GATE 2023

Instrumentation Engineering

Questions \& Solutions

Memory Based

GATE 2023 Instrumentation Engineering: Major Highlights

> Overall Difficulty Level: Moderate to Tough
> Theoretical and Numerical weightage: Equal weightage
> MSQ weightage: 1
> NAT weightage: 33
> MCQ weightage: 31
$>$ Questions from Electrical Circuits was easy.
> High Weightage for Analog Electronics and Signals and Systems.

GATE 2023 Instrumentation Engineering: Comparison with last 3 Years' Data

GATE IN	2023	2022	2021	2020
MCQ	31	34	29	30
MSQ	1	5	3	0
NAT	33	26	33	35

GATE 2023 Instrumentation Engineering: Subject-Wise Question Distribution

S.No.	Subject	2023	2022	2021	2020
1	Digital Electronics	7	5	8	4
2	Signals \& Systems	5	5	5	5
3	Electrical Circuits	7	5	0	3
4	Control Systems	7	5	5	10
5	Sensor \& Industrial Instrumentation	2	7	8	8
6	Measurements	6	6	6	8
7	Communication Systems	1	3	3	0
8	Analog Electronics	6	6	3	4

9	Optical Instrumentation	2	2	2	2
10	Process Control Instrumentation	0	1	1	0
11	Electricity and Magnetism	1	1	4	0
12	Electric Machine	2	1	3	0
13	Engineering Mathematics	9	8	7	11
14	General Aptitude	10	10	10	10
	Total Qs	65	65	65	65

GATE 2023 Instrumentation Engineering: Subject-Wise Question Distribution

Subject	NAT	MSQ	MCQ	Total
Digital electronics	0	0	7	7
Signals and Systems	2	0	3	5
Electric Circuits	7	0	0	7
Control Systems	4	1	2	7
Sensor \& Industrial Instrumentation	2	0	0	2
Measurements	2	0	4	6
Communication Systems	1	0	0	1
Analog Electronics	5	0	1	6
Optical Instrumentation	1	0	1	2
Process Control	0	0	0	0
Instrumentation	0	0	0	1
Electricity and Magnetism	1	0	0	2
Electrical Machines	2	0	7	9
Engineering Mathematics	2	0	10	10
General Aptitude	0	1	35	65
Total	29		0	7

Section-A: General Aptitude

1. Disagree: Protest :: Agree: \qquad .
A. Pretext
B. Refuse
C. Refute
D. Recommend

Ans. *
Sol: It your disagree by someone, you will protest him/her.

It you agree by someone, you will recommend him.

If you give pretext for any condition \rightarrow given excuses.
When you refute some body, you disagree someone with very high intensity.
2. Residency is a famous housing complex with many well-established individuals among its residents. A recent survey conducted among the residents of the complex revealed that all of those residents who are well established in their respective fields happen to the academicians. The survey also revealed that most of these academicians are authors of some best-selling books. Based only on the information provided above,
which one of the following statements can be logically inferred with certainty?
A. Some authors of best-selling books are residents of the complex who are wellestablished in their fields.
B. All academicians residing in the complex are well establishing in their fields.
C. Some residents of the complex who are well established in their fields are also authors of some best-selling books.
D. Some academicians residing in the complex are well established in their fields.
Ans.
Sol:

Option D is the possible one.

Section-B: Technical

1. Let $y(t)=x(4 t)$, what $x(t)$ is a continuous time periodic signal with fundamental period of 100 sec . The fundamental period of $y(t)$ is \qquad sec.
[NAT]
Ans. 25
Sol. $y(t)=x(4 t)$

$$
\mathrm{T}=100 \mathrm{sec}
$$

Fundamental period of
$y(t)=\frac{T}{4}=\frac{100}{4}=25 \mathrm{sec}$
2. Consider the discrete time signal $x(n)=$ $U(-n+5)-U(n+3)$ where $U(n)=\left\{\begin{array}{ll}1 ; & n \geq 0 \\ 0 ; & n<0\end{array}\right.$ The smallest ' n ' for which $x(n)=0$ is \qquad .
[NAT]
Ans. - 3
Sol. $x[n]=U[-n+5]-U[n+3]$

$\mathrm{U}[\mathrm{n}] \xrightarrow[5]{\text { adv }} \mathrm{U}[\mathrm{n}+5] \xrightarrow{\text { fold }} \mathrm{U}[-\mathrm{n}+5]$

for smallest $\mathrm{n}=-3$
$\Rightarrow x[\mathrm{n}]=0$
3. The impulse response of an LTI system is $h(t)=\delta(t)+0.5 \delta(t-4)$, where $\delta(t)$ is the continuous time unit impulse signal. If the input signal $x(t)=\cos \left(\frac{7 \pi}{4} t\right)$ the output is
A. $0.5 \sin \left(\frac{7 \pi}{4} t\right)$
B. $1.5 \sin \left(\frac{7 \pi}{4} t\right)$
C. $0.5 \cos \left(\frac{7 \pi}{4} t\right)$
D. $10.5 \cos \left(\frac{7 \pi}{4} \mathrm{t}\right)$
[MCQ]
Ans. C
Sol. $h(t) \delta(t)+0.5 \delta(t-4)$
$\& x(t)=\cos \left(\frac{7 \pi}{t}\right)$
$\Rightarrow \mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t})^{*} \mathrm{~h}(\mathrm{t})$
$\mathrm{Y}(\mathrm{t})=\cos \left(\frac{7 \pi \mathrm{t}}{4}\right) * \delta(\mathrm{t})+0.5 \cos \left(\frac{7 \pi \mathrm{t}}{4}\right) * \delta(\mathrm{t}-4)$
$=\cos \left(\frac{7 \pi t}{4}\right)+0.5 \cos \left(\frac{7 \pi}{4}(t-4)\right)$
$=\cos \left(\frac{7 \pi \mathrm{t}}{4}\right)+0.5 \cos \left(\frac{7 \pi \mathrm{t}}{4}-7 \pi\right)$
$=\cos \left(\frac{7 \pi t}{4}\right)+0.5\left(-\cos \frac{7 \pi t}{4}\right)$
$=0.5 \cos \left(\frac{7 \pi t}{4}\right)$
4. The Laplace transform of the continuous time signal $x(t)=e^{-3 t} u(t-5)$ is \qquad $u(t)$ denotes the continuous time unit step signal
[MCQ]
A. $\frac{e^{-5 s}}{s+3}, \operatorname{Real}\{s\}>-3$
B. $\frac{e^{-5(s+3)}}{s+3}$, Real $\{s\}>-3$
C. $\frac{e^{-5(s-3)}}{s+3}$,Real $\{s\}>-3$
D. $\frac{e^{-5(s-3)}}{s-3}$,Real $\{s\}>-3$

Ans. B
Sol. $x(t) e^{-3 t} u(t-5)$
$\mathrm{e}^{-3 t} \cdot u(T) \longleftrightarrow \frac{1}{s+3}$
$\mathrm{e}^{-3 t(t-5)} \cdot u(t-5) \longleftrightarrow \mathrm{e}^{-5 s} \frac{1}{(\mathrm{~s}+3)}$
$\mathrm{e}^{-3 \mathrm{t}} \cdot \mathrm{u}(\mathrm{t}-5) \longleftrightarrow \frac{\mathrm{e}^{-5 \mathrm{~s}}}{\mathrm{e}^{15}} \frac{1}{\mathrm{~s}+3}$
$=\frac{e^{-5(s+3)}}{s+3}$, Real $\{s\}>-3$
5. A system has transfer function $\frac{y(s)}{x(s)}=\frac{s-\pi}{s+\pi}$. Let $u(t)$ be the unit step function. The input $x(t)$ that result in a steady state output $y(t)=\sin n t$ is \qquad .
[MCQ]
A. $x(t)=\cos (\pi t+\pi / 4) u(t)$
B. $x(t)=\sin (\pi t-\pi / 2) u(t)$
C. $x(t)=\sin (n t+\pi / 2) u(t)$
D. $x(t)=\sin \pi t u(t)$

Ans. B
Sol. Given output $y(t)=$ sinnt
$H(s)=\frac{y(s)}{X(s)}=\frac{s-\pi}{s+\pi}$
$\omega=\Pi, H(j \omega)=\frac{j \omega-\pi}{j \omega+1}=\frac{-1+j}{1+j}$
$|H(j \omega)|=1$
$\angle \mathrm{H}(\mathrm{j} \omega)=180-\tan ^{-1}(1)-\tan ^{-1}(1)$
$=\pi / 2$
So input $=\sin \left(\pi t-\frac{\pi}{2}\right)$
6. Number of zeros of polynomial $P(s)=s^{3}+$ $2 s+5 s+80$ in right half plane is \qquad -
[NAT]

Ans. 2

Sol. $\mathrm{s}^{2} 115$

S	2	80

$s^{1} \quad-35$
0
$\mathrm{s}^{0} \quad 80$
0
No. of sign changes $=$ No. of zeros in right hand side $=2$
7. The number of times the Nyquist plot of $G(s) H(s)=\frac{(s-1)(s-2)}{2(s+2)(s+1)}$ encircles the origin is \qquad .
[NAT]

Ans. 2

Sol. $G(s) H(s)=\frac{2(s-1)(s-2)}{2(s+1)(s+2)}$
$N,(0,0)=Z-P$ (or) $P-Z$ based as Nyquist contour
$Z=$ zeroes of GH in right hand side $=2$
$P=$ poles of $G H$ in right hand side $=0$
$\mathrm{N}=2-0$
$N=2$
8. The phase margin of the transfer function $G(s)=2(1-s) /(1+s)^{2}$ is \qquad
[NAT]
Ans. 0
Sol. $\mathrm{G}(\mathrm{s})=\frac{2(1-\mathrm{s})}{(1+\mathrm{s})^{2}}$

$$
\begin{aligned}
& G(j \omega)=\frac{2(1+j \omega)}{(1+j \omega)^{2}} \\
& |G(j \omega)|=\frac{2 \sqrt{1+\omega^{2}}}{\left(1+\omega^{2}\right)}=\frac{2}{\sqrt{1+\omega^{2}}} \\
& \omega_{g c} \Rightarrow \frac{2}{\sqrt{1+\omega^{2}}}=1 \\
& 1+\omega^{2}=4
\end{aligned}
$$

$\omega_{\mathrm{gc}}=\sqrt{3}$
$\angle G(j \omega)-\tan ^{-1}(\omega)-2 \tan -1(\omega)=-3 \tan ^{-}$
${ }^{1}(\omega)$
$\angle \mathrm{G}(\mathrm{j} \omega)$ at $\omega=\omega_{\mathrm{gc}}=-3 \tan -1-3 \tan ^{-1}(\sqrt{3})$
$=180^{\circ}$
\therefore So, phase margin $=180^{\circ}-180^{\circ}=0^{\circ}$
9. The magnitude and phase plot shown in figure match with the transfer function
\qquad .

[MCQ]
A. $\frac{100}{s^{2}+2 s+100}$
B. $\frac{10000}{s^{2}+2 s+10000}$
C. $\frac{10000}{s^{2}+2 s+10000} e^{-0.05 s}$
D. $\frac{10000}{s^{2}+2 s+10000} e^{-0.05 s \times 10^{-12 s}}$

Ans. C
Sol. We can observe that, at $\omega=100$, there is a resonant peak and sudden drop of phase.
For $2^{\text {nd }}$ order system, when we neglect exponential terms
$\frac{\omega_{n}^{2}}{\mathrm{~s}^{2}+2 \xi \omega_{n} \mathrm{~s}+\omega_{n}^{2}}$
At $\mathrm{s}=\mathrm{j} \omega$;
$\frac{\omega_{n}^{2}}{\left(\omega_{n}^{2}-\omega^{2}\right)+j 2 \xi \omega_{n} \omega}$
$\phi=-\tan ^{-1}\left(\frac{2 \xi \omega_{\mathrm{n}} \omega}{\omega_{\mathrm{n}}^{2}-\omega^{2}}\right)$

At $\omega \rightarrow 0 . \quad \phi=0^{\circ}$
$\omega \rightarrow \infty$
$\phi-180^{\circ}$
If we look into phase plot, plot goes till ∞
This implies at $\omega \rightarrow \infty$, phase is not -180°
This happens due to the added exponential terms.
\therefore Option A \& C are only possible \& they here same magnitude response.

At $\omega=100, \mathrm{e}^{-30.05 \times 100}=\mathrm{e}^{-35} ; \phi \approx 280^{\circ}$
Actually at $\omega=\omega_{n,} \quad$ Phase $=90^{\circ}$
$\therefore 90^{\circ}+280^{\circ}=370$ approximately matching.
10. Induction of a coil is measured as 10 mH using are coil. The LCR meter uses a sinusoidal excitation at 10 kHz . If a pure copper sheet is brought near the coil, the same LCR meter will read \qquad ?
[MCQ]
A. more than 10 mH
B. less than 10 mH
C. less than 10 mH initially and then stabilizes to more than 10 mH
D. 10 mH

Ans. A
Sol.

Due to presence of copper sheet, the reluctance around the coil reduces, which leads to increase in flux linkage and inductance too.
11. Capacitance C of a parallel plate structure is calculated as 20 pF using $\mathrm{C}=\frac{\varepsilon_{0} \varepsilon_{\mathrm{r}} \mathrm{A}}{\mathrm{d}}$ where ε_{0} is permittivity of free space, ε_{r} is the relative permittivity of the dielectric. A is the area of overlapping of electrodes and d is measured using an LCR meter. If meter is assumed to be ideal and it
introduces no error due to cable. Capacitance, which one of the following reading is likely to be correct ?
[MCQ]
A. 12.5 PF
B. 20 PF
C. 20.5 PF
D. 10 PF

Ans. B
Sol. Given the capacitance of a parallel plate capacitor is 20 pF .
Now, an LCR bridge is used to measured the capacitance of the above capacitor. Then the reading will be 20 pF only since, the meter is ideal and errors free.
12. Five measurements are made using a weighing machine, and the reading are 80 $\mathrm{kg}, 79 \mathrm{~kg}, 81 \mathrm{~kg}, 79 \mathrm{~kg}$. The sample standard devaluation of measurement is
\qquad kg .
[NAT]
Ans. 1
Sol. mean $=\frac{80+79+81+79+81}{5}=80$
deviation's
$d_{1}=80-80=0$
$\mathrm{d}_{2}=79-80=-1$
$d_{3}=81-80=1$
$\mathrm{d}_{4}=79-80=-1$
$d_{5}=81-80=1$
Standard deviation
$S=\sqrt{\frac{d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+d_{4}^{2}+d_{5}^{2}}{n-1}}$
$=\sqrt{\frac{0^{2}+1^{2}+1^{2}+1^{2}+1^{2}}{5-1}}$
$=\sqrt{\frac{4}{4}}=1$
13. The full scale range of wattmeter shown in circuit is 100 W . The turn ratio of the individual transformer are indicated in figure. The rms value of AC source voltage V_{s} is 200 V . The wattmeter reading will be
\qquad W.

[NAT]
Ans. 0
Sol.

As the current coil does't have a closed path, there won't be any current [icc = 0] even though potential difference exists.
Wattmeter reading,
$\mathrm{W}=\mathrm{V}_{\mathrm{pc}} \mathrm{i}_{\mathrm{cc}} \cos \angle \mathrm{V}_{\mathrm{pc}}$ \& i_{cc}
$=100 \times 0 \times \cos \phi$
= 0
14. A 1.999 V true RMS $31 / 2$ digit multimeter has an accuracy of $\pm 0.1 \%$. of reading \pm 2 digit. It is used to measure 100 A (RMS) current flowing through a line using 100 : 5 ratio, class 1 current transformer with a burden of $0.1 \Omega \pm 5 \%$. The worst case absolute error in multimeter output is
\qquad mV .
[NAT]
Ans. 4
Sol.

$V_{m}=5 \times[0.1 \pm 0.5 \%]$
$\mathrm{V}_{\mathrm{m}}=0.5 \pm 0.5 \%= \pm 2.5 \mathrm{mV}$
Sensitivity $=$ Resolution \times Range
$=\frac{1}{10^{3}} \times 2$
$=2 \times 10^{-3}$
$=0.002$ Volts.
The multimeter has an accuracy of \pm 0.1% of reading ± 2 digits.
$\therefore \% \varepsilon=\left[\pm \frac{0.1}{100}\right.$ reading ± 2 dits $]$
$=\left[\pm \frac{0.1}{100}(0.5 \pm+0.5 \%) \pm 2 \times 0.002\right]$
$=\left[\pm \frac{2.5 \times 10^{-4}}{100} \pm \frac{0.4}{100}\right]$
$= \pm 0.4 \%$ (or) 4 mV
15. Short-circuit test is conducted on a singlephase transformer by shorting its secondary. The frequency of input voltage is 1 kHz . The corresponding wattmeter reading, primary current \& primary voltage are $8 \mathrm{w}, 2 \mathrm{~A} \& 6 \mathrm{~V}$ respectively. Assume that the no-load losses and the no-load currents are negligible, the core has linear magnetic characteristics. Keeping the secondary shorted the primary is connected to a $2 \mathrm{~V}(\mathrm{rms}), 1 \mathrm{kHz}$ sinusoidal source in series with $\frac{2}{2 \pi \sqrt{5}} \mathrm{mF}$ capacitor. The primary current (rms) will be \qquad A. (round off to 2 decimal)
[NAT]
Ans. 1

Sol.

Wattmeter reading, $w=8 \mathrm{w}=\mathrm{Cu}$. Losses
Ammeter reading, Isc $=2 \mathrm{~A}$
Voltmeter reading, $\mathrm{Vsc}=6 \mathrm{~V}$
$W_{s c}=I s c^{2} \times R_{01}$
$8=(2)^{2} \times R_{01}$
$\mathrm{R}_{01}=2 \Omega$
$\mathrm{Z}_{01}=\frac{\mathrm{V}_{\mathrm{SC}}}{\mathrm{I}_{\mathrm{SC}}}=\frac{6}{2} 3 \Omega$
Now,
$X_{01}=\sqrt{Z_{01}^{2}-R_{01}^{2}}=\sqrt{3^{3}-2^{2}}=\sqrt{5}=2.23 \Omega$
If, $\mathrm{V}_{\mathrm{sc}}=2 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$ (Unchanged) and a
capacitor of $\frac{1}{2 \pi \sqrt{5}} \mathrm{mF}$ is connected in
primary as shown below, Then the primary current will be

$$
-\mathrm{j}_{\mathrm{xc}}=-\mathrm{j} \sqrt{5} \mathrm{mF}
$$

$\frac{1}{j \omega c}=\frac{-j}{2 \pi \times 1 \times 10^{3} \times \frac{1}{2 \pi \sqrt{5} \times 10^{-3}}}=-j \sqrt{5} \Omega$

$I_{S C}=\frac{2}{2-j \sqrt{5} \times j \sqrt{5}}$
$=1 \mathrm{Amp}$.
16. Force per unit length between two infinitely long parallel conductors, with a gap of 2 cm between them is $10 \mu \mathrm{~N} / \mathrm{m}$, when the gap is doubled, force per unit length will be \qquad $\mu \mathrm{N} / \mathrm{m}$.
[NAT]
Ans.

Sol: Force per unit length between two infinitely long parallel conductor is given by,
$\frac{F}{\ell}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi d}$
$\left(\frac{F}{\ell}\right) \times \frac{1}{d}$
If θ (gap between conductors) is doubled then force per unit length gets halved.
Hence answer is $5 \mu \mathrm{~N} / \mathrm{m}$.
17. Ideal op-amp shown, except it has input bias current of 1 nA and input offset voltage $10 \mu \mathrm{~V}$. Resulting worst case output voltage \pm \qquad $\mu \mathrm{V}$

[NAT]

Ans. 1.01

Sol.

Input bias current
$V_{01}=R_{f} I_{B 1}$
$=100 \times 10^{3} \times 1 \times 10^{-9}$
$=1 \times 10^{-4}$ volt
Input offset voltage

$$
\mathrm{V}_{02}=\left(1+\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{1}}\right) \mathrm{V}_{\mathrm{io}}
$$

$$
=\left(1+\frac{100}{1}\right) \times 10^{3} \times 10 \times 10^{-6}
$$

$$
=1.01 \text { volt }
$$

Total

$$
\begin{aligned}
\mathrm{V}_{0}= & \mathrm{V}_{01}+\mathrm{V}_{02} \\
= & 1.01+10^{-4} \\
& \cong 1.01 \mathrm{volt}
\end{aligned}
$$

18. An LED emits light when it is \qquad biased. A photodiode provides maximum sensitivity to light when it is \qquad biased.
A. Reverse, forward
B. Forward, forward
C. Forward, reverse
D. Reverse, reverse
[MCQ]
Ans. C
Sol. LED emits light when it is forward biased and photodiode provide maximum sensitivity when it is reverse biased.
19. Om-amp in circuit is idea. The input signal are $\mathrm{V}_{\mathrm{s} 1}=3+0.10 \sin (300 \mathrm{t}) \mathrm{V}$ and $V_{S 2}=-2+0.11 \sin (300 t) V$. The average value of voltage V_{o} is \qquad V.

[NAT]
Ans. 0.5

Sol.

$\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{n} 1}=\mathrm{V}_{\mathrm{s} 1} \quad \mathrm{~V}_{\mathrm{y}}=\mathrm{V}_{\mathrm{n} 2}=\mathrm{V}_{\mathrm{s} 2}$
KCL as $\mathrm{V}_{0} \quad \frac{\mathrm{~V}_{0}-\mathrm{V}_{01}}{\mathrm{R}}+\frac{\mathrm{V}_{0}-\mathrm{V}_{02}}{\mathrm{R}}=0$
$V_{0}=\frac{V_{01}+V_{02}}{2}$
$K C L$ at V_{x}
$\frac{V_{x}-V_{01}}{R}+\frac{V_{x}-V_{y}}{R}=0$
$2 V_{x}-V_{y}-V_{01}=0$
$\mathrm{V}_{01}=2 \mathrm{~V}_{\mathrm{x}}-\mathrm{V}_{\mathrm{y}}$
$\mathrm{V}_{\mathrm{o} 1}=2 \mathrm{~V}_{\mathrm{S} 1}-\mathrm{V}_{\mathrm{s} 2}$
$K C L$ at V_{y}.
$\frac{V_{y}-V_{x}}{R}+\frac{V_{y}-V_{02}}{R}=0$
$2 \mathrm{~V}_{\mathrm{y}}-\mathrm{V}_{\mathrm{x}}-\mathrm{V}_{\mathrm{o} 2}=0$
$\mathrm{V}_{02}=2 \mathrm{~V}_{\mathrm{y}}-\mathrm{V}_{\mathrm{x}}$
Put (2) and (3) in (1)
$\mathrm{V}_{\mathrm{o}}=\frac{2 \mathrm{~V}_{\mathrm{x}}-\mathrm{V}_{\mathrm{y}}+2 \mathrm{~V}_{\mathrm{y}}-\mathrm{V}_{\mathrm{x}}}{2}$
$V_{o}=\frac{V_{x}+V_{y}}{2}$
$V_{0}=\frac{V_{s 1}+V_{s 2}}{2}$
$\mathrm{V}_{0}=\frac{1}{2}[3+0.2 \sin 300 \mathrm{t}+(-2+0.11 \sin 300)]$

$$
=\frac{1}{2}[1+0.21 \sin 300 t]
$$

$\therefore \mathrm{V}_{\text {avg }}=\frac{1}{2}=0.5 \mathrm{~V}$
20. Figure below shows a feedback amplifier constructed using an nMOS transistor. Assume that $\mu_{\mathrm{n}} \mathrm{Cox}=1 \mathrm{~mA} / \mathrm{V}^{2}$, threshold voltage $\mathrm{V}_{\mathrm{T}}=1 \mathrm{~V}$ and $\mathrm{W} / \mathrm{L}=2$. The bias voltage at the drain terminal is 4 V . The capacitor C_{∞} offer zero impedance once at signal frequency. The ratio $V_{\text {out }} / V_{\text {in }}$ is
\qquad .

[NAT]

Ans. 0.90
Sol.

$I_{D}=\frac{V_{D D}-V_{D}}{R_{D}}=\frac{5-4}{1}=1 \mathrm{~mA}$

$\mathrm{V}_{\mathrm{Th}}=\frac{300}{200+300} \times 5=3 \mathrm{~V}$
$3=V_{G S}+I_{D} R_{s}$
$V_{G S}=3-I_{D R s}=3-1 \times 1=2 V$
$\therefore \mathrm{g}_{\mathrm{m}}=\mathrm{K}_{\mathrm{n}}^{\prime} \frac{\mathrm{W}}{\mathrm{L}}\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)$
$=5 \times 2 \times[2-1]$
$=10 \mathrm{~mA} / \mathrm{V}$

$$
\begin{aligned}
& V_{\text {in }}=V_{g s}+g_{m} V_{g s} R_{s}=\left(1+g_{m} R_{s}\right) V_{g s} \\
& V_{o}=I_{m} V_{g s} R_{s} \\
& \frac{V_{o}}{V_{\text {in }}}=\frac{g_{m} R_{s}}{1+g_{m} R_{s}}=\frac{10 \times 1}{1+10 \times 1}=\frac{10}{11} \\
& A_{V}=\frac{10}{11}
\end{aligned}
$$

21. Op-amp is ideal find $V_{0}=$ \qquad V.

[NAT]
Ans. 2
Sol.

$V_{o}=\left(1+\frac{R_{f}}{R_{1}}\right) V_{p}$
$\therefore \mathrm{V}_{\mathrm{o}}=\left(1+\frac{3 \mathrm{R}}{3 \mathrm{R}}\right) \mathrm{V}_{\mathrm{x}}=2 \mathrm{~V}_{\mathrm{x}}$
KCL at V_{x}
$\frac{V_{x}-1}{3 R}+\frac{V_{x}-V_{y}}{R}=0$
$\frac{V_{x}-1+3 V_{x}-3 V_{y}}{3 R}=0$
$3 \mathrm{~V}_{\mathrm{y}}=4 \mathrm{~V}_{\mathrm{x}}-1$
$K C L$ at V_{y}.
$\frac{V_{y}-V_{x}}{R}+\frac{V_{y}}{R}+\frac{V_{y}-2 V_{x}}{R}=0$
$3 V_{y}=3 V_{x}$
from (3) and (4)
$3 V_{x}=4 V_{x}-1$
$4 V_{x}-3 V_{x}=1$
$V_{x}=1$
$\mathrm{V}_{0}=2 \mathrm{~V}_{\mathrm{x}}=2 \mathrm{~V}$
22. The diode in the circuit is ideal. The current source $\mathrm{i}_{\mathrm{s}}(\mathrm{t})=\pi \sin (3000 \pi \mathrm{t})$. The magnitude of average current flowing through the resistor R is \qquad mA .

[NAT]
Ans. 1
Sol.

For is $>0, D$ is on $\dot{\mathrm{i}}_{\mathrm{R}}=0$
For is $<0, D$ is off.

$$
\mathrm{i}_{\mathrm{avg}}=\frac{\mathrm{I}_{\mathrm{m}}}{\pi}=\frac{\pi}{\pi}=1 \mathrm{~mA}
$$

23. A wire wound 'resistive potentiometer type' angle sensor with 72 turns is used in an application. The first turn of the potentiometer is connected to ground while its last turn is connected to 3.6 V . The width of the wiper cover two turns ensuring make before break. The output (wiper) voltage when the wiper on top of both the turns 35 and 36 is \qquad V.
[NAT]
Ans. 0.1 V
Sol. Since wiper covers two turns, it spans over a total resistance of 2R.
(R is resistance of each turn)
Total resistance of the potentiometer can be $\mathrm{R}_{1}+\mathrm{R}_{2}+\ldots+\mathrm{R}_{\mathrm{n}}$
The first turn is connected to ground, so its resistance is zero. The last turn is connected to 3.6 V . So, its resistance is
$\mathrm{R}_{\mathrm{n}}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{3.6}{\mathrm{I}} \Omega$
I is the current through potentiometer.
Since, potentiometer has 72 turns, the resistance of each turn can be calculated as
$R=\frac{R_{n}}{72}=\frac{\frac{3.6}{I}}{72}=0.05 \mathrm{I}$
When wiper is on top of both turns 35 and 36 , it spans over the resistance of turn 35 and 36 , which is a total resistance of $2 R$. The voltage at wiper is
$\mathrm{V}_{\text {out }}=\frac{2 \mathrm{R}}{\text { Total resistance }} \times 3.6 \mathrm{~V}$
$=\frac{2 R}{R_{1}+R_{2}+\ldots+R_{72}} \times 3.6$
$V_{\text {out }}=\frac{2 \times 0.05 \mathrm{I}}{0.05 \mathrm{I} \times 72} \times 3.6$

$$
=0.1 \mathrm{~V}
$$

24. In the diagram shown, the freq. of the sinusoidal source voltage V_{s} is 50 Hz . The load voltage is 230 V (rms), \& the load
impedance is $\frac{230}{\sqrt{2}}+\mathrm{j} \frac{230}{\sqrt{2}} \Omega$. The value of attenuator $\mathrm{A}_{1}=\frac{1}{50 \sqrt{2}}$. The multiplier o / p voltage $V_{0}=\frac{V_{x} V_{y}}{1 V}$, where $V_{x} \& V_{y}$ are the inputs. The magnitude of the average value of the multiplier $\mathrm{o} / \mathrm{p} \mathrm{V}_{0}$ is \qquad V. (round off to 1 decimal)
[NAT]

Ans. 3.2 Volt
Sol.

$V_{0}=\frac{V_{x} V_{y}}{1}$

$$
\begin{aligned}
& =\frac{1\left\lfloor-45^{\circ} \times 3.2590^{\circ}\right.}{1} \\
& =3.25\left\lfloor 45^{\circ}\right. \\
\left|V_{0}\right| & =3.25 \text { or } 3.2 \text { volts. }
\end{aligned}
$$

25. X is a discrete random variable which takes values $0,1,2$. The probabilities are $P(X=0)=0.25$ and $P(X=1)=0.5$. with $E[$.$] denoting the expectation operator,$ the value of $E[X]-E\left[X^{2}\right]$ is \qquad .
[NAT]
Sol. Given:- $X=\{0,1,2\}$

$$
p(X)=\{0.25,0.5,0.25\}
$$

For a discrete random variable, mean value is given by,
$E[X]=\sum_{i=0}^{\infty} X_{i} p\left(X_{i}\right)$

$$
\begin{aligned}
& =0 \times \frac{1}{4}+1 \times \frac{1}{2}+2 \times \frac{1}{4} \\
& =1
\end{aligned}
$$

For a discrete random variable, mean square value is given by, $E[X]=\sum_{i=0}^{\infty} X_{i}^{2} p\left(X_{i}\right)$

$$
\begin{aligned}
& =(0)^{2} \times \frac{1}{4}+(1)^{2} \times \frac{1}{2}+(2)^{2} \times \frac{1}{4} \\
& =\frac{3}{2}
\end{aligned}
$$

The value of $E[X]-E\left[X^{2}\right]=1-\frac{3}{2}$

$$
=-0.5
$$

26. In a P-i-n photodiode, a pulse of light containing 8×10^{12} incident photous at wavelength $\gamma_{0}=1.55 \mu \mathrm{~m}$ gives rise to an average 4×10^{12} electron collection at the terminals of the device. The quantum efficiency of the photodiode at this wavelength is \qquad $\%$.
A. 80
B. 62.5
C. 54.2
D. 50
[MCQ]
Ans. 50
Sol. \% Quantum efficiency
$=\frac{\text { No. of electrons collection }}{\text { No. of incident photons }} \times 100$
$=\frac{4 \times 10^{12}}{8 \times 10^{12}} \times 100$
$=50 \%$
27. A silica glass fibre has a core refractive index of 1.47 and a cladding refractive index of 1.44 . If the cladding is completely stripped out and core is dipped in water having a refractive index of 1.33, the numerical aperture of modified fiber is \qquad _.
[NAT]
Ans. 0.458
Sol. Original numerical aperture of the fiber with cladding is:
$N A=\sqrt{n_{1}^{2}-n_{2}^{2}}$
where, $\mathrm{n}_{1}=$ Refractive index of core
$\mathrm{n}_{2}=$ Refractive index of cladding

After the cladding is completely out and the core is dipped in water with a refractive index of 1.33, the new numerical aperture becomes:
$N A=\sqrt{(1.47)^{2}-(1.33)^{2}}$

$$
=0.458
$$

28. Match

I. $X \oplus X$	p. 1
II. $X \oplus \bar{X}$	q. 0
III. $X \oplus 0$	r. \bar{X}
IV. $X \oplus 1$	s. X

Ans. I - q, II - p, III - s, IV - r
Sol. $X \oplus X=X \bar{X}+\bar{X} x=0$
$X \oplus \bar{X}=X X+\bar{X} \bar{Y}=1$
$X \oplus 0=x .1+\bar{X} \cdot 0=x$
$\mathrm{X} \oplus 1=\mathrm{x} .0+\overline{\mathrm{X}} \cdot 1=\overline{\mathrm{X}}$
29. In the circuit shown, the initial binary content of shift register A is 1101 and that of shift register B is 1010 . The shift register are +ve edge triggered, and gates have no delay.

When the shift control is high, what will be the binary content of the shift register A and B after 4 clock pulse

[MCQ]
A. $A=1101, B=1101$
B. $A=0101, B=1101$
C. $A=1010, B=1111$
D. $A=1110, B=1001$

Ans. B
Sol. Content of shift register $A \rightarrow 1101$
Content of shift register $B \rightarrow 1010$
Serial input $=\overline{\mathrm{Q}}_{2} \oplus \mathrm{Q}_{0}$
A B
$\mathbf{Q}_{\mathbf{3}} \mathbf{Q}_{\mathbf{2}} \mathbf{Q}_{\mathbf{1}} \mathbf{Q}_{\mathbf{0}}$

after 4 clock pulses.
$\therefore A=0101, B=1101$
30. The simplified of Boolean Function $F(W, X$, $Y, Z)=\Sigma(4,5,10,11,12,1314,15)$ with minimum no. of terms and smallest number of literals in each term is \qquad
A. $W X+W Y+X \bar{Y}$
B. $X \bar{Y}+W Y$
C. $\bar{X} Y+\bar{W} \bar{Y}$
D. $W X+\bar{W} X \bar{Y}+W \bar{X} Y$
[MCQ]
Ans. B
Sol. $F(w, x, y, z)=\Sigma m(4,5,10,11,12,13$, $14,15)$

Minimum expression $f=w y+x \bar{y}$
31. The table shows the Present state $Q(t)$, next state $\mathrm{Q}(\mathrm{t}+1)$ and the control input in a flip flop Identify the flip flop

$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$	Input
0	0	0
0	1	1
1	0	1
1	1	0

[MCQ]
A. S R flip flop
B. T flip flop
C. D flip flop
D. JK flip flop

Ans. B

Sol.

$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$	Input
0	0	0
0	1	1
1	0	1
1	1	0

When input $=1, ~ Q(t+1)=\bar{Q}(t)$
Input $=0, Q(t+1)=Q(t)$
This behaviour is of T-Flip flop
32. Given, $A=B=1$, Assume AND, OR \& NOT given have Propagation delay of $10 \mathrm{~ns}, 5$ ns respectively, All lines have zero Propagation delay. Given that $\mathrm{C}=1$, when the circuit is turned on the frequency of steady state oscillation of output is

[NAT]

Ans. 20 MHz

Sol.

Given
$A=B=1 ; \quad$ AND delay $=10 \mathrm{~ns}$
$C=Y$
OR delay $=10 \mathrm{~ns}$
NOT delay $=5 \mathrm{~ns}$

$$
\begin{aligned}
& \mathrm{f}=\overline{\mathrm{B}}+\overline{\mathrm{C}}=\overline{\mathrm{Y}} \\
& \mathrm{Y}=\mathrm{AF}=\overline{\mathrm{Y}} \\
& \mathrm{t}_{\mathrm{pd}}=25 \mathrm{~ns}
\end{aligned}
$$

Time period $=50 \mathrm{~ns}$
frequency $=\frac{10^{3} \times 10^{6}}{50}=20 \mathrm{MHz}$
33. Diode in circuit is ideal. Current source $\mathrm{i}_{\mathrm{s}}(\mathrm{t})=\pi \sin (300 \pi \mathrm{t}) \mathrm{mA}$. The magnitude of the average current flowing through the resistor R is \qquad mA .
[NAT]
Ans. 1
Sol.

Average Current $\frac{I_{m}}{\pi}$
$=\frac{\pi}{\pi}$
$=1 \mathrm{~mA}$
34. Find Thevenin equivalent resistance across terminal ' a ' and ' b ' is \qquad Ω.

[NAT]

Ans. 0.67
Sol. Independent voltage source get short circuited

Independent current source get open circuited

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{th}}=((1+1) \Omega) \| 1 \Omega \\
& =(2 \Omega) \|(1 \Omega)=\frac{2 \times 1}{2+1}=\frac{2}{3} \Omega
\end{aligned}
$$

35. The $R-L$ circuit with $R=10 \mathrm{k} \Omega \& L=1 \mathrm{mH}$ is excited by a step current $\mathrm{I}_{0} \mathrm{u}(\mathrm{t})$, at $\mathrm{t}=$ 0^{-}, then is a current $I_{L}=\frac{I_{0}}{S}$ flowing through the inductor. The minimum then taken for the current through the inductor
for reach 99% of its final value is
\qquad $\mu \mathrm{s}$.

[NAT]

Ans. 0.43
Sol. $i(0)=0$
$i(\infty)=I_{0}$
$\tau=\frac{\mathrm{L}}{\mathrm{R}}=\frac{10^{-3}}{10^{4}}=10^{-1}$
$\mathrm{i}(\tau)=\mathrm{i}(\infty)+[\mathrm{i}(0)-\mathrm{i}(\infty)] \mathrm{e}^{-\mathrm{t} / \tau}$
$i(t)=I_{0}+\left[0-\frac{I_{0}}{5}\right] e^{-t / \tau}$
For reaching $i(t)$ to 99% of $i(\infty)$
$0.99 \mathfrak{A}_{0}=\mathscr{A}_{0}\left[1-\frac{4 \mathrm{e}^{-\mathrm{t} / \tau}}{5}\right]$
$\frac{4}{5} e^{-t / \tau}=1-0.99$
$=0.01$
$+t=-\tau \ln \left[\frac{0.05}{4}\right]$
$t=4.38 \tau$
$=4.38 \times 10^{-7}$
$\mathrm{t}=0.43 \mu \mathrm{sec}$
36. Voltage source $V_{s}=10 \sqrt{2} \sin (210000 n t)$ V has on internal resistance of 50Ω. The RMS value of the current through R is
\qquad mA .

[NAT]
Ans. 0.1
Sol.

$$
\begin{aligned}
& \omega_{0}=\frac{1}{\sqrt{\text { LC }}} \\
& =\frac{1}{\sqrt{\left(\frac{1}{20 \pi} 10^{-3}\right)\left(\frac{1}{20 \pi} \times 10^{-3}\right)}}
\end{aligned}
$$

$$
\omega_{0}=20 \pi \times 10^{3}
$$

Given that $\omega=20 \pi \times 10^{3}$
So, R and L effect get nullified.

$$
V_{\mathrm{rms}}=\frac{10 \sqrt{2}}{\sqrt{2}}=10 \mathrm{~V}
$$

$$
I_{\mathrm{rms}}=\frac{10}{100}=0.1
$$

37. When the bridge given below is balanced, the current through resistor Ra_{a} is \qquad mA .

[NAT]
Ans. 1
Sol.

Current through $\mathrm{R}_{\mathrm{a}}=3 \mathrm{~mA}\left[\frac{100 \mathrm{~m} \Omega}{30 \mathrm{~m} \Omega}\right]$
$\mathrm{I}=1 \mathrm{~mA}$
38. A sinusoidal current $i_{1}(t)=1 \sin (200 \pi t)$ mA is flowing through a 4 H inductor which is mutually coupled to another 5 H inductor carrying $i_{2}(t)=2 \sin (200 \pi t) m A$ as shown in fig. The coupling coefficient between the inductor is 0.6 . The peak energy stored in the circuit is \qquad $\mu \mathrm{J}$.

[NAT]
Ans. 17.37

Sol.

39. $\omega=100 п \mathrm{rad} / \mathrm{s}, \mathrm{R}_{1}=\mathrm{R}_{2}=2.2 \Omega \& \mathrm{~L}=$ 7 mH . the capacitance C for which $Y_{\text {in }}$ is purely real is \qquad μ.

[NAT]
Ans. 0.78

Sol.

Given that,

$$
\begin{aligned}
& \omega=100 \pi \\
& R_{1}=R_{2}=2.2 \Omega \\
& L=7 \mathrm{mH}
\end{aligned}
$$

Admittance

$$
y=\frac{1}{2.2+j(100 \pi)\left[7 \times 10^{-3}\right]}+\frac{1}{2.2-\frac{j}{100 \pi(c)}}
$$

Equating imaginary part $=0$
$0=\frac{-j\left[100 \pi \times 7 \times 10^{-3}\right]}{\sqrt{(2.2)^{2}+(0.1 \pi(7))^{2}}}+\frac{j / 100 \pi c}{\sqrt{(2.2)^{2}+\left(\frac{1}{100 \pi c}\right)^{2}}}$
let $x=\frac{1}{100 \pi c}$
By solving we get
$0.71=\frac{1}{x^{2}\left(4.84+x^{2}\right)} \Rightarrow C=0.78 \mathrm{mF}$
40. The no load steady state output voltage of a DC shunt generator is 200 V when it is driven in clockwise direction at its rated speed. If the same machine is driven at the rated speed but in opposite direction, the steady state output voltage will be
\qquad V.
[NAT]

Ans. 0
Sol.

If the rotor is rotated in the opposite direction, the emf developed $\frac{L_{d i_{f}}}{d t}$ will neutralize the emf due to the residual flux. (Voltage buildup will be failed)
Hence, the steady state output Voltage will be zero.
41. What is line $f(x)$, where $f(x)=x \sin \frac{1}{x}$.
A. Does not exist
B. 1
C. 0
D. ∞
[MCQ, 1 Mark]
Ans. C
Sol. $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)$
Let $\mathrm{t}=\frac{1}{\mathrm{x}}$
$\lim _{t \rightarrow \infty} \frac{\sin t}{t}=\frac{\text { finite }}{\text { inf inite }}=0$
42. Consider the real valued function $g(x)=$ $\max \left\{(x-2)^{2},-2 x+7\right\}$
Where $x \in(-\infty, \infty)$. The minimum value attained by $g(x)$ is \qquad
[NAT]
Ans. 1
Sol. $(x-2)^{2}=-2 x+7$

$$
\begin{aligned}
& x^{2}+4-4 x=-2 x+7 \\
& x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0 \\
& x=-1,+3
\end{aligned}
$$

$g(x)=\max \left\{(x-2)^{2},-2 x+7\right\}$
So, dotted/shaded area is curve of $g(x)$ So, minimum value $=1$
43. $F(z)=\frac{1}{1-Z}$, when expanded as a Power series around $z=2$, would result in $f(z)=\sum_{k=0}^{\infty} a_{k}(z-2)^{k}$, With the region of convergence (ROC) $|Z-2|<1$.
The coefficient $a_{k}, k \geq 0$ re given by the expression.
[MCQ]
A. $\left(\frac{1}{2}\right)^{\mathrm{K}}$
B. $(-1)^{\mathrm{K}}$
C. $(-1)^{\mathrm{K}+1}$
D. $\left(\frac{-1}{2}\right)^{\mathrm{K}+1}$

Ans. B
Sol. $F(z)=\frac{1}{1-z}=\frac{1}{1-(z-2+2)}$

$$
\begin{aligned}
& =\frac{1}{-1-(z-2)} \\
& F(z)=-[1+(z-2)]^{-1} \\
& F(z)=-\left[1(z-2)+(z-2)^{2}-(z-2)^{3}\right. \\
& +\ldots \ldots] \\
& =-1+(z-2)-(z-2)^{2}+(z-2)^{3}+
\end{aligned}
$$

...

For odd powers, coefficient is positive Even powers, coefficient is negative
$\therefore \mathrm{a}_{\mathrm{k}}=(-1)^{\mathrm{K}+1}$
44. Choose solution set S corresponding to the system of 2 equations.
$x-2 y+z=0, x-z=0$. [R denote set or real numbers].
[MCQ]
A. $S=\left\{\left.\alpha\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)+\beta\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) \right\rvert\, \alpha, \beta \in \mathrm{R}\right\}$
B. $S=\left\{\alpha\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \alpha \in \mathrm{R}\right\}$
C. $S=\left\{\left.\alpha\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)+\beta\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right) \right\rvert\, \alpha, \beta \in \mathrm{R}\right\}$
D. $S=\left\{\alpha\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) \alpha \in \mathrm{R}\right\}$

Ans. B
Sol. $x-z=0$
$x=z$
\therefore from $x-2 y+z=0$
$x-2 y+x=0$
$y=0$
let $\mathrm{X}=\alpha$ then $\mathrm{y}=\alpha, \mathrm{z}=\alpha$

$$
\therefore\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\alpha\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

45. Rank of matrix A is 1 . The ratio $\frac{\alpha}{\beta}$ is

$$
A=\left[\begin{array}{cc}
1 & 4 \\
-3 & \alpha \\
\beta & 6
\end{array}\right]
$$

[NAT]
Ans. - 8
Sol. $A=\left[\begin{array}{cc}1 & 4 \\ -3 & \alpha \\ \beta & 6\end{array}\right]$
Rank of $A=1$
Means all 2×2 minors' determinant $=0$

$$
\begin{array}{r}
\therefore\left|\begin{array}{cc}
1 & 4 \\
-3 & \alpha
\end{array}\right|=0 \quad \Rightarrow \\
\alpha+12=0 \\
\alpha=-12
\end{array}
$$

and $\therefore\left|\begin{array}{cc}-3 & \alpha \\ \beta & 6\end{array}\right|=0 \quad \Rightarrow-18-\alpha \beta=0$
$-18=-12(\beta)$
$\beta=\frac{3}{2}$
$\therefore \frac{\alpha}{\beta}=\frac{-12}{\frac{3}{2}}=-8$

GATE 2023 Instrumentation Engineering: Expected Cut-Of

Category	2021	2022	Expected 2023
General	36	42.4	43
OBC	32.4	38.1	39.5
SC/ST	24	28.2	30

Our Outstanding GATE Results

Rank 02
Poojasree (EC)

Rank 03 Munish (ME)

Rank 08
Hemant (EE)

Rank 06 Ghanendra (EC)

Rank 09
Himanshu (EE)

Rank 39
Navneet (CS)

Rank 06
Parag (EC)

Rank 08
Rajat (ME)

Rank 07
Vatsal (ME)

Rank 09 Vamsi (EC)

Rank 03 Manoj (EC)

Rank 08
Rahul (CE)

Rank 13 Shashwat (CE)

Rank 39 Akash Singh (CS)

Rank 56
Nikhil (ME)

Our Outstanding GATE Results

Prepare with us \& get placed in your dream college, PSU or department!

Top Colleges

IISc Bangalore

IIT Madras

IIT Bombay

IIT Kharagpur

Departments through ESE

BYJU'S
 EXAM PREP

Name:

Contact no:

Email id:

