

GATE 2023

Electronics Engineering

Questions & Solutions

Memory Based

Byju's Exam Prep App

https://byjusexamprep.com

GATE 2023 Electronics & Communication Engineering: Major Highlights

- > **Overall Difficulty Level:** Easy to Moderate
- > Electronic Devices & Signals and Systems Questions were easy but tricky.
- > **MSQ** weightage: 4
- > **NAT weightage:** 16
- > MCQ weightage: 45
- > Questions from General Aptitude were easy but lengthy.

GATE 2023 Electronics & Communication Engineering Comparison with last 3 Years' Data

S.No.	Subject Name	2023	2022	2021	2020
1	Control Systems	7	7	8	12
2	Digital Circuits	8	11	9	7
3	Electronic Devices	7	8	6	10
4	Signals & Systems		6	8	8
5	Communication Systems		13	16	12
6	Analog Circuits		10	9	13
7	Network Theory	8	8	8	7
8	Electromagnetics	11	6	8	6
9	Engineering Mathematics		16	13	10
10	General Aptitude		15	15	15
	Total	100	100	100	100

GATE 2023 Electronics & Communication Engineering: Subject-Wise Marks Distribution

Subjects	Qu	Total Marks		
Subjects	1 Mark	2 Marks		
Control Systems	1	3	7	
Digital Circuits	4	2	8	
Electronic Devices	3	2	7	
Signals & Systems	3	4	11	
Communication Systems	2	4	10	
Analog Circuits	2	3	8	
Network Theory	4	2	8	
Electromagnetics	1	5	11	
Engineering Mathematics	5	5	15	
General Aptitude	5	5	15	
Total	30	35	100	

Section-A: General Aptitude

Which of the following options represent 1. the given graph?

A. $f(x) = x^2 e^{2-|x|}$ B. $f(x) = x^2 e^{-|x|}$ C. $f(x) = x^2 e^{2-|x|}$ D. $f(x) = x^2 e^{-2|x|}$

[MCQ, 2 Marks]

Ans. D

Sol. Check for even symmetry.

f(t) = f(-t)

So, correct answer is x²e^{-2|x|}

2. How many rectangles are present in the given figure?

Ans. A Sol.

(1 + 2) (1 + 2) = 9

Total \Rightarrow 9 + 1 = 10

3. In a class of 100 students (i) There are 30 students who neither like romantic movie nor comedy movies.

(ii) Number of students who like romantic movies is twice the number of students who like comedy moves and

(iii) The number of students who like both romantic movies and comedy moves is 20 How many students in the class like romantic movies

A. 60	B. 30
C. 40	D. 20

D. 20

[MCQ, 1 Mark]

Ans. A

Sol.

$$x + 20 + y + 30 = 100$$

$$x + y = 50$$

$$R = 2C$$

$$(x + 20) = 2(Y + 20)$$

$$x + 20 = 2Y + 40$$

$$x + 2(50 - x) + 20$$

$$x = 40$$

So that $x + 20 = 60$

4. What is the smallest number with distinct digits whose digits add upto 45.

A. 99999	B. 123456789
C. 123555789	D. 123457869

[MCQ, 2 Marks]

Ans. B

Sol. Distinct digits mean all the digits should be different.

> \therefore 123456789&123457869 So, 1 2 3 4 5 6 7 8 9 < 1 2 3 4 5 7 8 6 9 Correct answer is 1 2 3 4 5 6 7 8 9

5. A 100 cm \times 32 cm rectangular sheet is folded 5 times. Each time the sheet is folded, the long Edge aligns with its opposite side. Eventually, the folded sheet is a rectangle of dimension 100 cm × 1 cm. The total no. of creases visible when the sheet is unfolded is.

A. 32	B. 63
C. 31	D. 5

C. 31

[MCQ, 1 Mark]

Ans. C

Sol. \Rightarrow 1 + 2¹ + 2² + 2³ + 2⁴

 $\Rightarrow 1 + 2 + 4 + 8 + 16$

- ⇒ 31
- 6. Courts : ______ : : Parliament : Legislature
 - A. Executive B. Governmental
 - C. Judiciary D. Legal

[MCQ, 2 Marks]

Ans. C

Sol. As Legislature functions in Parliament Judiciary functions in courts.

When I was a kid, I was partial to stories about other worlds and interplanetary travel. I used to imagine that I could just gaze off into space and be whisked to another planet.

A. It is an adult's memory of what he or she liked as a child.

B. The child in the passage read stories about interplanetary travels only in parts. C. It is a child's description of what he or she likes.

D. It teaches us that stories are good for children.

[MCQ, 2 Marks]

Ans. A

7.

- **Sol.** It is an adult's memory of what he or she liked as a child.
- I cannot support this proposal. 8. My will not permit it. A. Conscious B. Constant
 - C. Consensus D. Conscience

Ans. D

Sol. Option D is correct.

[MCQ, 1 Mark]

Section-B: Technical

11. A closed loop system is shown with k > 0a > 0.

Find the steady state error due to ramp input.

[MCQ, 2 Marks]

Ans. A

$$\textbf{Sol.} \ \ G \bigl(s \bigr) = \frac{k}{s \bigl(s + 2 \bigr)} \rightarrow \text{Type '1'}$$

$$K_{v} = \frac{\text{Lim sG}(s)}{s \to 0} = \frac{k}{2}$$

So, e_{ss} for input a[t u (t)]

$$= \alpha \left(\frac{1}{K_v}\right) = \alpha \left(\frac{2}{k}\right)$$
$$e_{ss} = \frac{2\alpha}{k}$$

12. In the following block diagram, R(s) and P(s) are two inputs.

The output Y(s) is expressed as $Y(s) = G_1(s) R(s) + G_2(s) D(s)$. Then $G_1(s)$ and $G_2(s)$ are given by

A.
$$G_{1}(s) = \frac{G(s)}{1 + G(s) - H(s)} \text{ and}$$
$$G_{2}(s) = \frac{G(s)}{2 + G(s) - G(s) H(s)}$$

B.
$$G_{1}(s) = \frac{G(s)}{1 + G(s) + G(s)H(s)} \text{ and}$$
$$G_{2}(s) = \frac{G(s)}{1 + G(s) + G(s)H(s)}$$
C.
$$G_{1}(s) = \frac{G(s)}{2 + G(s) + H(s)} \text{ and}$$
$$G_{2}(s) = \frac{G(s)}{2 + G(s) + G(s)H(s)}$$
D.
$$G_{1}(s) = \frac{G(s)}{1 - G(s) + H(s)} \text{ and}$$
$$G_{2}(s) = \frac{G(s)}{1 - G(s) + H(s)} \text{ and}$$

[MCQ, 2 Marks]

Ans. B

Sol.

So, Y = G(D + R - y - Hy)
Y(1 + G + GH) = GR + GD
Y =
$$\frac{G}{1+G+GH}R + \frac{G}{1+G+GH}$$

13. The open loop transfer function of a unity negative feedback system is

$$G\left(s\right) = \frac{K}{s\left(1 + sT_{1}\right)\left(1 + sT_{2}\right)}$$

Where K, T_1 and T_2 are positive constants. The phase crossover frequency, in rad/s is.

A.
$$\frac{1}{T_2\sqrt{T_1}}$$
B.
$$\frac{1}{T_1 T_2}$$
C.
$$\frac{1}{T_1\sqrt{T_2}}$$
D.
$$\frac{1}{\sqrt{T_1 T_2}}$$

[MCQ, 1 Mark]

Ans. D

Sol.
$$G(j\omega) = \frac{K}{j\omega(1+j\omega\pi)(1+j\omega T_2)}$$

$$\begin{split} \angle G(j\omega) &= -90^{\circ} - tan^{-1} (\omega\pi) - tan^{-1} (\omega T_2) \\ &= -180^{\circ} \\ tan^{-1} (\omega T_1) + tan^{-1} (\omega T_2) &= 90^{\circ} \\ tan^{-1} \left(\frac{\omega T_1 + \omega}{1 - \omega^2} \frac{T_2}{T_1} \right) &= 90^{\circ} \\ &\Rightarrow 1 - \omega^2 T_1 T_2 = 0 \Rightarrow \omega_p = \frac{1}{\sqrt{T_1 T_2}} \end{split}$$

14. In the circuit shown below; P and Q are the inputs. The logical function realized by the circuit.

Ans. B

 $\textbf{Sol.} \quad \textbf{Y} = \overline{\textbf{S}}\textbf{I}_0 + \textbf{S}\textbf{I}_1$

$$\mathsf{Y} = \overline{\mathsf{Q}} \cdot \mathsf{O} + \mathsf{Q} \cdot \mathsf{P} = \mathsf{P}\mathsf{Q}$$

15. In the given sequence circuit initial states are $Q_1 = 1$, $Q_2 = 0$. For clock frequency of 1 MHz; frequency of Q_2 (in kHz).

[NAT, 2 Marks]

Ans. 250 Sol.

16. The synchronous sequential circuit shown below works at a clock frequency of 1 GHz. The throughput in M bits/s and latency in ns respectively
A. 333.3, 1
B. 33.3, 3

C. 2000, 3 D. 1000, 3

$$-I/P D_1 Q_0 D_1 Q_1 D_2 Q_2 O/P$$

Clk

Sol.
$$f_{clk} = 1 \text{ GHz}$$

 $T_{clk} = 1 \text{ ns}$
So, t_{pd} for each flip flop to satisfy.
 $t_{pd} \le 1 \text{ ns}$
warts case $t_{pd} = 1 \text{ ns}$
So, to transmit 1st bit serially
delay = 3 ns
but for 2nd bit \Rightarrow 4 ns
3rd bits \Rightarrow 5 ns
.
.
n bits = (n + 2)ns
(n + 2) $\times 10^{-9}$ s \rightarrow n bits
let (n + 2) $\times 10^{-9}$ = 1
n = 10⁹ - 2 $\approx 10^9$

- So, $1 \sec \rightarrow 10^9$ bits = 1000 Mbits throughput = 1000 Mbits
- The SNR of an ADC with a full scale sinusoidal input is 61.96 dB. % Resolution of ADC ______

[NAT, 1 Mark]

- **Ans.** 0.097
- Sol. SNR = 1.763 + 6.02n = 61.96
 n ≈ 10
 - % resolution = $\frac{1}{2^{n-1}} \times 100$
 - ≈ 0.097%
- 18. For a circuit shown below, the propagation delay of each NAND gate is 1ns. The critical path delay _____ ns.

Ans. 2

Sol.

Critical path delay = 2 ns

19. In an external semiconductor, the hole concentration given by $1.5n_i$, where n_i is intrinsic carrier concentration of 1×10^{10} cm⁻³. The ratio of electron to hole mobility for equal hole and electron drift current is given as _____

[NAT, 2 Marks]

- **Ans.** 2.25
- **Sol.** Electron drift current.

$$I_n = AJ_n = A \sigma E = A nq\mu_n E \qquad \dots (1)$$

Hole drift current
$$I_D = Apq\mu_pE...$$
 (2)

$$\frac{I_{n}}{I_{p}} = \frac{n}{p} \cdot \frac{\mu_{n}}{\mu_{p}} = 1 \qquad ... (3)$$

$$:: I_n = I_p$$

$$\frac{\mu_n}{\mu_p} = \frac{p}{n} \qquad \dots (4)$$

$$p = 1.5 n_i \qquad n = \frac{n_i^2}{p} = \frac{n_i}{1.5}$$
$$\therefore \ \frac{\mu_n}{\mu_p} = \frac{1.5n_i}{n_i / 1.5} = 1.5^2 = 2.25$$

- **20.** In a semiconductor, if fermi energy level lies in conduction band, then the semiconductor is known as.
 - A. Degenerative n-type
 - B. Non-degenerative n-type
 - C. Degenerative p-type
 - D. Non-degenerative n-type

[MCQ, 2 Marks]

Ans. A

Sol. Option A is correct.

21. For an intrinsic semiconductor at T = 0 K, which of the following statement is true.A. All energy states in the conduction band is filled with electrons and valence is empty

B. All energy states in conduction and valence bands are filled with electrons

C. All energy states in the conduction and valence band are filled with holes

D. All energy states in the valence band are filled with electrons and conduction band is empty

[MCQ, 2 Marks]

Ans. B

Sol. At = 0 K, semiconductor is insulator

 $\mathop{\scriptstyle \div}$ There will be no intrinsic excitation.

22. In a semiconductor device, the fermienergy level is 0.35 eV above the valence band energy, the effective density state in valence band at T = 300 K is 1×10^{19} cm⁻³. The thermal equilibrium hole concentration in Si at 400 K is _____ × 10^{13} cm⁻³.

[NAT, 2 Marks]

Ans. 60.4

Sol. $N_V = 1 \times 10^{19} \text{ cm}^{-3}$ at 300 K

$$E_{F} - E_{V} = kT \ln \frac{N_{V}}{P}$$

From this,

 $p = N_v e^{-[E_F - E_v]/kT}$

$$N_{V_2} = N_{V_1} \times \left(\frac{T_2}{T_1}\right)^{3/2}$$

= 1 × 10¹⁹ × $\left(\frac{400}{300}\right)^{3/2}$ = 1.539 × 10¹⁹/cm
kT at T = 300 K is 0.0259 eV
kT at T = 400 K is

$$= 0.0259 \times \frac{400}{300} = 0.0345 \text{ eV}$$

p = 1.539 × 10¹⁹ e^{-0.35/0.0345}
p = 6.04 × 10¹⁴/cm³

23. The h-parameters of a two-port network are shown below. The condition for the maximum small signal voltage gain V_{out}/V_s is.

A. $h_{11} = 0$, $h_{12} = very$ high, $h_{21} = very$ high and $h_{22} = 0$

B. $h_{11} = 0$, $h_{12} = 0$ $h_{21} = very high, h_{22} = 0$

 $\begin{array}{lll} h_{12}\,=\,0\\ A_{_{VS}}\,\cong\,\infty \ very \ high\\ B. \ h_{11}\,=\,0 \quad h_{12}\,=\,0 \quad \ h_{22}\,=\,V. \ Low \ h_{21}\,=\\ very \ high \end{array}$

24. If D₁ & D₂ are silicon diodes and cut off voltage is given as 0.7V. Then the transfer characteristics is.

Sol.

Vin	D 1	D ₂	Vo
V _{IN} > 1.7	ON	OFF	V _{IN} - 0.7
$0.3 < V_{IN} < 1.7$	OFF	OFF	1V
$V_{IN} \leq 0.3$	OFF	ON	V_{IN} + 0.7

A. I-
$$R_4/R_3$$
 B. R_4/R_3
C. $-R_4/R_3$ D. $1+ R_4/R_3$

[MCQ, 2 Marks]

Sol.

26. In the circuit below, the voltage V_L is?

[NAT, 2 Marks]

Ans. 2

Sol.

 M_2 & M_4 are in series

$$\begin{split} I_2 &= I_4 = \frac{(W/L)}{(W/L)} \times I_{ref.} \\ &= \frac{10}{1} \times 1 = 10 \text{ mA} \\ I_3 &= \frac{(W/L)_3}{(W/L)_1} \times I_{ref} = \frac{7}{1} \times 1 = 7 \text{ mA} \\ I_5 &= \frac{(W/L)_5}{(W/L)_4} I_4 \\ I_5 &= \frac{5}{10} \times 10 = 5 \text{ mA} \\ I_3 &= I_5 + I_L \\ 7 &= 5 + I_L \\ I_L &= 7 - 5 = 2 \text{ mA} \\ V_L &= I_L R_L = 2 \times 1 = 2 \text{ Volt} \\ . \text{ Consider the signal x(t) and y(t)} = \end{split}$$

- 27. Consider the signal x(t) and y(t) = x(e^t) output. The system is _____.
 A. Causal and TIV
 B. Non-Causal and TV
 - D. Non-Causal and T
 - C. Causal and TV
 - D. Non-Causal and TIV

[MCQ, 2 Marks]

Ans. B

- **Sol.** $y(t) = x(e^t)$
 - (i) Causality test:
 - Put, t = 0
 - $y(0) = x(e^0) = x(1)$

present output depends on future input samples.

 \therefore System is non-causal.

(ii) Test for time invariance:

 \therefore y(t) = x(e^t)

Argument has time function e^t which represents time variant system.

 \therefore System is non-causal and time variant.

Correct answer (B)

28. FT of
$$x(t) = e^{-t^2}$$
 is _____

A.
$$\sqrt{\pi}e^{\frac{-\omega^2}{4}}$$
 B. $\sqrt{\pi}e^{\frac{\omega^2}{2}}$

C. $\frac{e^{\frac{-\omega^2}{4}}}{2\sqrt{\pi}}$

D.
$$\sqrt{\pi}e^{\frac{-\omega^2}{2}}$$

[MCQ, 2 Marks]

30.

Ans. A

Sol. $x(t) \xleftarrow{CTFT} X(\omega)$

 $:: e^{-at^2} \longleftrightarrow \sqrt{\frac{\pi}{a}} e^{-\frac{\omega^2}{4a}}$

Put, a = 1

$$e^{-t^2} \longleftrightarrow \sqrt{\pi} e^{-\frac{\omega^2}{4}}$$

Correct option (A)

29. Match the following

s	ignal types		Spectral characteristics
1.	Continuous and aperiodic	a.	Continuous and aperiodic
2.	Continuous and Periodic	b.	Continuous and Periodic
3.	Discrete and aperiodic	с.	Discrete and aperiodic
4.	Discrete and Periodic	d.	Discrete and Periodic

- A. 1-a, 2-b, 3-c, 4-d
- B. 1-a, 2-c, 3-d, 4-b
- C. 1-a, 2-c, 3-b, 4-d
- D. 1-d, 2-b, 3-c, 4-a

[MCQ - 2 Marks]

Ans. C

Sol. Duality table

Time domain		Frequency domain
Continuous	\rightarrow	Aperiodic
Aperiodic	\rightarrow	Continuous
Discrete	\rightarrow	Periodic
Periodic	\rightarrow	Discrete

If input x(n) having DTFT
X(
$$e^{j\Omega}$$
) = 1 - $e^{-j\Omega}$ + $2e^{-3j\Omega}$ be passed
through as LTI system of frequency
response H($e^{j\Omega}$) = 1 - $\frac{1}{2}e^{-2j\Omega}$
The output y(n) of the system
A. $\delta(n) - \delta(n - 1) - 0.5\delta(n - 2) + 2.5\delta(n - 3) - \delta(n - 5)$
B. $\delta(n) + \delta(n - 1) - 0.5\delta(n - 2) - 2.5\delta(n - 3) + \delta(n - 5)$
C. $\delta(n) - \delta(n - 1) - 0.5\delta(n - 2) - 2.5\delta(n - 3) + \delta(n - 5)$
D. $\delta(n) + \delta(n - 1) + 0.5\delta(n - 2) + 2.3\delta(n - 3) + \delta(n - 5)$

[MCQ - 2 Marks]

Ans. A
Sol.
$$x[n] \xleftarrow{\text{DTFT}} X(e^{+j\Omega})$$

 $X(e^{j\Omega}) = 1 - e^{-j\Omega} + 2e^{-j3\Omega}$
 $X(z) = 1 - z^{-1} + 2z^{-3}$ (i)
 $& H(e^{j\Omega}) = 1 - \frac{1}{2}e^{-j2\Omega}$
 $H(z) = 1 - \frac{1}{2}z^{-2}$ (ii)
Now, $Y(z) = X(z).H(z)$
 $Y(z) = (1 - z^{-1} + 2z^{-3}) \cdot \left(1 - \frac{1}{2}z^{-2}\right)$
 $Y(z) = 1 - z^{-1} + 2z^{-3} - \frac{1}{2}z^{-2} + z^{-3} - z^{-5}$
 $Y(z) = 1 - z^{-1} - \frac{1}{2}z^{-2} + \frac{5}{2}z^{-3} - z^{-5}$
Taking I.Z.T.

 $y[n] = \delta(n) - \delta(n - 1) - 0.5\delta(n - 2) + 2.5\delta(n - 3) - \delta(n - 5)$ Correct answer (A)

31. Let m(t) be a bandlimited signal with bandwidth B and energy E. Let $\omega_0 = 10B$, the energy of signal m(t)cos ω_0 t

A.
$$\frac{E}{4}$$
 B. E

32. Let x₁(t) and x₂(t) be two band limited signals having bandwidth.

 $B = 4\pi \times 10^3$ rad/s each. In the figure below, the Nyquist sampling frequency in rad/s, required to sample y(t) is?

[MCQ, 2 Marks]

 $\omega_s = 2\pi f_s = 32\pi \times 10^3 \text{ rad/sec}$

33. Let X(t) be a white gaussian noise with power spectral density ½ W/H₂. If X(t) is input to an LTI system with impulses response e^{-t}u(t). The average power of the system output is W. (Upto two decimal places)

[NAT, 2 Mark]

Ans. 0.25

Sol.

$$\mathbf{S}_{x}(\omega) = \frac{1}{2} \frac{W}{Hz} \qquad \mathbf{h}(t) = e^{-t} \mathbf{u}(t) \qquad \mathbf{S}_{y}(\omega)$$

$$\mathbf{S}_{y}(\omega) = \mathbf{S}_{x}(\omega) |\mathbf{H}(\omega)|^{2}$$

$$= \frac{1}{2} \left| \frac{1}{1 + j\omega} \right|^{2}$$

$$= \frac{1}{2} \left(\frac{1}{1 + \omega^{2}} \right)$$

Output average power = $\frac{1}{2\pi} \int_{-\infty}^{\infty} S_{y}(\omega) d\omega$

$$= \frac{1}{2\pi} \times 2 \int_{-\infty}^{\infty} \frac{1}{2} \frac{1}{\left(1 + \omega^2\right)} d\omega$$
$$= \frac{1}{2\pi} \times \left[\tan^{-1} \omega \right]_{0}^{\infty} = \frac{1}{2\pi} \times \frac{\pi}{2}$$
$$= 0.25$$

34. For a real signal, which of the following is /are valid power spectral density/densities?

C.
$$S_{x}(\omega) = e^{-\omega^{2}} \cos^{2} \omega$$

D. $S_{x}(\omega) = \frac{2}{9 + \omega^{2}}$

Ans. C, D

Sol. Properties of power spectral density:

(1)
$$S_x(\omega)$$
 should be real and positive

(2)
$$S_x(\omega) = S_x(-\omega)$$

$$S_x(\omega) = e^{-\omega^2} \cos^2 \omega$$

$$S_x(-\omega) = e^{-(-\omega)^2} \cos^2(-\omega) = e^{-\omega^2} \cos^2 \omega$$

(Hence even symmetry)

$$S_{x}(\omega) = \frac{2}{9 + \omega^{2}}$$

$$S_{x}(\omega) = \frac{2}{9 + (-\omega^{2})^{2}} = \frac{2}{9 + \omega^{2}} = S_{x}(\omega)$$

(even symmetry)

Option (C) and (D) are correct.

35. A random variable X, distributed normally as N(G1) undergoes the transformation y = n(x), given in the figure. The form of probability density function of y is (a, b, c are non zero) constants and g(y) is piecewise continuous function)

Ans. D Sol.

14

For -1 < x < 1, y = 0For x > 2, y = +1For 1 < x < 2 and -2 < x < -1, y = variable

The PDF of Y will have form,

$$f_{y}(y) = \sum_{i=0}^{n} p(y_{i}) \delta(y - y_{i}) + g(y)$$

Where, g(y) = piece-wise continuous function because for 1 < x < 2 and -2 < 2x < -1 it is nootropics increasing hence it is following continuous function which will

have form $\frac{f_x(x)}{dy}$ $f_{y}(y) = a\boldsymbol{\delta} (y + 1) + b\boldsymbol{\delta}g(y) + c\boldsymbol{\delta} (y - 1)$ + g(y)option (D).

36. Let a frequency modulated (FM) signal $x(t) = A \cos (\omega_{ct} + k_f \text{ where } m(t) \text{ is a}$ message signal of band width W. It is passed through a non-linear system with output $y(t) = 2x(t) + 5(x(t))^2$, Let B_T denote the FM bandwidth. The minimum value of ω_c required to recover x(t) from y(t) is _____.

[MCQ - 2 Mark]

A.
$$B_T + \omega$$

B. $\frac{3}{2}B_T$
C. $\frac{5}{2}B_T$
D. $2B_T + \omega$
Ans. B

Sol. $y(t) = 2x(t) + 5x^2(t)$

$$= 2A\cos(\omega_{c}t + k_{f}\int_{-\infty}^{t}m(d)d\lambda + 5A^{2}\cos^{2}$$

$$= \omega_{c}t + k_{f}\int_{-\infty}^{t}m(\lambda) d\lambda$$

$$= 2a\cos[\omega_{c}t + k_{f}\int_{-\infty}^{t}m(\lambda)d\lambda]$$

$$+ \frac{5A^{2}}{2}[1 + \cos(2\omega_{c}t + 2k_{f}\int_{-\infty}^{t}m(\lambda)d\lambda]$$

Bandwidth of FM is gives by, $B_T = 2(\Delta f +$ f_m)

After squaring f_c and Δf will get doubled and fm unchanged.

i.e.,
$$(B_T)_{new} = 2[2\Delta f + f_m]$$

2

To recover original signal x(t) the following condition should be satisfied.

$$\begin{aligned} f_c + \Delta f + f_m &< 2f_c - 2\pi f - f_m \\ f_c &> 3\Delta f + 2f_m \\ \Rightarrow f_c &> \frac{3}{2} \left[2(\Delta f + f_m) \right] - f_m \\ f_c &> \frac{3}{2} B_T - f_m \\ \end{aligned}$$

$$Option (B)$$

37. The switch S₁ was closed and S₂ was open for a long time. At t = 0, switch S_1 is opened and S_2 closed. The value of $i_c(0^+)$ (in A).

Ans. –1

 $S_1 \rightarrow \text{closed}$ and $S_2 \rightarrow \text{open}$ for long time. i.e., $S_1 \rightarrow \text{closed}$ from $t = -\infty$ to $t = 0^$ and $S_2 \rightarrow \text{opened}$ from $t = -\infty$ to $t = 0^-$ At $t = 0^-$, the network is in steady state and $i_c(0^-)$ will be zero.

 \div capacitor is 0.C. and inductor is S.C.

$$i_c(0^-) = i_L(0^-) \times 100 = 0.2 \times 100 = 20$$

volts

At t = 0^+ , The network is in transient state,

 \therefore capacitor acts as S.C and inductor acts as O.C.

38. The maximum magnitude of V_R in _____ Volts.

[NAT, 1 Mark]

Ans. +4

Sol. At
$$t = 0^-$$
, the network is in steady state \therefore A inductor acts S.C.

$$i_{L}(0^{-}) = \frac{2}{1} = 2$$
 Amps

At $t = 0^+$; the network is in transient state

∴ inductor acts as O.C

By KVL; $-V^{L}(0^{+}) = V_{R} = 0$ $|V_{L}(0^{+})| = V_{R} = 2 \times 2 = 4$ Volts

39. For a two-port network shown below, the $[\lambda]$ parameters is given as $[y] = \frac{1}{100} \begin{bmatrix} 2 & -1 \\ -1 & 4/3 \end{bmatrix}$ S. The value of load impedance Z_L in Ω , for maximum power transfer will be_____

[NAT – 2 Marks]

Ans. 82.19

- Sol. For maximum power transfer to load Z_{L}
 - = Z_{Th}

 $Z_{th}\xspace$ calculation:

40. Find current I flowing through 200 Ω resistor in mA.

- **Ans.** 1.67
- Sol. By source transformation.

- **41.** A series RLC circuit has $\theta = 1000$ at a centre frequency 10^6 rad/sec. Possible values of R, L and C.
 - A. L = 1 μ H, C = 1 μ F, R = 0.01 Ω B. L = 1 μ H, C = 1 μ F, R = 0.001 Ω
 - C. L = 1 μ H, C = 1 μ F, R = 0.1 Ω
 - D. L = 1 μ H, C = 1 μ F, R = 1 Ω

[MCQ, 1 Mark]

Ans. B

Sol. Series RLC circuit

$$\begin{split} & Q = \frac{1}{R}\sqrt{\frac{L}{C}} \\ & 1000 = \frac{1}{R}\sqrt{\frac{1}{1}} \\ & R = 0.001 \ \Omega \\ & \omega = 10^6 \ \text{rad/sec} \end{split}$$

42. A transparent dielectric coating is applied to glass ($\varepsilon_r = 4$, $\mu_r = 1$) to eliminate the reflection of red light ($\lambda_0 = 0.75 \ \mu$ m). The minimum thickness of the dielectric coating in μ m that can be used Is (round off to 2 decimal place)

Sol.
$$\eta_2 = \sqrt{\eta_1 \eta_3} = \sqrt{\epsilon_{r_1} \epsilon_{r_3}} = 2$$

 $\lambda_2 = \frac{0.75}{\sqrt{\epsilon_{r_2}}} = 0.530 \ \mu m$
 $d = \frac{\lambda_2}{4} = 0.133 \ \mu m$

43. The electric field of a plane electromagnetic wave is $E = a_x C_{1x} \cos (\omega t - \beta_z) + a_y C_{1y} \cos (\omega t - \beta z + \theta) V/m$. Which of the following combination(s) will give rise to a left-handed elliptically polarized (LHEP) wave? A. $C_{1x} = 1$, $C_{1y} = 2$, $\theta = 3\pi/2$

B. $C_{1x} = 2$, $C_{1y} = 1$, $\theta = \pi/2$ C. $C_{1x} = 2$, $C_{1y} = 1$, $\theta = 3\pi/4$ D. $C_{1x} = 1$, $C_{1y} = 1$, $\theta = \pi/4$

Sol.
$$E = C_{ix} \cos |\omega t - \beta z)\hat{i} + C_{iy} \cos |\omega t - \beta z + 0]\hat{j}$$
$$E_x = C_{ix} \cos |\omega t - \beta z]$$
$$E_y = C_{iy} \cos |\omega t - \beta z + \theta]$$
$$At \ z = 0 \ and \ t = 0,$$
$$E_x = C_{ix}$$

$$E_{y} = C_{iy} \cos \theta$$

At z = 0 and t = t₁
$$E_{x} = C_{ix} \cos \omega t_{1}$$

$$E_y = C_{iy} \cos[\omega t_1 + \theta]$$

Option A,

$$E_{x}(0, 0) = 1$$

$$E_y = (0, 0) = 2\cos\frac{\pi}{2} = 0$$

 $E_x(0, t_1) = 1\cos\omega t_1$

$$E_{Y}(0, t) = 2\cos[\omega t_{1} + \frac{3\pi}{2}] = \text{positive and}$$

less than 2
$$\hat{f} = at t = t_{1}$$

$$\hat{f} = at t = t_{1}$$

$$\hat{f} = at t = 0$$

This is right elliptical.
Option (B)
At t = 0,
Option B:
$$E_{x}(0, 0) = 1 \qquad E_{x}(0, t_{1}) = 2\cos\omega t_{1}$$

$$E_{y}(0, 0) = 0 \qquad E_{y}(0, t_{1}) = \cos[\omega t_{1} + \frac{\pi}{2}]$$

$$\hat{f} = \frac{1}{\sqrt{2}}$$

This is left elliptical.
Option (C)
$$E_{x} = (0, 0) = 2$$

$$E_{y}(0, 0) = 1\cos\frac{3\pi}{4} = -\frac{1}{\sqrt{2}}$$

$$E_{x} = (0, t_{1}) = 2\cos\omega t_{1}$$

$$E_{y}(0, t_{1}) = 1\cos\left[\omega t_{1} + \frac{3\pi}{4}\right]$$

$$\hat{f} = \frac{1}{\sqrt{2}}$$

It is left elliptical.

Option (D)

$$E_x(0, 0) = 1$$

 $E_y(0, 0) = 1 \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$
 $E_x(0, t_1) = 1 \cos \omega t_1$
 $E_y(0, t_1) = \cos \left(\frac{\pi}{4} + \omega t_1\right)$
 \hat{z}
 \hat{z}
 \hat{z}
 \hat{z}

This is left elliptical.

So, option B,C, D are correct.

44. Consider a narrow band signal, propagating in a lossless dielectric material ($\epsilon_r = 4$, $\mu_r = 1$), with phase velocity v_p and group velocity v_g , which of the following statements are true (c is velocity of light in vacuum)

A.
$$v_p > c$$
, $v_g > c$
B. $v_p > c$, $v_g > c$
C. $v_p < c$, $v_g > c$
D. $v_p < c$, $v_g < c$
*

Ans.

45. The following circuits representing an lumped element equivalent of an infinitesimal section of a transmission line is/are.

Α.

Ans. A, C, D

Sol. From a reciprocity and symmetry property of transmission lines, options A, C, D are correct.

46. Given S parameter, $S = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}$ with

reference to Z₀. Two lossless transmission line section of length $\theta_1 = \beta I_1$, θI_2 , are added to input and output port as shown. The resultant S parameter S' is.

Ans. None of the above

Sol.

value of coefficient a in the expression V_1 = αV_2 + e, which minimized the length of error vectors C is.

A.
$$\frac{7}{2}$$
 B. $-\frac{2}{7}$
C. $\frac{2}{7}$ D. $-\frac{7}{2}$

Ans. C

Sol.
$$V_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, V_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

$$V_{1} = \alpha V_{2} + e$$

$$e = V_{1} - \alpha V_{2}$$

$$e = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} - \begin{bmatrix} 2\alpha \\ \alpha \\ 3\alpha \end{bmatrix}$$

$$e = \begin{bmatrix} 1 - 2\alpha \\ 2 - \alpha \\ -3\alpha \end{bmatrix}$$

Length of e = |e| = $\sqrt{(1-2\alpha)^2+(2-\alpha)^2+(-3\alpha)^2}$ $e^{2} = (1 - 2\alpha)^{2} + (2 - \alpha)^{2} + (-3\alpha)^{2}$ $= 4\alpha^2 + \alpha^2 + 9\alpha^2 - 4\alpha - 4\alpha + 5$ $e^2 = 14\alpha^2 - 8\alpha + 5$ let, $f(x) = 14\alpha^2 - 8\alpha + 5$ (i) $f'(x) = 28\alpha - 8$ (ii) From max/min $f'(\alpha) = 0$ $28\alpha - 8 = 0$ $\alpha = \frac{2}{7}$ (iii) $f''(\alpha) = 28$ $\therefore f''\left(\frac{2}{7}\right) = 28 > 0$ \therefore f(α) will minimum for $\left(\alpha = \frac{2}{7}\right)$ **49.** Let $\omega^4 = 16j$. Which of the following cannot be value of ω. A. $2e^{j\pi/8}$ B. 2e^{j5π/8} C. 2e^{j2π/8} D. 2e^{j9π/8}

[MCQ, 2 Marks]

Ans. C

Sol.
$$\omega^4 = 16j$$

 $\omega = (16j)^{1/4}$
 $\omega = 2(j)^{1/4}$
 $\omega = 2(e^{j\frac{\pi}{2}})^{1/4}$
 $\omega = 2.e^{j\frac{\pi}{8}}$

(i) Option A: $\omega = 2e^{j\frac{\pi}{8}}$ (ii) Option B: $2e^{j\frac{5\pi}{8}} = 2e^{j\frac{\pi}{8}}$ (iii) Option C: $2e^{j\frac{2\pi}{8}} \neq 2e^{j\frac{\pi}{8}}$ (iv) Option D: $2e^{j\frac{9\pi}{8}} = 2e^{j\frac{\pi}{8}}$ Correct option (C) **50.** The value of line integral $\int \left[\left(z^2 dx + 3y^2 dy + 2x^3 dz \right) \right]$ along the straight line joint the point P(1, 1, 2) and Q(2, 3, 1) is A. – 5 B. 24 C. 20 D. 29 [MCQ, 2 Marks] Ans. B **Sol.** $\int_{0}^{\infty} \left[(z^2 dx + 2xz dz) + 3y^2 dy \right]$ $\int d(z^2x) + d(y^3) = \int d(xz^2 + y^3)$ $= \left[xz^{2} + y^{3} \right]_{P(1, 1, 2)}^{Q(2, 3, 1)}$ $= (2 \times 1 + 27) - (1 \times 4 + 1)$ = 24 The value of integral $\iint xydxdy$ over the 51. region R given in the figure is

[NAT, 2 Marks]

Sol.

Ans. 0

52. Let x be an n × 1 real column vector with length $l = \sqrt{x^T x}$. The trace of the matrix $P = xx^T$ is

A. $\frac{\ell^2}{2}$ B. ℓ^2 C. $\frac{\ell^2}{4}$ D. ℓ

Ans. B Sol. [MCQ, 2 Marks]

$$P = \mathbf{x}\mathbf{x}^{\mathsf{T}} = \begin{bmatrix} \mathbf{X}_{1} \\ \mathbf{X}_{2} \\ \vdots \\ \mathbf{X}_{n} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \ \mathbf{x}_{2} \ \cdots \mathbf{x}_{n} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{x}_{1} \ \mathbf{x}_{1}\mathbf{x}_{2} \ \mathbf{x}_{1}\mathbf{x}_{3} \cdots \mathbf{x}_{1}\mathbf{x}_{n} \\ \mathbf{x}_{2} \ \mathbf{x}_{2}^{2} \ \mathbf{x}_{2}\mathbf{x}_{1} \cdots \mathbf{x}_{2}\mathbf{x}_{n} \\ \vdots \\ \mathbf{x}_{n} \ \cdots \cdots \mathbf{x}_{n}\mathbf{x}_{1} \end{bmatrix}$$

So, Trace =
$$x_1^2 + x_2^2 + \dots + x_n^2 = \ell^2$$

22

GATE 2023 Electronics Engineering: Expected Topper's Marks

- > 80+/100 Marks Expected for AIR under 10
- > 70+/100 Marks Expected for AIR under 100

GATE 2023 Electronics Engineering: Expected Cut-Off

Category	2021	2022	Expected 2023
General	25	25	26 Marks
ОВС	25.5	22.5	23.5 Marks
SC/ST	16.6	16.6	17.5 Marks

27

Our Success Stories

Prepare with us & get placed in your dream college, PSU or department!

Website: www.byjusexamprep.com

Address: Windsor IT Park, Tower - A, 2nd Floor, Sector 125, Noida, Uttar Pradesh 201303

Name:	
Contact no:	
Email id:	

Download The App

