Parse Tree

3. Produce intermediate Rep.

4. Evaluate an expression

5. Convert infix to prefix or postfix.

• Attributes :

1. Inherited Attribute

2. Synthesized Attribute

https://byjusexamprep.com/

byjusexamprep.com

15

• Inherited Attribute : (RHS)

 {A. x = f(B.x | S.x)}

The computation at any node (non-terminal) depends on parent or sibling(s).

* In Above example x is inherited attribute.

• Synthesized Attribute : (LMS)

 {S.x = f(A.x | B.x}

x is synthesized attribute.

The computation of any node (non-terminal) depends on children.

• Identifying Attribute Type :

* Always check every Translation.

https://byjusexamprep.com/

byjusexamprep.com

16

1.

2.

3.

4.

https://byjusexamprep.com/

byjusexamprep.com

17

• Syntax Directed Definitions (SDDs) : (Attribute Grammar)

S → AV {A.x = S.x + 2} Eg. S → AB { S.x = f(Ax | Bx) }

or, S → AB { B.x = f (A.x | S.x) } → Evaluation : Rev. RMD (Bottom up Parsing)

or, S → AB { S.x = f (A.x | B.x) }
−

−

L Attri.

S Attri.

• Identify SDD :

 {E. type = if (E1. Type = = int & & E. type = = int) then int} synth.

 {E. type = lookup (id .entry)} else type error. Synth.

∴ type is synthesized, hence S-Attribute and also L – attributed Grammar.

* Every S-attributed Grammar is also L-attributed Grammar.

* For L-attributed Evaluation, use the In-order of annotated Pares Tree.

* For S-attributed, Reverse of RMD is used.

→ Find RMD order

→ Consider in Reverse

• CD- Intermediate Representation

https://byjusexamprep.com/

byjusexamprep.com

18

• Example expression : (y + z) * (y + z)

→ + +Postfix yz yz *
= +

→ 
= 

1
1 2

2 1 1

f y z
SSA f and f cannot b reassie

f f f
gned

= +
→

=

1

2 1 1

t y z
3AC

t t * t

Syntax Tree →

DAG →

• 3-Address Code : Code in which, at most 3 addresses.

[including LHS]

= 
 

= + 


 = −
 
 = 

1

2 1

3 2

3

t z * y

t y t Equivalent3-adder

t t a code

n t

https://byjusexamprep.com/

byjusexamprep.com

19

Triple Notation Quadruple

→ Space efficient → space ineft.

→ time in inefficient → time eff.

* 3AC done using operator precedence.

• Find min no of variable reqd. in equivalent 3AC :

= − = − 
 

= =  
 = + 

u u t v t z

v u*u z w * v 5 variables only.

w v w

 +  − +  + − +a e b d b b b c b b

 + + − +b a d b b

 + + + − +b b c d b b

 + + +b b c d

https://byjusexamprep.com/

byjusexamprep.com

20

∴ Minimum :

= + 
 

= +  
   = + 

b b b
only 3 variable

c b c
Most optimal

a c d

• Static Single Assignment code (SSA code) :

Every variable (addr) in the code has single assignment.

[Single meaning] + 3 AC.

(1)

(2)

https://byjusexamprep.com/

byjusexamprep.com

21

• Control flow Graphs :

Basic Blocks : Seq. of 3-addr code, which control entire from 1st stmt and exists from last.

* Basic blocks can never contain jump statement in b/w.

Find Leaders to identify basic blocks.

→ 1st 3 AC is leader

→ Target of Jumps are Leader

→ Statement Just below Jump are Leaders

→ Jump is itself a Leader.

o Example :

https://byjusexamprep.com/

byjusexamprep.com

22

• CD – Code Optimization

→ Saves space/time. (Basic Objective)

• Optimization Methods :

1. Constant folding

2. Copy propagation

3. Strength reduction

4. Dead code elimination

5. Common sub expr elimination

6. Loop optimization

1. Constant Folding : 2. Copy Propagation :

 i) Variable propagation :

 Folding

x = 2 + y * 3] Can’t fold the constants. ii) Constant propagation :

https://byjusexamprep.com/

byjusexamprep.com

23

3. Strength Reduction :

Replace expensive statement/instruction with cheaper one.

4. Dead code Elimination :

* Hence, its a code, that never execute, during execution. We can always delete such

code.

5. Common Subexpression elimination

DAT is used to eliminate common sub expression.

Eg. x = (a + b) + (a + b) + c ; ⇒ t1 = a + b

 x = t1 + t1 + c

6. Loop Optimization :

(i) Code Motion – Freq Reduction :

Move the loop invariant code outside of Loop.

https://byjusexamprep.com/

byjusexamprep.com

24

(ii) Induction Variable elimination :

(iii) Loop Merging/combining : (Loop Jamming)

(iv) Loop cooling:

(1)

for (i = 0; i < 3; i ++) ⇒ Print f(“CD”);

 print f (“CD”); Print f(“CD”);

3 × 3 + 2 = 11 Statements → 3 statements

(2)

for (i = 0; i < 2n; i ++) { ⇒ for (i = 0; i < n; i ++) {

 print f(“CD”); printf (“CD”);

{ P

(2 × 3n + 2) = 6n + 2 (4n + 2)

https://byjusexamprep.com/

