GATE 2023

Mechanical Engineering

Questions \& Solutions

Memory Based

GATE 2023 Mechanical Engineering: Major Highlights

> Overall Difficulty Level: Moderate to tough
> Theoretical/ Numerical weightage: Less than 10
> MSQ weightage: 8 Qs.
> NAT weightage: 25 Qs.
> MCQ weightage: 32 Qs.
> Questions from General Aptitude was easy.
> High Weightage for Manufacturing \& Engg. Materials.

GATE 2023 Mechanical Engineering: Comparison with last 3 Years' Data

S.No.	Subjects	2023	2022	2021		2020	
				Set 1	Set 2	Set 1	Set 2
1	Fluid Mechanics \& Machinery	9	4	6	9	8	8
2	Thermodynamics	7	4	6	4	4	6
3	Refrigeration \& Air Conditioning	0	0	3	3	0	3
4	Power Plant	1	3	2	3	5	2
5	IC Engine	0	2	1	0	2	3
6	Heat Transfer	5	10	6	5	3	5
7	Engineering Mechanics	5	8	2	5	5	5
8	Theory of Machines \& Vibrations	4	7	7	10	8	6
9	Strength of Materials	12	6	7	7	7	6
10	Machine Design	4	5	7	2	5	5
11	Manufacturing \& Engineering Materials	23	15	18	17	18	17
12	Industrial Engineering	2	8	7	7	5	6
13	Engineering Mathematics	13	15	13	13	15	13
14	General Aptitude	15	15	15	15	15	15
	Total	100	100	100	100	100	100

GATE 2023 Mechanical Engineering: Subject-Wise Marks Distribution

Subjects	Questions		Total Marks
	$\mathbf{1}$ Mark	$\mathbf{2}$ Marks	
Fluid Mechanics \& Machinery	1	4	$\mathbf{9}$
Thermodynamics	1	3	$\mathbf{7}$
Refrigeration \& Air Conditioning	0	0	$\mathbf{0}$
Power Plant	1	0	$\mathbf{1}$
IC Engine	0	0	$\mathbf{0}$
Heat Transfer	3	1	$\mathbf{5}$
Engineering Mechanics	1	2	$\mathbf{5}$
Theory of Machines \& Vibrations	2	1	$\mathbf{4}$
Strength of Materials	4	4	$\mathbf{1 2}$
Machine Design	2	1	$\mathbf{4}$
Manufacturing \& Engineering Materials	3	10	$\mathbf{2 3}$
Industrial Engineering	$\mathbf{2}$	0	$\mathbf{2}$
Engineering Mathematics	5	4	$\mathbf{1 3}$
General Aptitude	5	5	$\mathbf{1 5}$
Total	30	35	$\mathbf{1 0 0}$

Section-A: General Aptitude

1. Consider the following inequalities $p^{2}-4 q$ $<4 ; 3 p+2 q<6$ where p and q are positive integers. The value of $(p+q)$.
[MCQ, 1 Mark]
A. 1
B. 2
C. 3
D. 4

Ans. B
Sol. $p^{2}-4 q<4$
$3 p+2 q<6 \Rightarrow 6 p+4 q<12$
$4 q<12-6 p$
$p^{2}-4<4 q<12-6 p$
$p^{2}+6 p-16<0$
$(p+8)(p-2)<0$
$-8<p<2$
So, $p=1$
$4 q<12-6$
$4 q<6$
$q<3 / 2$
$q=1$
$p+q=2$
2. How many pairs of sets (S, T) are possible among the subsets of $\{1,2,3,4,5,6\}$ that satisfy the condition that S is the subset of T ?
[MCQ, 1 Mark]
A. 665
B. 664
C. 729
D. 728

Ans. A
Sol. Let $\Omega=\{1,2,3,4,5,6\}$
(i) $\mathrm{T}=\Omega=\{1,2,3,4,5,6\}$

So, s can contain 1 element as 2 or $3 \ldots .$. or 6 elements.
\Rightarrow Possible ways
$={ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+\ldots . .{ }^{6} \mathrm{C}_{6}=2^{6}-1=63$
(ii) $\mathrm{T} \Rightarrow$ Any 5 out of $6 \Rightarrow{ }^{6} \mathrm{C}_{5}$ Loads $=6$
$S \Rightarrow{ }^{5} C_{1}+{ }^{5} C_{2}+\ldots . .{ }^{5} C_{5}=2^{5}-1=31$
So, by this logic, Answer is
${ }^{6} \mathrm{C}_{6}\left(2^{6}-1\right)+{ }^{6} \mathrm{C}_{5}\left(2^{5}-1\right)$
$+{ }^{6} \mathrm{C}_{4}\left(2^{4}-1\right)+{ }^{6} \mathrm{C}_{3}\left(2^{3}-1\right)$
$+{ }^{6} \mathrm{C}_{2}\left(2^{2}-1\right)+{ }^{6} \mathrm{C}_{1}\left(2^{1}-1\right)$
$=665$
3. The minute hand and second hand of a clock cross each other \qquad .times between 09:15:00 AM and 09:45:00 AM on a day
[MCQ, 1 Mark]
A. 29
B. 30
C. 15
D. 31

Ans. B
Sol. 9: 15: 00-9: 45: 00
One crossing in each minute
So, total $=30$
4. The symbol $0, *, \Delta$ and \square are to be filled, one in each box as shown below. The rule for filling in the four symbols are as follow. 1. Every row and every column must contain each of the four symbol
2. Every 2×2 square delineated by bold lines must contain each of the four symbols.

Which symbol will occupy the box marked with '?' in particle filled figure.
[MCQ, 1 Mark]

A.
B. *
C. Δ
D. Δ

Ans. B
Sol.

Hence, * will be come at ?.
5. In a recently held parent teacher meeting, the teacher had very few complaints about Ravi. After all Ravi was a hardworking and kind student.
Incidentally, almost all Ravi's friend at school were hard working and king too. But the teacher drew attention to Ravi's complete lack of interest in sports. The teacher believed that along with some of his friends who showed similar disinterest in sports. Ravi needed to engage in some sports for his overall development, which statement is logically correct.
[MCQ, 2 Mark]
A. Some of Ravi's friends are hardworking and kind
B. None of the Ravi's friends are interested in sports.
C. All of Ravi's friends are hardworking and kind
D. No one who is not a friend of Ravi is hard working and kind
Ans. C
Sol. The given statement is exactly matching with the information given in the passage.
6. Which of the following sentence sequence in the given options creates a coherent narrative?

1. I could not bring myself to knock
2. There was a murmur of unfamiliar voice coming from the big drawing room and the door was firmly shut.
3. The passage was dark for a bit but then if suddenly opened into a bright kitchen.
4. I decided I would rather wonder down the passage
[MCQ, 2 Mark]
Ans. 1-2-4-3
Sol. Sentence-3 follows sentence-4
5. Planting : Seed : : Raising : \qquad (By word meaning)
[MCQ, 1 Mark]
A. Height
B. Lift
C. Temperature
D. Child

Ans. D

Sol. As seed is grown into a plant through planting. Similarly, a child is grown in a nature being through raising.
8. He did not manage to fix the car himself, so he \qquad in the garage.
[MCQ, 2 Mark]
A. got it fixed
B. got fixed
C. gets fixed
D. Getting it fixed

Ans. A

Sol. The given statement is past tense.

Section-B: Technical

1. Consider the 2nd order

LDE $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0, x \geq 1$
with initial condition $y(x=1)=6 \&$
$\left.\frac{d y}{d x}\right|_{x=1}=2 y(2)=$ \qquad . (integer)
[NAT, 2 Marks]
Ans. 9 to 9
Sol. $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0$
\Rightarrow Euler-Cauchy form
Let, $x=e^{t}$
$x \frac{d y}{d x}=D y$
$x^{2} \frac{d^{2} y}{d x^{2}}=D(D-1) y$
$D(D-1) y+D y-y=0$
$\left(D^{2}-1\right) y=0$
Auxiliary Equation
$m^{2}-1=0$
$m= \pm 1$
$y=C_{1} e^{t}+C_{2} e^{-t}=C_{1} x+\frac{C_{2}}{x}$
$y(1)=6 \quad 6=C_{1}+C_{2}$
$y^{\prime}=C_{1}-\frac{C_{2}}{x^{2}}$
$y^{\prime}(1)=2=C_{1}-C_{2}$
From equation (i) and (ii)
$\mathrm{C}_{1}=4$
$C_{2}=2$
$y=4 x+\frac{2}{x}$
$y(2)=8+\frac{2}{2}=9$.
2. The value of k that makes the complex-
valued function.
$f(z)=e^{-k x}[\cos 2 y-i \sin 2 y]$
analytic:
[NAT, 1 Mark]
Ans. 2 to 2
Sol. $u=e^{-k x} \cos 2 y$
$v=-e^{-k x} \sin 2 y$
For analytic solution
$\mathrm{u}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}}$
$-k e^{-k x} \cos x y=-e^{-k x}(2 \cos 2 y)$
$\mathrm{k}=2$
3. $L^{-1}\left(\frac{1}{s^{3}-s}\right)$

Sol. $F(s)=\frac{1}{s\left(s^{2}-1\right)}=-\left(\frac{1}{s}-\frac{s}{s^{2}-1}\right)$
$=\frac{s}{s^{2}-1}-\frac{1}{s}$
$f(t)=\cosh t-1=\left(\frac{e^{t}+e^{-t}}{2}\right)-1$
4. A machine produces a defective component with $P=0.015$. The number of defective components in packed box = 200 follow a Poisson's distribution. The mean and variance are:
[MCQ, 1 Mark]
Sol. Mean $=\lambda=n P=200 \times 0.015=3$
Variance $=\lambda=3$.
5. The initial value problem
$\frac{d y}{d t}+2 y=0, y(0)=1$ is solve numerically
using the forward Euler's method with a constant and positive time step of Δt. Let y_{n} represent the numerical solution obtained after n steps. The condition $\left|y_{n+1}\right| \leq\left|y_{n}\right|$ is satisfied if and only if Δt does not exceed \qquad integer).
[NAT]
Ans. 1 to 1
Sol. $\frac{d y}{d t}+2 y=0$
$\frac{d y}{d t}=-2 y=f(x, y)$
$y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$
$y_{n+1}=y_{n}+h\left(-2 y_{n}\right)$
$y_{n+1}=y_{n}(1-2 h)$
$\left|y_{n+1}\right| \leq\left|y_{n}\right|$
$\left|y_{n}(1-2 h)\right| \leq\left|y_{n}\right|$
$|-2 h| \leq 1$
$-1 \leq 1-2 h \leq 1$
$-2 \leq-2 h \leq 0$
$2 \geq 2 h \geq 0$
$1 \geq \mathrm{h} \geq 0$
$0 \leq h \leq 1$
Hence = 1
6. A linear transformation maps a point (x, y) in the plane to point (x, y) according to rule $x=3 y, y=2 x$, then the disc $x^{2}+$ $y^{2} \leq 1$ gets transformed to a region with an area \qquad -
[NAT, 1 Mark]
Ans. 17.5 to 19.5
Sol. $x=3 y$
$y=2 x$
$x^{2}+y^{2} \leq 1$
$\Rightarrow\left(\frac{y}{2}\right)^{2}+\left(\frac{x}{3}\right)^{2} \leq 1$
$\frac{(x)^{2}}{3^{2}}+\frac{(y)^{2}}{2^{2}} \leq 1$
\rightarrow Area of ellipse $=\pi \mathrm{ab}$
$=\pi(3)(2)=6 \pi$
$=18.84$
7. Two machine spur gear 1 , and 2 with diametral pitch of 8 teeth per mm and an angular velocity $\frac{\omega_{2}}{\omega_{1}}=\frac{1}{4}$ have their centres 30 mm apart. The number of teeth on driver (gear 1) is

Ans. 96
Sol. $\mathrm{P}_{\mathrm{d}}=8$ teeth/mm
$\frac{\omega_{2}}{\omega_{1}}=\frac{1}{4}$

$P_{d}=\frac{T}{D}$
$\frac{T_{1}}{D_{1}}=\frac{T_{2}}{D_{2}}$
$C=\frac{D_{1}+D_{2}}{2}$
$60=D_{1}+D_{2}$
$D_{1}=12$
$D_{2}=48$
$\frac{\omega_{2}}{\omega_{1}}=\frac{T_{1}}{T_{2}}=\frac{D_{1}}{D_{2}}$
$\frac{1}{4}=\frac{D_{1}}{D_{2}} \Rightarrow D_{2}=4 D_{1}$
$\frac{T_{1}}{D_{1}}=8$
$\mathrm{T}_{1}=96$
8. The figure shows a block of $m=20 \mathrm{~kg}$ attached to a pair of identical linear spring, each having spring constant $k=$ $1000 \mathrm{~N} / \mathrm{m}$. The clock oscillates on a frictionless horizontal surface assuming free vibration, the time taken by the block to complete 10 oscillation is $\pi=3.14$
\qquad sec.

[NAT]
Ans. 6.0 to 6.4
Sol. $\mathrm{m}=20 \mathrm{~kg}$

$$
\mathrm{K}=1000 \mathrm{~N} / \mathrm{m}
$$

$\omega_{\mathrm{n}}=\sqrt{\frac{\mathrm{k}_{\mathrm{eq}}}{\mathrm{m}}}$
$=\sqrt{\frac{2 \mathrm{k}}{\mathrm{m}}}$
$=\sqrt{\frac{2 \times 1000}{20}}=10 \mathrm{rad} / \mathrm{s}$
$\mathrm{T}=\frac{2 \pi}{\omega_{\mathrm{n}}}$
$=\frac{2 \pi}{10} \mathrm{sec} /$ oscillation
For 10 oscillations
$=10 \times \frac{2 \pi}{10} \mathrm{sec}$
$=2 \pi$
$=6.28 \mathrm{sec}$
9. With reference to the EOQ model, which are of the options given is correct?
[MCQ, 1 Mark]

A. Curve P_{1} total cost, P_{2} Holding cost,
P_{3} : setup cost, P_{4} : production cost
B. P_{1} : Production cost, P_{2} Holding cost, P_{3} :

Total cost, P_{4} setup cost
C. P_{1} Holding cost, P_{2} setup cost, P_{3} production cost, P 4 total cost
D. P_{1} total cost, P_{2} production cost, P_{3} Holding cost, P_{4} setup cost.
Ans. A

Sol.

Curve $\mathrm{P}_{1}=$ Total cost
Curve $\mathrm{P}_{2}=$ Holding cost
\because Holding $=\frac{Q}{2} C_{h}$
Holding $\cos t \alpha \mathrm{Q}$
Curve $P_{3}=$ Setup cost
Cost $=\frac{D}{Q} \times C_{0}$
Setup cost $\alpha \frac{1}{\mathrm{Q}}$
Curve $\mathrm{P}_{4}=$ Production cost
10. Which one of the option given represent the feasible region of the linear program model:
$Z_{\text {Max }}=45 x_{1}+60 x_{2}$
$\mathrm{x}_{1} \leq 45$
$\mathrm{x}_{2} \leq 50$
$10 x_{1}+10 x_{2} \geq 600$
$25 x_{1}+5 x_{2} \leq 750$
A. P
B. Q
C. R
D. S
[MCQ]

Ans. B
Sol. $x_{1} \leq 45$
$\mathrm{X}_{2} \leq 50$
$\frac{x_{1}}{60}+\frac{x_{2}}{60} \geq 1$
$\frac{x_{1}}{30}+\frac{x_{2}}{150} \leq 1$

11. Consider incompressible laminar fluid flow of constant property Newtonian fluid in an isothermal circular tube. The flow is steady with fully developed temperature and velocity profiles. The Nusselt number for this flow depends on
A. the Prandtl number but not the Reynold number
B. the Reynold number but not the Prandtl number
C. neither the Reynold number not the Prandtl number
D. both the Reynold number and Prandtl number
[MCQ, 1 Marks]
Ans. C
Sol. For laminar flow in pipe Nusselt number remains constant which is independent of Prandtl number and Reynold number.
12. A cylinder of diameter d and height h is placed inside the cube of side L. What is view factor $F_{\text {ss }}$? If S denote the inner surface of cube.
A. 0
B. 1
C. $\frac{\frac{\pi}{2} d^{2}+\pi d h}{6 L^{2}}$
D. $1-\left(\frac{\frac{\pi}{2} d^{2}+\pi d h}{6 L^{2}}\right)$
[MCQ, 1 Marks]
Ans. D

Sol.

$F_{21}+F_{22}=1$ (Enclosed theorem)
$\Rightarrow F_{21}=1$
($F_{22}=0$: Convex and flat surface)
Also $F_{11}+F_{12}=1$ (Enclosure theorem)
$\Rightarrow F_{11}=1-F_{12}$
$=1-\frac{A_{2} F_{21}}{A_{1}}$ (reciprocity theorem)
$=1-\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}$
$=1-\frac{\left(2 \times \frac{\pi}{4} d^{2}+\pi \mathrm{dh}\right)}{6 L^{2}}$
$=1-\left(\frac{\frac{\pi}{2} d^{2}+\pi d h}{6 L^{2}}\right)$
13. Consider a counter flow heat exchanger with inlet temperatures of two fluids as 300 K and 350 K . The heat capacity rates are $1000 \mathrm{~W} / \mathrm{K}$ and $400 \mathrm{~W} / \mathrm{K}$ and effectiveness as 0.5. What is actual heat transfer rate is \qquad kW.

[NAT - 1 Marks]

Ans. 9.99-10.01
Sol. We know that,
$\epsilon=\frac{q_{\text {act }}}{q_{\max }}$
$\Rightarrow q_{\text {act }}=\in \times q_{\max }$
$=\in \times C_{\text {min }}\left(T_{h_{1}}-T_{C_{1}}\right)$
$=0.5 \times 400(350-300)\left(C_{\min }=400 \mathrm{~W} / \mathrm{k}\right)$
$=10000 \mathrm{~W}$
$=10 \mathrm{~kW}$
14. The lateral surface of a rod is insulated. The thermal conductivity of material is constant. For steady heat flow and without heat generation, which of the following temperature graph is possible.
A.

B.

C.

D.

[MSQ, 2 Marks]

Ans. A, B
Sol. Temperature profile is linear for steady state conduction without heat generation.
15. A very large metal plate of thickness (d) and thermal conductivity (K) is cooled by stream of air ($\mathrm{T}=300 \mathrm{~K}$). T_{p} (center line temperature). In which case lumped parameter model is used to study the heat transfer in metal plate.
A. $\mathrm{h}=100 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \mathrm{k}=1000 \mathrm{~W} / \mathrm{mK}, \mathrm{d}=$ $1 \mathrm{~mm}, \mathrm{~T}_{\mathrm{p}}=325 \mathrm{~K}$
B. $\mathrm{h}=100 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \mathrm{k}=100 \mathrm{~W} / \mathrm{mK}, \mathrm{d}=$ $1 \mathrm{~m}, \mathrm{~T}_{\mathrm{p}}=325 \mathrm{~K}$
C. $\mathrm{h}=1000 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \mathrm{k}=1 \mathrm{~W} / \mathrm{mK}, \mathrm{d}=1$ $\mathrm{m}, \mathrm{T}_{\mathrm{p}}=350 \mathrm{~K}$
D. $\mathrm{h}=10 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \mathrm{k}=100 \mathrm{~W} / \mathrm{mK}, \mathrm{d}=1$ $\mathrm{mm}, \mathrm{T}_{\mathrm{p}}=350 \mathrm{~K}$
[MSQ, 2 Marks]
Ans. A, D
Sol. For lumped system analysis to be valid biot number ≤ 0.1.
16. The figure shows two fluids held by a hinged gate. The atmospheric pressure is 100 kPa . Moment per unit width about the base of hinge is \qquad $\mathrm{kN}-\mathrm{m} / \mathrm{m}$. (Round off to decimal places). Assume acceleration due to gravity, $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

[NAT, 1 Mark]
Ans. 83-84
Sol.

$F_{H}=\frac{1}{2} r_{1} g x_{1} \times x_{1}+r_{1} g x_{1} \times x_{2}+\frac{1}{2} r_{2} g x_{2} \times x_{2}$
$=\left(\frac{1}{2} \times 1 \times 1+1 \times 1 \times 2+\frac{1}{2} \times 2 \times 2 \times 2\right) g$
$=\left(\frac{1}{2}+2+4\right) g$
$\mathrm{F}_{\mathrm{H}}=6.5 \mathrm{~g} \mathrm{kN}$
For depth of C_{p} from free surface equate moment about free surface.
$\mathrm{F}_{\mathrm{H}} \times \mathrm{h}_{\mathrm{C}_{\mathrm{p}}}=\left[\frac{1}{2} \times \frac{2}{3}+2 \times(1+1)+4 \times\left(1+\frac{2}{3}\right)\right] \mathrm{g}$
$6.5 \times \mathrm{h}_{\mathrm{c}_{\mathrm{p}}}=\left(\frac{1}{3}+4+4 \times \frac{5}{3}\right)$
$h_{c_{p}}=1.69 \mathrm{~m}$
Moment about bottom
$M_{B}=F_{H} \times(3-1.69)$
$=6.5 \times 9.81 \times 1.308$
$M_{B}=83.42 \mathrm{kN}-\mathrm{m} / \mathrm{m}$
17. Air (density $=1.2 \mathrm{~kg} / \mathrm{m}^{3}$, Kinematic viscosity $=1.5 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$) flows over a flat plate with free stream velocity of 2 m / s. The wall shear stress at a location 15 mm from leading edge is τ_{w}. What is wall shear stress at a location 30 mm from the leading edge is
A. $\frac{\tau_{\mathrm{w}}}{\sqrt{2}}$
B. $2 \tau_{w}$
C. $\frac{\tau_{w}}{2}$
D. $\sqrt{2} \tau_{w}$
[MCQ, 1 Mark]
Ans. A
Sol. For laminar boundary layer over a flat plate $\tau_{0} \propto \frac{1}{\sqrt{x}}$

So, $\frac{\tau_{0_{2}}}{\tau_{0_{1}}}=\sqrt{\frac{\mathrm{X}_{1}}{\mathrm{X}_{2}}}$
$\Rightarrow \tau_{0_{2}}=\tau_{w} \times \sqrt{\frac{15}{30}}$
$\tau_{0_{2}}=\frac{\tau_{w}}{\sqrt{2}}$
18. Consider a unidirectional flow with velocity field is given by $V(x, y, z, t)=$ $u(x, t) \hat{i}$ where, $u(0, t)=1$. If spatially homogeneous density varies with time as $r(t)=1+0.2 e^{-t}$. The value of $u(2,1)=$
\qquad (Round off to two decimal places). Assuming all dimensionless quantities.
[NAT, 2 Marks]
Ans. 1.08-1.15
Sol. Continuity equation for 1D compressible flow.
$\frac{\partial \rho}{\partial \mathrm{t}}+\frac{\partial}{\partial \mathrm{x}}(\mathrm{pu})=0$
$\Rightarrow-0.2 \mathrm{e}^{-\mathrm{t}}+\left(1+0.2 \mathrm{e}^{-\mathrm{t}}\right) \frac{\partial \mathrm{u}}{\partial \mathrm{x}}=0$
$\Rightarrow \frac{\partial \mathrm{u}}{\partial \mathrm{x}}=\frac{0.2 \mathrm{e}^{-\mathrm{t}}}{1+0.2 \mathrm{e}^{-\mathrm{t}}}$
Integrate
$\Rightarrow \mathrm{u}=\left(\frac{0.2 \mathrm{e}^{-\mathrm{t}}}{1+0.2 \mathrm{e}^{-\mathrm{t}}}\right) \mathrm{x}+\mathrm{C}$
At $\mathrm{x}=0 \Rightarrow \mathrm{u}=1 \Rightarrow \mathrm{C}=1$
$\Rightarrow \mathrm{u}=\left(\frac{0.2 \mathrm{e}^{-\mathrm{t}}}{1+0.2 \mathrm{e}^{-\mathrm{t}}}\right) \mathrm{x}+1$
At $x=2, t=1$
$\mathrm{u}=\left(\frac{0.2 \mathrm{e}^{-1}}{1+0.2 \mathrm{e}^{-1}}\right) \times 2+1$
$=1.137 \mathrm{~m} / \mathrm{s}$
19. Consider an isentropic flow of air (ratio of specific heats $=1.4$) through a duct as shown in the figure.
The variations in the flow across the cross-section are negligible. The flow condition at location 1 are given as follows:
$\mathrm{P}_{1}=100 \mathrm{kPa}, \rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{u}_{1}=400$ m / s
The duct cross-sectional area at location 2 is given by $\mathrm{A}_{2}=2 \mathrm{~A}_{1}$, where A_{1} denotes the duct cross-sectional area at location 1. Which one of the given statements about the velocity u_{2} and pressure P_{2} at location 2 is TRUE?
[MCQ, 1 Mark]

Location 1

Location 2

A. $\mathrm{u}_{2}<\mathrm{u}_{1}, \mathrm{P}_{2}<\mathrm{P}_{1}$
B. $\mathrm{u}_{2}<\mathrm{u}_{1}, \mathrm{P}_{2}>\mathrm{P}_{1}$
C. $\mathrm{u}_{2}>\mathrm{u}_{1}, \mathrm{P}_{2}>\mathrm{P}_{1}$
D. $\mathrm{u}_{2}>\mathrm{u}_{1}, \mathrm{P}_{2}<\mathrm{P}_{1}$

Ans. A
Sol. $\mathrm{p}_{1}=100 \mathrm{KPa} \quad \rho_{1}=1.2$
$\mathrm{u}_{1}=400 \mathrm{~m} / \mathrm{s}$
The ideal gas equation is
$\mathrm{P}_{1}=\rho_{1} \mathrm{RT}_{1}$
$T_{1}=\frac{100}{1.2 \times 0.287}=290.36 \mathrm{~K}$
Mach number at inlet is
$M=\frac{400}{\sqrt{1.4 \times 287 \times 290.36}}=1.17$
Mach number at the inlet of duct is greater than one so flow is supersonic. And divergent cross section area behave like a nozzle so velocity increase and pressure decreases.
20. The area moment of inertia about the Y axis of a linearly tapered section shown in fig. is \qquad m^{4}.

Ans. 3020 to 3030
Sol. Let us consider a small strip of length dx as shown in the figure.
The area of small strip can be given as $\mathrm{dA}=2 \mathrm{y} . \mathrm{dx}$
area moment of inertia of small strip about y axis can be given as $\mathrm{dI} y=\mathrm{x}^{2} \cdot 2 \mathrm{y} \cdot \mathrm{dx}$

y can be given as
$y=\left(\frac{3-1.5}{12}\right) x+1.5$
$\Rightarrow \frac{1.5}{12} x+1.5=\frac{x}{8}+1.5$
So the area moment of inertia is
$d I_{y}=2\left(\frac{x}{8}+1.5\right) \times x^{2} \cdot d x$

$$
\Rightarrow x^{2}\left(\frac{2 x}{8}+3\right) d x=\left(\frac{x^{3}}{4}+3 x^{2}\right) d x
$$

Total moment of inertia about y axis is
$I_{y}=\int_{0}^{12}\left(\frac{x^{3}}{4}+3 x^{2}\right) d x=\left[\frac{x^{4}}{16}+\frac{3 x^{3}}{3}\right]_{0}^{12}$
$=\frac{12 \times 12 \times 12 \times 12}{16}+12 \times 12 \times 12$
$=1296+1728 \Rightarrow 3024 \mathrm{~m}^{4}$
21. The options show frames consistory of rigid bar connected by pin joints. Which one of the frames is non rigid?
[MCQ]
A.

B.

C.

D.

Ans. D

Sol.

22. Which of the following not correct?
A. Any real gas behaves as an ideal gas at low pressure high temperature.
B. For real gas going through adiabatic reversible process ($\mathrm{PV}^{\vee}=\mathrm{C}$ (is the process equation)
C. For ideal gas $h \neq f(p)$
D. Ideal gas polytropic process $\left(\mathrm{PV}^{1.5}=\mathrm{C}\right)$ $\frac{P}{R}=\frac{m T}{V}$ is the equation connecting P1V and T at any point along to the process.
[MCQ, 1 Mark]
Ans. B
Sol. $\mathrm{PV}^{\mathrm{Y}}=\mathrm{C}$ is valid for reversible adiabatic process of the ideal gas. so this statement is not correct and the correct answer is B.
23. A HE extracts $\left(\mathrm{Q}_{\mathrm{H}}\right)$ from a TR at $\mathrm{T}=1000 \mathrm{~K}$ and rejects to $\left(\mathrm{QL}_{\mathrm{L}}\right)$ to TR at $\mathrm{T}=100 \mathrm{~K}$. While producing (W) work. While combination of [$Q_{H}, Q_{\llcorner }$and W] is allowed.
[MCQ, 1 Mark]
A. $Q_{H}=2000 \mathrm{~J}, Q_{L}=750 \mathrm{~J}, \mathrm{~W}=1250 \mathrm{~J}$
B. $\mathrm{Q}_{\mathrm{H}}=6000 \mathrm{~J}, \mathrm{Q}_{2}=600 \mathrm{~J}, \mathrm{~W}=5500 \mathrm{~J}$
C. $\mathrm{Q}_{\mathrm{H}}=2000 \mathrm{~J}, \mathrm{Q}_{\llcorner }=500 \mathrm{~J}, \mathrm{~W}=1000 \mathrm{~J}$
D. $Q_{H}=6000 \mathrm{~J}, \mathrm{Q}_{\mathrm{L}}=500 \mathrm{~J}, \mathrm{~W}=5500 \mathrm{~J}$

Ans. A

Sol. Given,
$\mathrm{T}_{\mathrm{H}}=1000 \mathrm{~K}$
$T_{\mathrm{L}}=100 \mathrm{~K}$

A) $\mathrm{Q}_{\mathrm{H}}=2000 \mathrm{~J}, \mathrm{Q}_{\mathrm{L}}=750 \mathrm{~J}, \mathrm{~W}=1250 \mathrm{~J}$

We know that,
$W=Q_{H}-Q_{L}=2000-750=1250 \mathrm{~J}$
$\left(\eta_{\text {carnot }}\right)_{H E}=1-\frac{T_{L}}{T_{H}}=1-\frac{100}{1000}=0.9$ or 90%
$(\eta)_{\text {for this option }}=\frac{\mathrm{W}}{\mathrm{Q}_{\mathrm{H}}}=\frac{1250}{2000}=62.5 \%$
\therefore This is the correct option.
B) $\because Q_{H}-Q_{L}=6000-600$
$=5400 \neq \mathrm{W}(5500 \mathrm{~J})$
So, option B is incorrect.
C) $\because Q_{H}-Q_{\llcorner }=2000-500$
$=1500 \mathrm{~J} \neq \mathrm{W}(1000 \mathrm{~J})$
So, option C is incorrect.
D) $Q_{H}-Q_{\llcorner }=6000-500$
$=5500 \mathrm{~J}=\mathrm{W}(5500 \mathrm{~J})$
Now,
$\eta=\frac{5500}{6000}=0.9166$ or $91.67 \%>(\eta)_{\text {carnot efficiency }}$
So, option D is incorrect.
24. Two ideal gases (x, y) its weight $\overline{M_{x}}=\frac{10 \mathrm{~kg}}{\mathrm{k}-\mathrm{mol}}, \overline{\mathrm{M}_{\mathrm{y}}}=\frac{20 \mathrm{~kg}}{\mathrm{k}-\mathrm{mol}}$
Total pressure in the chamber $\mathrm{P}_{\mathrm{T}}=10$ $\mathrm{kPa}, \mathrm{V}_{\mathrm{T}}=10 \mathrm{~m}^{3}$, Temperature of contents of the container 300 K , Mass of X is 2 kg , find the mass of y in kg
Take $\overline{\mathrm{R}}=\frac{8314 \mathrm{~J}}{\mathrm{k}-\mathrm{mol} . \mathrm{K}}$
[NAT, 2 Marks]
Ans. 3.95 to 4.1
Sol. Given data,
$\overline{\mathrm{M}}_{\mathrm{x}}=10 \mathrm{~kg} / \mathrm{k}-\mathrm{mol}$
$\bar{M}_{\mathrm{y}}=20 \mathrm{~kg} / \mathrm{k}-\mathrm{mol}$
$\mathrm{P}=100 \mathrm{kPa}$
$\mathrm{V}=10 \mathrm{~m}^{3}$
$\mathrm{T}=300 \mathrm{~K}$
$\mathrm{m}_{\mathrm{x}}=2 \mathrm{~kg}$
$\mathrm{m}_{\mathrm{y}}=$?
Ideal gas equation for the gas mixture
can be given as
$P V=m R T$
$P V=n \bar{R} T$
By substituting the value of total number of moles we get ideal gas equation
$100 \times 10=\left(\frac{m_{x}}{M_{x}}+\frac{m_{y}}{M_{y}}\right) 8.314 \times 300$
$1000=\left(\frac{2}{10}+\frac{m_{y}}{20}\right) 8.314 \times 300$
$m_{y}=4.02 \mathrm{~kg}$
25. $P_{1} \gg P_{0}, P_{2} \gg P_{0}, P_{2}$ is pressure at location 2.

Area of distance $=A$
Find the W.D. by piston on the atm. \qquad —.
A. $\mathrm{P}_{1} \mathrm{AL} L_{1} \ln \left(\frac{\mathrm{~L}_{1}}{\mathrm{~L}_{2}}\right)$
B. $\frac{\left(P_{2} L_{2}-P_{1} L_{1}\right) A}{(1-y)}$
C. $P_{0} A\left(L_{2}-L_{1}\right)$
D. 0
[MCQ, 2 Marks]
Ans. C
Sol. The work done by the gas can be given as
$w_{1-2}=\int p_{e x} \cdot d v=P_{0} \int_{1}^{2} d v=P_{0}\left(V_{2}-V_{1}\right)$
$w_{1-2}=P_{0}\left(A L_{2}-A L_{1}\right)=P_{0} A\left(L_{2}-L_{1}\right)$
26. Find stiffness

[MCQ, 1 Mark]
A. $\frac{\mathrm{EI}}{3 \mathrm{~L}^{3}}$
B. $\frac{3 E I}{L^{3}}$
C. $\frac{L^{3}}{3 E I}$
D. $\frac{3 L^{3}}{E I}$

Ans. B
Sol. Given a cantilever beam with point load W at free and deflection at free end,

$$
\delta=\frac{W L^{3}}{3 E I}
$$

We know, $\mathrm{k} \delta=\mathrm{W}$
$\mathrm{k} \times \frac{\mathrm{WL}^{3}}{3 \mathrm{EI}}=\mathrm{W}$
$k=\frac{3 E I}{L^{3}}$
27. $L_{P}=L_{Q}$
$R_{P}=R_{Q}$
$a_{Q}=2 a_{p}$
$E_{Q}=2 E_{p}$

A. $\sigma_{1}=\sigma_{2}$
B. $\sigma_{1}<\sigma_{2}$
C. Interface between P \& Q moves right.
D. Interface between P \& Q moves left.
[MSQ, 2 Marks]
Ans. A, D
Sol. Given,
$L_{p}=L_{Q}$
$A_{P}=A_{Q}$
$\alpha Q=2 \alpha P$
$E_{Q}=2 E_{p}$
For equilibrium
$R_{P}=R_{Q}=R$

$\sigma_{1}=\frac{\mathrm{R}}{\mathrm{A}}$ and $\sigma_{2}=\frac{\mathrm{R}}{\mathrm{A}}$
Hence, $\sigma_{1}=\sigma_{2}$
$\Delta L_{p}=\mathrm{L}(\alpha) \Delta \mathrm{T}-\frac{\mathrm{RL}}{\mathrm{AE}}$
$\Delta \mathrm{LQ}_{\mathrm{Q}}=\mathrm{L}(2 \alpha) \Delta \mathrm{T}-\frac{\mathrm{RL}}{2 \mathrm{AE}}$
From above two values
$\Delta \mathrm{L}_{\mathrm{Q}}>\Delta \mathrm{L}_{\mathrm{p}}$
Hence, interface between P and Q moves left.
28. The principal stress at a point P in a solid are $70 \mathrm{MPa},-70 \mathrm{MPa}, \mathrm{o}$, The Sy of material is 100 MPa . Which prediction about material failure at P is/are correct
A. Maximum normal stress theory predicts that material does not fail.
B. MSST predicts material does not fail.
C. Maximum normal stress theory predicts material fail.
D. MSST predicts material fail.

Ans. A, D
Sol. Given principal stresses.
$\sigma_{1}=70 \mathrm{MPa}$
$\sigma_{2}=-70 \mathrm{MPa}$
$\sigma_{3}=0$
Yield stress $\sigma_{y}=100 \mathrm{MPa}$
According to maximum shear stress theory
$\left|\frac{\sigma_{1}-\sigma_{2}}{2}\right| \leq \frac{\sigma_{y}}{2}$
$\left|\frac{70+70}{2}\right| \leq \frac{100}{2}$
$70 \leq 50$
Hence material fails.

According maximum normal stress

$\sigma_{1} \leq \sigma_{y}$
$70 \leq 100$
Hence material does not fail.
29. Consider the stress \& shear relationship is
$\sigma=400 \varepsilon^{0.3} \mathrm{MPa}$
$\sigma=$ True stress
$\varepsilon=$ True strain
Find Engineering Ultimate tensile strength value of this material in MPa.
[NAT, 2 Marks]
Ans. 277.8 to 278.5
Sol. $\sigma_{T}=400 \epsilon_{T}^{n}$
As we know that
$\sigma_{T}=\sigma_{\mathrm{E}}\left(1+\epsilon_{\mathrm{E}}\right)$
$\epsilon_{\mathrm{T}}=\ln \left(1+\epsilon_{\mathrm{E}}\right)$
And for UTS = engineering ultimate stress
$\epsilon=\mathrm{n}$
$\sigma_{\text {ult }}=206.38 \mathrm{MPa}$
30. Representation of a plane stress state in a material

M_{2}
M_{3}
M_{4}
A. M_{1}
B. M_{2}
C. M_{3}
D. M_{4}
[MSQ, 1 Mark]
Ans. A, C
Sol. Centre of Mohr's circle always lies on σ axis. Hence M_{1} and M_{3} is correct representation of a plane stress state.

31. $L=5 \mathrm{~m}$
$A=10 \mathrm{~m}^{2}$
$\mathrm{E}=70 \mathrm{GPa}$
$\rho=2700 \mathrm{~kg} / \mathrm{m}^{3}$
Elastic strain energy due to self-weight

[NAT, 2 Mark]
Ans. 2.083 J
Sol. Given,
$\mathrm{L}=5 \mathrm{~m}$
$A=10 \mathrm{~m}^{2}$
$\mathrm{E}=70 \mathrm{GPa}$
$\rho=2700 \mathrm{~kg} / \mathrm{m}^{3}$
Consider a strip dx at a distance x form the bottom

Total load $W=\rho g A L$
Strain energy
$U=\int_{0}^{L} \frac{\left(W_{x}\right)^{2} d x}{2 A E}$
$U=\int_{0}^{L} \frac{(\rho g A x)^{2} d x}{2 A E}$
$U=\frac{(\rho g)^{2} A}{2 E}\left[\frac{x^{3}}{3}\right]_{0}^{L}=\frac{(\rho g)^{2} A}{2 E}\left(\frac{L^{3}}{3}\right)$
$U=\frac{(2700 \times 9.8)^{2} \times 10}{2 \times 70 \times 10^{9}} \times\left(\frac{5^{3}}{3}\right)$
$U=2.083 \mathrm{~J}$
32. Which of the following represent the correct relation
$\sigma_{1}=\sigma_{2}$

$\sigma_{1}=\sigma_{1}$
$\sigma_{\mathrm{h}}=\sigma_{\mathrm{c}}=\sigma_{2}$
A.

B.

C.

D

[MCQ, 2 Marks]
Ans. C
Sol. As we all know that

$$
\begin{aligned}
& \sigma_{\mathrm{L}}=\frac{\mathrm{p}_{\max \cdot r}}{2 \mathrm{t}} \quad \mathrm{p}_{\max }=\rho \mathrm{gh} \\
& \left(\sigma_{\mathrm{h}}\right)=\frac{\mathrm{p}_{\mathrm{x}-\mathrm{x}} \mathrm{r}}{\mathrm{t}}=\frac{\rho \mathrm{gx} \cdot \mathrm{r}}{\mathrm{t}} \\
& \text { When } \mathrm{n}=\mathrm{h} / 2
\end{aligned}
$$

$\left(\sigma_{\mathrm{h}}\right)=\frac{\rho \mathrm{ghr}}{\mathrm{t}}$
So, C is correct
33. In a metal casting process to manufacture parts, both patterns \& mould provide shape by dictating where the material should or should not go. Which of the option given correctly describe mould and pattern?
A. Pattern walls indicates boundaries within which the molten part material is allowed, while mould walls indicate boundaries of region where mould material is not allowed.
B. Mould wall indicates boundaries within which the molten part material is allowed while pattern wall indicate boundaries where mould material is not allowed.
C. Mould can be used to make pattern.
D. Pattern can be used to make mould.
[MSQ, 2 Marks]
Ans. B, D
Sol. Mould wall indicates boundaries within which the molten part material is allowed while pattern wall indicate boundaries where mould material is not allowed.
Pattern can be used to make mould.
34. To surfaces $P \& Q$ are to joined together. Which of given operation, there is no melting of two surfaces P \& Q for creating joint?
A. Brazing
B. Adhesive bonding
C. Spot welding
D. Arc welding
[MSQ, 1 Mark]
Ans. A, B
Sol. Brazing, Adhesive bonding
35. The motor moves in discrete rotational steps of 50 steps per revolution. The pitch of lead screw is 5 mm and total horizontal transverse length of table is 100 mm what is total number of controllable locations at which the table can be positioned?

Table

A. 1000
B. 5000
C. 2
D. 100
[MCQ, 2 Marks]
Ans. A
Sol. Number of steps per revolution, $\mathrm{n}_{\mathrm{s}}=50$
Pitch $=5 \mathrm{~mm}$
$B L U=\frac{5}{50}=\frac{1}{10} \mathrm{~mm}$
Length of the table $=100 \mathrm{~mm}$
Number of controllable positions
$=\frac{100}{B L U}=\frac{100}{(1 / 10)}=1000$
36. Consider
$\lambda=0.5 \mu \mathrm{~m}$
$\mathrm{n}=12$ fringes
Find the height difference of gauge in mm

[NAT, 2 Marks]
Ans. 0.0078 to 0.0095
Sol. $\lambda=0.5 \mu \mathrm{~m}$
$\mathrm{G}=45 \mathrm{~mm}$
$\Delta \mathrm{h}=\left(\frac{\mathrm{n} \lambda}{2}\right)\left(\frac{\mathrm{G}}{\mathrm{L}}\right)$
$=\left(\frac{12 \times 0.5 \times 10^{-3}}{2}\right)\left(\frac{45}{15}\right)$
$=0.009$
37. Find the ratio of $\frac{\text { Proeutectoid Cementite }}{\text { Total Cementite }}=$?

[NAT, 2 Marks]
Ans. 0.48 to 0.57
Sol. $m_{\text {pro }-\mathrm{Fe}_{3} \mathrm{C}}=\frac{1.5-0.8}{6.67-0.8}=0.1192$
$m_{\text {total }-\mathrm{Fe}_{3 \mathrm{C}}}=\frac{1.5-0.02}{6.67-0.02}=0.2225$
$\therefore \frac{\mathrm{m}_{\text {pro }-\mathrm{Fe}_{3} \mathrm{C}}}{\mathrm{m}_{\text {total }-\mathrm{Fe}_{3} \mathrm{C}}}=\frac{0.1192}{0.2225}=0.53$
38. Atomic radius of $\mathrm{FCC}=\frac{\sqrt{2}}{10} \mathrm{~mm}$

Atomic weight $=24.092 \mathrm{~g} / \mathrm{mol}$
Avogadro Number $(A . N)=6.023 \times 10^{23}$ atm/mol
Find the density of material = \qquad $\mathrm{kg} / \mathrm{m}^{3}$
[NAT, 2 Marks]
Ans. 2499 to 2501
Sol. Given,
Atomic radius of FCC material, $r=\frac{\sqrt{2}}{10} \mathrm{~nm}$
Atomic weight $(W)=24.092 \mathrm{~g} / \mathrm{mole}$
Avogadro number (N)
$=6.023 \times 10^{23}$ atoms $/ \mathrm{mole}$
Find density $=$?
We know, $\rho=\frac{\mathrm{N}_{\mathrm{avg}} \times \text { Atomic weight }}{6.023 \times 10^{23} \times(\mathrm{a})^{3}}$
For FCC, $a=2 \sqrt{2} r \& N_{\text {avg }}=4$
$\therefore \rho=\frac{4 \times 24.092 \times 10^{-3}}{6.023 \times 10^{23} \times\left(2 \sqrt{2} \times \frac{\sqrt{2}}{10} \times 10^{-9}\right)^{3}}$
$=2500 \mathrm{~kg} / \mathrm{m}^{3}$
39. Find strain rate $\left(\mathrm{s}^{-1}\right)$ if shear angle 45° and rake angle is 5°, mean thickness is 5 micrometer if cutting velocity $=1 \mathrm{~m} / \mathrm{sec}$
A. 1.84×10^{-4}
B. 1.54×10^{-4}
C. 2.6×10^{5}
D. 6.2×10^{4}
[MCQ, 2 Marks]
Ans. C

Sol.

$\frac{V_{s}}{\sin 85^{\circ}}=\frac{V_{C}}{\sin 50^{\circ}}$
$V_{\mathrm{s}}=1.3 \mathrm{~m} / \mathrm{sec}$
Strain rate $=\frac{V_{s}}{t_{s}}$

$$
=\frac{1.3}{5 \times 10^{-6}}
$$

$=2.6 \times 10^{5} \mathrm{sec}^{-1}$
40. Find the value of $\mu=0.3, a=270^{\circ}$
$\mathrm{T}_{1} / \mathrm{T}_{2}=$?

[NAT - 1 Mark]
Ans. 3.95-4.3
Sol. Given,
$\mathrm{m}=0.3$
$\theta=270^{\circ}=270 \times \frac{\pi}{100}=\frac{3 \pi}{2}$
$\frac{T_{1}}{T_{2}}=e^{\mu \theta}=e^{0.3 \times 3 \pi / 2}=4.11$
41. Which of the following represents the correct endurance limit?

A. S_{1}
B. S_{2}
C. S_{3}
D. S_{4}
[MCQ, 1 Mark]
Ans. D
Sol. Correct endurance limit is S_{4}.

GATE 2023 Mechanical Engineering: Expected Topper's Marks

> 80+/100 Marks Expected for AIR under 10
> 75+/100 Marks Expected for AIR under 100

GATE 2023 Mechanical Engineering: Expected Cut-Off

Category	2021	2022	Expected 2023
General	33	28.1	31
OBC	29.7	25.2	29
SC/ST	22	18.7	23

Our Outstanding GATE Results

Rank 02
Poojasree (EC)

Rank 03
Munish (ME)

Rank 08
Hemant (EE)

Rank 06
Ghanendra (EC)

Rank 06
Parag (EC)

Rank 08
Rajat (ME)

Rank 07
Vatsal (ME)

Rank 09 Vamsi (EC)

Rank 03
Manoj (EC)

Rank 08 Rahul (CE)

Rank 13 Shashwat (CE)

Rank 09
Himanshu (EE)

Rank 39
Navneet (CS)

Rank 26 Kartikay (CE)

Rank 54
Rishi (EE)

Rank 30
Raja (EC)

Rank 56 Apurv Mittal (ME)

Rank 09 Avinash (ME)

Rank 39
Akash Singh (CS)

Rank 56
Nikhil (ME)

Our Outstanding GATE Results

Prepare with us \& get placed in your dream college, PSU or department!

Top Colleges

IISc Bangalore

IIT Madras

IIT Bombay

IIT Kharagpur

Departments through ESE

BYJU'S
 EXAM PREP

Name:

Contact no:

Email id:

