Mathematical Science

Dec 2023

Memory Based

Question

Part A (Level-Moderate) (Easy to moderate)

1. Number of terms divisible by their immediate preceding term in $8,3,9,3,7,5,3,5,3,9,3,4,5,6,3,3,5,7,2,3,3,3$
2. Mean, median and mode at $65,61,63,65,61,60,65,83,65,84,61, \ldots$, 65, 62
3. Two 24 hr clocks A and B, A get 8 min faster and $B 12$ min slower every hour. sinc at 5.00 hrs, and clock A shows $15: 12$, what is the real time at that instant?
4. Two rectangular pieces of lands, both having all sides and diagonal in whole numbers and ratio at or area is $4: 3$. The smaller one have diagonal 41 and one side 9 meter. Bigger rectangle have smaller diagonals. Then diagonals are bigger peace is?
5. In a family of four, engineer is the son of a chemist and brother of the teacher, the chemist is the wife of a lawyer and mother of a teacher. What is the Relation between teacher and chemist?
6. Round of 4.58500001 to second decimal place.
7. Which of the integer $10,11,12$ and 13 can be written as the sum of squares of four integers (allowing repetition),
8. Triangle $A B C$ and $B D C$ are similar in given figure then $B D$ is equal to

9. From a two digit number, the sum of its digit is subtracted from the resulting number is.

Ans. Always visible by 9.

Part B

1. Inf of U if $U=\left\{x \in R: x^{2}-9 x+18 \leq 0, x^{2}-3 x+92 \leq 0\right\}$.
2. How many roots at $z^{100}-50 z^{30}+90 z^{10}+6 z+1$ have in the disc $\{z \in c$: $|z|<1\}$
3. Smallest real number λ for which the problem
$-y^{\prime \prime}+3 y=\lambda y$

$$
y(0)=0, \quad y(\pi)=0
$$

has a non-trivial solution is
4. Approximate the value of solution $\frac{d y}{d x}=\sqrt{3 x+2 y+1}, y(1)=1$ with step size 0.05
5. Cardinality at set of extremals of $J[Y]=\int_{0}^{1}\left|y^{\prime}\right|^{2} \mathrm{dx}$ $\mathrm{y}(0)=1, \mathrm{y}(1)=6, \int_{0}^{1} y d x=3$.
6. $=\left(1^{37}+2^{37}+3^{37}+\ldots \ldots . .88^{37}\right)$ in $\frac{z}{89 z}$
A. 88
B. -88
C. -2
D. 0

Part C

1. $f n(x)=x^{n} \log \left(\frac{1+\sqrt{x}}{2}\right)$ defined on $[0,1]$ converge pointwise or uniformal on $[0,1] \&[0,1]$.
2. for $\mathrm{k} \in \mathrm{Z}$, contour integral $\mathrm{I}_{\mathrm{k}}=\int_{|z|=1} \frac{e^{z^{k}}}{\bar{z}^{2}} d z$
a. $\mathrm{I}_{\mathrm{k}}=0$
b. $\mathrm{I}_{\mathrm{k}} \neq 0$ for $\mathrm{k} \geq 1$
c. $\left|I_{k}\right| \leq\left|I_{k+1}\right|$
d. $\lim _{k \rightarrow \infty}=\infty$
3. Initial value problem $x^{2} y^{\prime \prime}-2 x^{2} y^{\prime}+(4 x-2) y=0, y(0)=0$. $y=\phi_{1}(x)$ is a polynomial serum ratio tying $\phi(1)=1$.
Then
(a) $\phi(4)=16$
(b) $\phi(2)=2$
(c) $\phi(5)=25$
(d) $\phi(3)=3$
4. Volterra integral equation
5. Coefficient of x^{3} in the interpolating polynomial for data

x	0	1	2	3
4				
y	1	2	1	3

