

GATE 2023

Civil Engineering Shift-2

Question & Solution

Memory Based

Byju's Exam Prep App

https://byjusexamprep.com

GATE 2023 Civil Engineering Shift-2: Major Highlights

- > **Overall Difficulty Level:** Easy to Moderate
- > **MSQ weightage:** 11 Qs
- > **NAT weightage:** 21Qs
- > MCQ weightage: 33 Qs
- > Zero marks from Fluid Mechanics, CPM, Railway & Airport.
- > Easy level Questions from DSS, Engg. Mechanics & Highway.
- > High Weightage for Geotech (16 Marks) and Environment (13 Marks).

GATE 2023 Civil Engineering Shift-1

Comparison with last 3 Years' Data

	Subjects		2022		2021	
S.No.	Subjects	Set 1	Set 1	Set 2	Set 1	Set 2
1	Engineering Mathematics	13	13	12	11	13
2	Strength of Materials	7	2	7	4	6
3	Engineering Hydrology	5	2	4	9	4
4	Engineering Mechanics	1	2	2	2	5
5	Geotechnical Engineering	16	13	12	13	14
6	Structural Analysis	5	8	5	6	2
7	Surveying	4	3	2	4	4
8	Building Materials	1	1	1	1	1
9	Construction Planning Management	0	2	2	2	2
10	Design of Steel Structures	3	2	2	2	1
11	Irrigation Engineering	2	3	2	2	2
12	Highway Engineering	6	11	10	11	9
13	Open Channel Flow	5	3	4	2	1
14	Environmental Engineering	11	14	13	8	5
15	Fluid Mechanics	2	3	3	4	5
16	Railways and Airport	0	0	1	0	2
17	General Aptitude	15	15	15	15	15
18	Design of Concrete Structures	4	3	3	4	9
	Total	100	100	100	100	100

Subject-Wise Marks Distribution					
	Questions				
Subjects	1 Mark	2 Marks	TOLATIVIARKS		
Engineering Mathematics	5	4	13		
Strength of Materials	1	3	7		
Engineering Hydrology	1	2	5		
Engineering Mechanics	1	0	1		
Geotechnical Engineering	4	6	16		
Structural Analysis	1	2	5		
Surveying	2	1	4		
Building Materials	1	0	1		
Construction Planning Management	0	0	0		
Design of Steel Structures	1	1	3		
Irrigation Engineering	0	1	2		
Highway Engineering	2	2	6		
Open Channel Flow	1	2	5		
Environmental Engineering	3	4	11		
Fluid Mechanics	0	1	2		
Railways and Airport	0	0	0		
General Aptitude	5	5	15		
Design of Concrete Structures	2	1	4		
Total	30	35	100		

Engineering Mathematics

 Cholesky decomposition is carried out on the following

$$A = \begin{bmatrix} 8 & -5 \\ -5 & a_{22} \end{bmatrix}$$

Let L_{ij} & a_{ij} be the (i.j)th element of matrix [L] & [A]. If the element L_{22} of the decomposed lower triangular matrix [L] is 1.968. What is the value of element a_{22} ?

D. 9

A. 11 B. 7

C. 5

[MCQ]

Ans. B

Sol. Cholesky decomposition

 $A = LL^*$

Where,

L = Lower triangular matrix with real & positive diagonal elements.

 $L^* = Transpose of conjugate$

$$LL^* = A$$

$$\begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} L_{11} & L_{12} \\ 0 & L_{22} \end{bmatrix} = \begin{bmatrix} 8 & -5 \\ -5 & a_{22} \end{bmatrix}$$

$$L_{11} \& L_{22} \rightarrow$$
 is positive and $L_{22} = 1.968$ (given)

(i)
$$L_{11}^2 = 8 \Rightarrow L_1 = \sqrt{8}$$

(ii)
$$L_{11} L_{21} = -5 \Rightarrow L_{21} = \frac{-5}{\sqrt{8}}$$

(iii)
$$L_{21}^2 + 1.968^2 = a_{22}$$

⇒ $a_{22} = \frac{25}{8} + 1.968^2 \cong 7$

2. Solution of DE:

$$\frac{d^3y}{dx^3} - 5.5\frac{d^2y}{dx^2} + 9.5\frac{dy}{dx} - 5y = 0$$

is expressed as

$$y = c_1 e^{2.5x} + c_2 e^{\alpha x} + c_3 e^{\beta x}$$

where c_1 , c_2 , c_3 , $\alpha & \beta$ are constant, with $\alpha + \beta$ being distinct and not equal to 2.5. $\alpha & \beta$?

Ans.C

Sol. A.E.

m³ - 5.5 m² + 9.5 m - 5 = 0
Roots are = 2.5,
$$\alpha$$
, β
sum of roots, 2.5 + α + β = -(-5.5)
5.5
or
 α + β = 3

Only option (1, 2) satisfies this condition.

3. Given A =
$$\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

Find number of linearly independent eigen vectors.

Ans.3

Sol. No. of linearly independent eigen vector = No. of distinct eigen values

Characteristics equation, $|A - \lambda I| = 0$

OR

$$\lambda^3 - 4\lambda^2 + 3\lambda = 0$$

 $\lambda \left(\lambda^2 - 4\lambda + 3\right) = 0 \implies \lambda = 0, 1, 3$

No. of distinct eigen values = 3

- 4. Two vectors $\begin{bmatrix} 2 & 1 & 0 & 3 \end{bmatrix}^T$ & $\begin{bmatrix} 1 & 0 & 1 & 2 \end{bmatrix}^T$ belong to Null space of a 4 × 4 matrix of rank 2. Which of the following vectors also belong to Null space ? A. $\begin{bmatrix} 0 & -2 & 1 & -1 \end{bmatrix}^T$
 - B. $\begin{bmatrix} 1 & 1 & -1 & 1 \end{bmatrix}^{T}$ C. $\begin{bmatrix} 2 & 0 & 1 & 2 \end{bmatrix}^{T}$ D. $\begin{bmatrix} 3 & 1 & 1 & 2 \end{bmatrix}^{T}$

Ans. B

Sol. Nullity of matrix

= No. of variables (n) - rank of A

and

Nullity is no. of linearly independent

vectors in the null space.

After seeing the given matrix, these two vectors are already independent.

i.e. $\begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 2 \end{bmatrix}$

Any other vectors in null space $z = \alpha x + \beta y$ where, α , β can be any real value Option B is correct because (x - y).

Strength of Materials

5. In a two-dimensional stress analysis the stale of stress at a point is shown in the figure. The value of length of PQ, QR, RP are 4, 3 & 5 units respectively the principal stresses are _____.

Giving equation (i) and (ii) $\sigma_{xx} = 67.5 \text{ MPa}$ $\sigma_{yy} = 213.33 \text{ MPa}$

6. A beam is subjected to a system of coplanar forces of shown in the fig. the magnitude of vertical reaction support P is ____ N.

Ans. 197.06 kN

Sol.

Engineering Hydrology

7. A circle radius 30 km, 5 rain gauges

Gauge	G ₁	G ₂	G ₃	G ₄	G ₅
Rain fall (mm)	910	930	925	895	905

Using Thiessen polygon method, what is the average rainfall over the catchment in that year.

Ans. 912.55 mm

Sol.

$$A_1 = 30 \times 30 = 900 \text{ km}^2$$

$$A_2 = A_3 = A_4 = A_5 = \left(\frac{\pi + 30^2 - 900}{4}\right)$$

= 481.85 km²

$$\mathsf{P}_{\mathsf{avg}} = \left(\frac{\mathsf{P}_{1}\mathsf{A}_{1} + \mathsf{P}_{2}\mathsf{A}_{2} + \mathsf{P}_{3}\mathsf{A}_{3} + \mathsf{P}_{4}\mathsf{P}_{4} + \mathsf{P}_{5}\mathsf{P}_{5}}{\mathsf{A}_{1} + \mathsf{A}_{2} + \mathsf{A}_{4} + \mathsf{A}_{5}}\right)$$

 $\begin{array}{l} 900 \times 910 \times 930 \times 481.85 + 925 \times 481.85 + 895 \\ + \, 481.85 + 905 \times 481.89 \end{array}$

 $900 + 4 \times 481.85$

8. Match the column

Column 1

- P. Horton equation
- Q. Muskingum method
- R. Penman method

Column 2

1. Precipitation

II. Flood frequency
III. Evapotranspiration
IV. Infiltration
V. Channel Routing

[NTA-1 Mark]

A. P-III, Q-IV, R-I
B. P-III, Q-I, R-IV
C. P-IV, Q-V, R-III
D. P-IV, Q-II, R-III

Ans. C

- **Sol.** Harton's equation \rightarrow infiltration Muskingum method \rightarrow channel routing Penman's equation \rightarrow Evapotranspiration
- C/O of on small river is sub-divided of into seven segments of width 1.5 m each. The average depth, velocity at different

Sol.

depth's were measured during a field
carriage at the middle of each segment
width Q by velocity are method for given
data is m^3/s (in decimal)

[NTA]

				r
Segment	Average	V(m/s)		
	depth			
	(0)			
1	0.4	-	0.4	-
2	0.7	0.76	-	1.10
3	1.2	1.19	-	1.13
4	1.4	1.25	-	1.10
5	1.1	1.13	-	1.09
6	0.8	0.09	-	0.05
7	0.45	-)	0.42	-

Ans. 7.8235 m³/sec

Segment	Depth (y)	Average width	V _{0.2}	V _{0.6}	V _{0.8}	Q
1	0.40	1.6875		0.4		$1.6875 \times 0.4 \times .4 = 27$
2	0.70	1.5	0.76		1.10	$0.70 \times 1.5 \times \left[\frac{0.76 + 1.10}{2}\right] = 0.7665$
3	1.20	1.5	1.19		1.13	$1.20 \times 1.5 \times \left[\frac{1.19 + 1.13}{2}\right] = 2.088$
4	1.40	1.5	1.25		1.10	$1.40 \times 1.5 \times \left[\frac{1.25 + 1.10}{2}\right] = 2.467$
5	1.10	1.5	1.13		1.09	$1.10 \times 1.5 \times \left[\frac{1.13 + 1.09}{2}\right] = 1.8315$
6	0.80	1.5	0.09		0.05	$0.80 \times 1.5 \times \left[\frac{0.09 + 0.05}{2}\right] = 0.084$
7	0.45	1.6876		0.42		0.45 × 1.6875 × 0.42 = 0.319

 $W_{avg} = 1.6878 \text{ m}$ Discharge = Area × Velocity = y × W_{avg} × V_{avg} From last column, total discharge = 7.8235 m³/sec

Geotechnical Engineering

10. In the given figure point O indicates the stress point of soil element at initial non-hydrostatic stress condition. For the stress path (OP) which of the following coding condition is correct?

- A. σ_v is decreasing & σ_h is increasing
- B. σ_v is increasing & σ_h is decreasing
- C. σ_v is constant & σ_h is increasing
- D. σ_v is increasing & σ_h is constant

Ans. D

Sol.

$$q = \frac{\sigma_v - \sigma_h}{2}$$
$$p = \frac{\sigma_v + \sigma_h}{2}$$

When σ_V increasing, σ_h is constant, then γ axis

is increasing as well as x-axis. Then required.

stress path will be made so option d is correct.

 An unconfined compressive strength test was conducted on a cohesive soil. The test specimen failed at an axial stress of 76 kpa. The undrained cohesion (in kPa) of the soil is _____

[NAT 1 Mark]

Ans. 76

Sol.

Test done on soil – UCS axial stress =76 kPa For UCS test $\sigma = 0$ $\sigma = 76$ C = Radius = $\frac{76}{2}$ = 38 kPa

12. A circular pile of diameter 0.6m and length 8 m was constructed in a cohesive soil stratum having the following properties γ_{b} = 19 kN/m³, ϕ = 0° & C = 25 kPa. The allowable load the pile can carry with FOS = 3 is ____kN (α = 1.0 N_c = 9.0)

[NAT 2 Mark]

Ans. 146.5- 146.9 **Sol.**

$$Q_{up} = q_s A_s + q_b A_b$$

$$Q_{up} = \overline{\alpha} \overline{C} (\pi \ d \ L) + CNc \frac{\pi}{4} d^2$$

$$Q_{up} = (1 \times 25 \times \pi \times 0.6 \times 8) + (25 \times 9)$$

$$\times \frac{\pi}{4} \times 0.6^2$$

 $Q_{up} = 440.60 \text{ kN}$

 $Q_{\text{allowable}} = Q_{\text{up}} / \text{ FOS } = 440.60/3 = 146.87 \text{kN}$

13. A square footing is to be designed to carry a column load of 500 kN which is resting on a soil stratum having the following average properties $\gamma_{b} = 19 \text{ kN/m}^{3}$ angle of internal friction $\phi = 0^{\circ} \& C = 25 \text{ kPa}$.

Considering the depth of footing in m and adopting meyerhof method, the bearing capacity theory with a FOS = 3, the width of footing in m is _____

[NAT - 2 Mark]

Ans. 3- 3.2

Sol.

As per meyerhoff

 $\begin{aligned} Q_u &= CN_C \ d_C \ s_C \ i_c + \gamma \ D_f \ N_q \ d_q s_q i_q + 0.5 \ B \\ \gamma N_\gamma d_\gamma s_\gamma i_\gamma \\ N_q &= 1, \ N_\gamma \ = 0, \ N_c = 5.7 \\ C &= 25 \ kPa, \ \phi = 0, \ \gamma \ = 19 \ kN \\ Putting \ the \ value \ in \ question \\ Area &= \frac{load \times FOS}{q_u} \ = \frac{500 \times 3}{147.5} \qquad ...(i) \\ Since \ it's \ a \ square \ footing \\ Area &= (width)^2...(ii) \\ By \ (i) \ and \ (ii) \end{aligned}$

- Width = 3.18 m
- 14. A vertical sheet pile was installed in an anisotropic soil having coefficient of permeability, $k_h \& kv$. In order to draw the flow net for the isotropic condition, the embedment depth of the wall should be scaled by a factor of ______ without changing the horizontal scale.

[MCQ-1 Mark]

A. 1.0
B.
$$\sqrt{\frac{k_h}{k_v}}$$

C. $\sqrt{\frac{k_v}{k_h}}$
D. k_h/k_v

Ans. C

Sol.

As we know to change the horizontal scale we have to use the factor

$$X = X_T \sqrt{\frac{k_h}{k_v}}$$

But as per question we cannot change the horizontal scale, hence we have to change the vertical length. So the we have to multiply wit

$$\sqrt{\frac{k_v}{k_h}}$$
 so get the desired result

Structural Analysis

15. For the frame shown in the figure, all members AB, BC, CD, GB and CH have the same length L and flexural rigidity EI. B and C are rigid joints, and A and D are fixed supports. Beam GB and CH carry UDL and the moment of reaction at A is wL²/K. K is

Sol.

Stiffness of BC =
$$\frac{2EI}{L}$$

(Since, beam is bending in a symmetrical mode)

Stiffness of BA =
$$\frac{4EI}{L}$$

D.F. for BA = $\frac{\frac{4EI}{L}}{\frac{4EI}{L} + \frac{2EI}{L}} = \frac{2}{3}$

$$M_{BA} = \frac{wL^2}{2} \times \frac{2}{3} = \frac{2wL^2}{6}$$

Carry over moment at A, $M_{AB} = \frac{1}{2} \times \frac{2wL^2}{6}$

$$=\frac{WL^2}{6}$$

- **16.** Muller-Breslau principle is used in analysis of structure for
 - A. Drawing an ILD for any force response in the structure.
 - B. Writing the virtual work expression to get the equilibrium equation.
 - C. Superposing the load effects to get the total force response in the structure.
 - D. Relating the deflection between two points in a member with the curvature diagram in between.

Ans. A

- **Sol.** Muller-Breslau principle is used to draw ILD for any force response in the structure.
- 17. All 4 members (AB, BC, CD AD) have same L and EI. All joints A, B, © and D are rigid. Midpoint of AB, BC, CD and AD are denoted by ©, F, G, H. Frame is in unstable condition. Under the shown force of magnitude P acting at © + G, which of the following statements are true?

- A. SF @ H and F = 0 B. δ_V @ H + F = 0 C. Θ @ E/F/G/H = 0
- D. δ_{H} @ H + F = 0

Ans. A, © and D

Sol. BMD for symmetrical box frame-

At H and F, BM is constant. \Rightarrow SF = 0 (option A is correct)

Deflection diagram for symmetrical box frame

From the diagram, it is clear that-

- $\rightarrow \delta_v$ at H and F \neq 0 (option B is incorrect)
- → θ at \mathbb{O} , F, G, H = 0 (option \mathbb{O} is correct) → δ_{H} at H and F = 0 (option D is correct)

Surveying

18. A delivery agent is at a location R. To deliver the order, she is instructed to travel to location P along the straight line paths of RC, CA, AB & BP of 5 km each. The direction of each path is given in the table below as WCB. Assume latitude L & departure D of R is (0, 0) km. What is L & D of P in km.

Path	RC	CA	AB	BP			
Direction	120	0	90	240			
A L = 0.0, D = 5.0 B. L = 0.0, D = 0.0							
C. L = 2.5, D = 5.0) D.	L = 5.	0, D =	2.5		

Design of Steel Structures

20. Two plates are connected by fillet welds of size 10 mm and subjected to tension, as shown in the figure. The thickness of each plate is 12 mm, the yield stress and ultimate stress of steel under tension are 250 MPa and 410 MPa, respectively. The welding is done in the workshop □_{MW} = 1.25. As per limit state method of IS 800 : 2007, what is the minimum length required of each weld to transmit a factored force P = 275 kN?

Fillet weld

Size = 10 mm Fusion angle = 90°

Throat thickness = $0.7 \times size$

t_e = 7 mm

Design strength of fillet weld

$$P_{dw} = \frac{f_u}{\sqrt{3} \cdot \gamma_{mw}} \times I_e \times t_e$$

Let's take limiting condition:

$$P_{dw} = 275 \times 10^3 \text{N} = \frac{410}{\sqrt{3} \times 1.25} \times 7 \text{ mm} \times I_e$$

 $I_e = 207.45 \text{ mm}$

So, the required length on each side =

$$\frac{l_e}{2} = \frac{207.45}{2}$$

= 103.72 mm

Ans. C

Sol. Cross drainage works where bed level of stream is sufficiently above FSL of canal is called super-passage.

Highway Engineering

- 22. SSD equal to the
 - A. Brake distance
 - B. Brake distance + distance travelled during reaction time
 - C. _
 - D. Distance only during reaction time
- Ans. B
- **Sol.** (1) SSD is

SSD = Lag distance + Braking distance Lag distance = distance covered during reaction time

- **23.** As per IRC guidelines (IRC 86 : 2018) extra widening depends on which of the following parameters?
 - A. No. of lanes
 - B. Longitudinal gradient
 - C. Super elevation
 - D. Horizontal curve radius

[MSQ]

Ans. A and D

Sol. Extra widening =
$$\frac{nl^2}{2R} + \frac{V}{9.5\sqrt{R}}$$

So extra widening depends on number of lane and radius.

- **24.** In respect to Marshall test and Bitumen content, which are true?
 - A. The air sides increase initially and then decreases.
 - B. The VFB increase monotonically.
 - C. The stability decreases initially and then decreases.
 - D. The flow decreases monotonically.

Ans. B and D

Sol.

- With increase with Bitumen content, Air voids decreases.
- With increase with Bitumen content, VFB increases.

% Bitumen

 As Bitumen content increases, the stability increases initially then decreases.

% Bitumen

• As Bitumen content increases, the flow will increase.

Hence B, D are correct.

Open Channel Flow

25. The critical flow condition in a channel is given by, a = kinetic energy correction factor

A.
$$\frac{aQ^2}{g} = \frac{A_c^3}{T_c}$$
B.
$$\frac{aQ}{g} = \frac{A_c^3}{T_c}$$
C.
$$\frac{aQ}{g} = \frac{A_c^3}{T_c^2}$$
D.
$$\frac{aQ^2}{g} = \frac{A_c^3}{T_c^2}$$

[MCQ - 2 Marks]

Ans. A

Sol. For critical flow condition in channel of any shape

$$\frac{Q^2T_c}{gA_c^3}=1$$

If kinetic energy factor a is considered.

$$\frac{aQ^2T_c}{gA_c^3}=1$$

 $\frac{aQ^2}{g} = \frac{A_C^3}{T_c}$

ENVIRONMENTAL ENGINEERING

26. For the elevation and temperature data given in the table the existing lapse rate in the environment is _____ °C/100 m. (round off two)

Elevation from ground level	Temperature
5 m	14.2°C
325 m	16.9°C

[NAT - 1 Marks]

Ans. 0.84

Sol.

Elevation above	Temperature
ground level	
5 m	14.2°C
325 m	16.9°C
$ELR = \frac{16.9 - 14.2}{(325 - 5)}$	
= 0.00843 °C/m	

= 0.84 °C/100 m

27. Match the column

Air pollutants

- P. Aromatic Hydrocarbons
- Q. Carbon monoxide
- R. Sulphur oxides
- S. Ozone

Health effect on humans and animals

- I. Reduce the capacity of the blood to carry oxygen
- II. Bronchitis and pulmonary emphysema
- III.Damages chromosomes

IV. Carcinogenic effect

- A. P-IV, Q-I, R-II, S-III
- B. P-IV, Q-I, R-III, S-II
- C. P-III, Q-I, R-II, S-IV
- D. P-II, Q-I, R-IV, S-III

Ans. B

Sol. Aromatic hydrocarbon – Carcinogenic effect

Carbon monoxide – Reduce capacity of blood to carry oxygen.

Sulphur oxides – Damages chromosomes Ozone – Bronchitis and pulmonary

emphysema

- **28.** Which of the following statements is/are true for aerobic composting of sewage sludge?
 - A. Bulking agent is added during the composting process to reduce the porosity of the solid mixture
 - B. In-vessel composting, systems cannot be operated in the plug flow mode
 - C. Antinomcytes are involved in the process
 - D. Leachate can be generated during compositing

Ans. C,D

- **Sol.** Bulking agent is added to increase the volume, so statement 1 is incorrect.
 - In vessel composting, systems can be operated in plug flow mode.

- Antinocytes are involved in the process.
- Leachate can be generated during compositing.
- **29.** The theoretical aerobic oxidation of bio mass ($C_5H_7O_2N$) is given below.

 $C_5H_7O_2N + 5O_2 \rightarrow 5CO_2 + NH_3 + 2H_2O$ The biochemical oxidation of biomass is assumed as first order reaction with a rate constant 0.23 per day at 20°C (base e). Neglecting the second stage oxygen demand from its biochemical oxidation, the ratio is BOD₅ at 20°C to total organic carbon (TOC) is biomass is _____. Atomic weight of C,H,& O are 12 g/mol, 1 g/mol, 16 g/mol and for N = 14 g/mol respectively.

Ans. 1.82

[NAT]

×

Sol.
$$C_5H_7O_2N = 5 \times (12) + 7 \times (1) + 2$$

(16) + 14 = 113 g

113gm of $C_5H_7O_2N \rightarrow 5 \times 12$ gm carbon 1 mole of $C_5H_7O_2N \rightarrow$

 $\frac{5 \times 12}{113} = 0.53 \text{ gm carbon}$

 BOD_5 at 20°C = $BOD_u [1 - e^{-KD \times t}]$

 $= BOD_u (1 - e^{-0.23 \times 5})$

113 gm C₅H₂O₂N required 5 × 32 gm of O₂

× 5)

So 1 gm $C_5H_2O_2N$ required

$$\frac{5 \times 32}{113} = 1.415 \text{ gm of } O_2$$

BOD_u= 1.4159 (1 - e^{-0.23}

$$\frac{\text{BOD}_{5,20^{\circ}\text{C}}}{\text{TOC}} = \frac{0.9673}{0.53} = 1.82$$

- **30.** In the context of water and wastewater treatment the correct statements are
 - A. Ammonia decreases chlorine demand
 - B. Phosphorous stimulates algal and aquatic growth

- C. Ca and Mg increase hardness and TDS
- D. Particular matter may shield microorganisms during disinfection

Ans. B, C, D

- **Sol.** Ammonia increases chlorine demand so statement I is false. Rest all 3 statements are true.
- 31. Which of the following is/are not an active disinfectant of the water treatment plant?
 - A. Cl⁻ B. O₃
 - C. OCI⁻ D. OH

Ans. D

- Sol. Active disinfectant used in plant.
 - 1. Cl⁻
 - 2. O³
 - 3. OCI-

Fluid Mechanics

- **32.** Which of the following statements is/are true?
 - A. For a curved surface immersed in stationary liquid, the vertical component of the force of the curved surface is equal to the weight of liquid about it.
 - B. For flow through circular pipes, the momentum correction factor for laminar flow is larger than that for turbulent flow.
 - C. If the stream lines and equipotential lines of a source are interchanged with each other, resulting flow will be sink
 - D. The thickness of a turbulent boundary layer on a flat plate kept parallel to the flow direction is proportional to the square root of the distance from the leading edge.

[MSQ - 2 Marks]

Ans. A and B

Sol.

- Vertical component of force on curved surface immersed in stationary liquid is equal to the weight of liquid above the curved surface upto the free surface of the liquid. So, option (a) is true.
- Momentum correction factor for circular pipe

Laminar flow = 1.33 Turbulent flow = 1.015 So, option (b) is true.

- Sink will form if you reverse the direction of the streamlines in the source. So, option (c) is false.
- 4. Turbulent boundary layer thickness δ relation with distance x from the leading edge of plate is given as
 - $\frac{\delta}{x} = \frac{0.376}{Re^{1/5}}$

where, Re = $\frac{\rho v x}{\mu}$

So, from above equation, it is clear that δ is not proportional to \sqrt{x} . So, option (d) is false.

General Aptitude

33. In how many ways can cells in a 3×3 grid be shaded, such that each row each column have exactly one shaded cell ?

Ans. 6

Sol. e.g.

34. If x satisfies the equation $4^{8^x} = 256$, then x is equal to _____. [NAT] Ans. $\frac{2}{3}$

Ans. C

- Sol. Often means regular repetition.
 Seldom means very rarely occurring.
 Hence, often and seldom are opposite.
 The correct opposite of kind is cruel.
 Kindred mean similar or related.
- 36. The line ran _____ the page, right through the centre, and divided the page into twoA. betweenB. about
 - C. of D. across

[MCQ]

Ans. D

- Sol. Across represent the motion
- There are 4 Red, 5 Green and 6 Blue balls inside a Box.

If N number of balls are picked simultaneously. What is smallest N test

guarantees there will at least balls of same color ? 3 A. 4 B. 5 C. 15 D. 2 Ans. A Sol. 3 variety of balls i.e. R, G & B If we pick up 4 balls, one ball will definitely repeated. **38.** 3 Husband-wife pairs are to be seated at A a circular table. How many seating S arrangements are possible so that every husband sits next to his wife. 4 B. 120 A. 720 C. 16 D. 4 Ans. C Sol. H_1 w W_1 (Let fix this) S H₁ W₁ 3 This will be linear 1 arrangement now 2 2 H_2 **W**₂ H₃ W₃ = 2 × 2 × 2 So, total no. = $2 \times 2 \times 2 \times 2$ H $= (3! - 1) \times 2 \times 2 \times 2$ = 16 Ŵ

	Design of Concrete Structures
39.	M20 concrete as per IS 456:2000 refers to
	the concrete with a design mix having
	[1 Mark]
	A. an average cylinder strength of 20 MPa
	B. a 5 percentile cylinder strength of 20 MPa
	C. a 5 percentile cube strength of 20 MPa
	D. an average cube strength of 20 MPa
ns.	. C
ol.	M20 concrete as per IS 456:2000 refers to the concrete with a design mix having a 5 percentile cube strength of 20 MPa
0.	A reinforced beam has following data:
	B = 300 mm
	3 bar of 28 mm diameter is used.
	Effective cover = 45 mm
	Overall depth = 600 mm
	M25 and Fe415
	Find the value of MR.
ol.	B = 300 mm
	$A_{st} = 3 - 28 \text{ mm}$
	Effective cover = 45 mm
	D = 600 mm
	d = 600 – 45 = 555 mm
	$X_{u,lim} = kd \{ \text{for Fe}415 \ k = 0.48 \}$
	= 0.48 d
	= 0.48 × 555
	= 266.4 mm
	$0.36 f_{ck} Bx_u = 0.87 f_{yAst.}$
	$0.36 \times 25 \times 300 \times X_{u} = 0.87 \times 415 \times \frac{\pi}{4}$
	$\times 28^2 \times 3$
	$X_u = 247 \text{ mm}$
	So, it's an under-reinforced section.
	$X_u < x_{ulim}$
	$MR = 0.36 f_{ck} Bx_u (d - 0.42 x_u)$
	= $0.36 \times 25 \times 300 \times 247 (555 - 0.42 \times$
	247)
	= 300.9 kNm

41. Regarding shear design of RCC beams, which are true:

[MSQ - 1 Mark]

- A. As per IS 456 : 2000, the nominal shear stress in beams of varying depth depends on both the design shear force value as well as design BM.
- B. Beams without shear reinforcement, even if adequately designed for flexure, can have brittle failure.
- C. The main (longitudinal) reinforcement plays no role in the shear resistance of beam.
- D. Excessive shear reinforcement can lead to compression failure in concrete.

Ans. A, B, and D

Sol.

1. Nominal shear stress for beam of

varying depth, $\tau_{v_u} = \frac{V_u + \frac{M_u}{d} \tan \beta}{\Gamma}$

where, V_u = design shear force M_u = design bending moment So, option A is correct.

- Beams need to be provided with minimum shear reinforcement to avoid brittle failure. So, option B is correct.
- Design shear strength of concrete τ_c (without shear reinforcement) depends upon-
 - (i) grade of concrete
 - (ii) % main reinforcement
 - So, option C is incorrect.
- Excessive shear reinforcement can cause compressive failure in concrete. So, option D is correct.

Our Success Stories

BYJU'S Exam Prep | GATE 26

Prepare with us & get placed in your dream college, PSU or department!

Website: www.byjusexamprep.com

Address: Windsor IT Park, Tower - A, 2nd Floor, Sector 125, Noida, Uttar Pradesh 201303

Name:	
Contact no:	
Email id:	

Download The App

