## Electrical Engineering

## Electrical and Electronic Measurements

## SHORT NOTES

## IMPORTANT FORMULAS TO REMEMBER

## Chapter-1

## Error Analysis

Measurement is a process by which one can convert physical parameters to meaningful numbers. The measuring process is one in which the property of an object or system under consideration is compared to an accepted standard unit, a standard defined for that particular property.

## Static Characteristics

## 1. Accuracy

It is the closeness with which an instrument reading approaches the true value of the measured quantity.
2. Precision

It is a measure of the reproducibility of the measurements. It is a measure of the degree of agreement within a group of measurements.

## Remember:

- Precision is not the guarantee of accuracy.
- An instrument with a more significant figure has more precision.


## 3. Sensitivity

It is the ratio of the magnitude of output signal to the magnitude of input signal applied to the instrument.

Sensitivity $=\frac{\text { Output }}{\text { Input }}$

## Note:

- An instrument requires a high degree of sensitivity

Sensitivity $\propto \frac{1}{\text { Deflection factor }}$

## 4. Resolution

The smallest change in input which can be detected with certainty by an instrument is its resolution.

## 5. Linearity

The output is linearly proportional to the input. For a linear instrument, the sensitivity is constant for the entire instrument range. Linearity is the most important parameter compared to all other parameters.

## Remember:

- Linearity is more important than sensitivity.
- Accuracy is more important than resolution.


## 6. Dead Zone

It is the largest change in input quantity for which there is no response from the instrument.

## 7. Dead time

Time required by an instrument to begin to respond to the change in a measurand.


## 8. Range and Span

The difference between the maximum and the minimum values of the scale is called range. The maximum value of the scale is called span.

## Errors

Error $=$ Measured value - True value $=$ Accuracy

- Static Error
$\delta A=A_{m}-A_{t}$
Where,
$A_{m}=$ Measured value of a quantity or Actual value
$A_{t}=$ True value of a quantity or Nominal value


## Relative static error

$\epsilon_{T}=\frac{\delta A}{A_{t}}$

## Static correction

$\delta C=A_{t}-A_{m}=-\delta A$

## Static Sensitivity

Static sensitivity $=\frac{\Delta q_{0}}{\Delta q_{i}}$
Where, $\Delta q 0=$ Infinitesimal change in output, $\Delta q i=$ Infinitesimal change in input

## Non-linearity (N.L)

N.L. $=\frac{(\text { Max. deviation of output from the idealized straight line })}{\text { Full scale deflection }} \times 100$

Error at desired value $=\frac{\text { Full scale value } \times \text { Error at full scale }}{\text { Desired value }}$
Combination of Quantities with Limiting Errors.Sum or Difference of Two or More than Two Quantities
Let $X= \pm X_{1} \pm X_{2} \pm X_{3} \pm X_{4}$

Where,
$\pm \delta X_{1}=$ Relative increment in quantity $X_{1}$
$\pm \delta X_{2}=$ Relative increment in quantity $X_{2}$
$\pm \delta X=$ Relative increment in $X$
$\frac{\delta \mathrm{X}_{1}}{\mathrm{X}_{1}}=$ Relative limiting error in quantity $\mathrm{X}_{1}$
$\frac{\delta X_{2}}{X_{2}}=$ Relative limiting error in quantity $X_{2}$
$\frac{\delta X}{X}=$ Relative limiting error in $X$
Product or Quotient of More than two Quantities
Let $X=X_{1} X_{2} X_{3}$ or $X=\frac{X_{1}}{X_{2} X_{3}}$ or $X=\frac{1}{X_{1} X_{2} X_{3}}$
$\frac{\delta \mathrm{X}}{\mathrm{X}}= \pm\left(\frac{\delta \mathrm{X}_{1}}{\mathrm{X}_{1}}+\frac{\delta \mathrm{X}_{2}}{\mathrm{X}_{2}}+\frac{\delta \mathrm{X}_{3}}{\mathrm{X}_{3}}\right)$

## Composite Factors

Let $X=X_{1}{ }^{n} \cdot X_{2}{ }^{m}$
$\frac{\delta X}{X}= \pm\left(n \frac{\delta X_{1}}{X_{1}}+m \frac{\delta X_{2}}{X_{2}}\right)$
Arithmetic Mean
$\bar{X}=\frac{\Sigma X}{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$
where, $X_{1}, X_{2}, \ldots, X_{n}=$ Readings or samples, $n=$ Number of readings

## Deviation

$$
d_{n}=x_{n}-\bar{x}
$$

Note: Algebraic sum of deviation is zero.
Average deviation, $\bar{D}=\frac{\Sigma|d|}{n}=\frac{\left|d_{1}\right|+\left|d_{2}\right|+\ldots\left|d_{n}\right|}{n}$

## Standard deviation

for $n>20$, S.D. $=\sigma=\sqrt{\frac{\Sigma d^{2}}{n}}=\sqrt{\frac{d_{1}^{2}+d_{2}^{2}+\ldots+d_{n}^{2}}{n}}$
For $\mathrm{n}<20$, S.D. $=\mathrm{s}=\sqrt{\frac{\Sigma \mathrm{d}^{2}}{\mathrm{n}-1}}$

## Variance

for $n>20, v=\sigma^{2}=\frac{\Sigma d^{2}}{n}$
For $\mathrm{n}<20, \mathrm{v}=\mathrm{s}^{2}=\frac{\Sigma \mathrm{d}^{2}}{\mathrm{n}-1}$

## Normal or Gaussian Curve of Errors

1. For Infinite Numbers of reading

$$
y=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-x^{2} / 2 \sigma^{2}\right)
$$



Where $x=$ magnitude of deviation from mean, $y=$ number of reading at any deviation $x$, (the probability of occurrence of deviation $x$ )
$\sigma=$ standard deviation

## Precision Index

$h=\frac{1}{\sigma \sqrt{2}}$
Probable error (P.E.)
$r=\frac{0.4769}{h}$

## Average deviation

$D=\frac{r}{0.8453}=\frac{1}{\pi \mathrm{~h}^{2}}$

## Standard deviation

$\sigma=\frac{r}{0.8745}=\frac{1}{h \sqrt{2}}$
P.E. $=r=0.8453 \bar{D}=0.6745 \sigma$
2. For Finite Numbers of Reading

For $n>20$, P.E. $=r=0.6745 \sqrt{\frac{\Sigma|d|^{2}}{n}}$
For $n<20$, P.E. $=r=0.6745 \sqrt{\frac{\Sigma|d|^{2}}{n-1}}$
The standard deviation of the mean, $\sigma_{m}=\frac{\sigma}{\sqrt{n}}$
The standard deviation of standard deviation, $\sigma_{\sigma}=\frac{\sigma_{m}}{\sqrt{2}}$
The variance of combination of components
Let $x=f\left(X_{1}, X_{2}\right.$, $X_{n}$ )
$v_{x}=\left(\frac{\partial X}{\partial x_{1}}\right)^{2} v_{x_{1}}+\left(\frac{\partial X}{\partial x_{2}}\right)^{2} v_{x_{2}}+\ldots+\left(\frac{\partial x}{\partial x_{n}}\right)^{2} V_{x_{n}}$ where,
$V_{x_{1}}, V_{x_{2}}, \ldots . V_{n}=$ variance of $x_{1}, x_{2}, \ldots x_{n}$

## Standard Deviation of Combination of Components

Let $x=f(X 1, X 2$, $\qquad$ Xn)
$\sigma_{x}=\left(\frac{\partial x}{\partial x_{1}}\right)^{2} \sigma_{x_{1}}^{2}+\left(\frac{\partial x}{\partial x_{2}}\right)^{2} \sigma_{x_{2}}^{2}+\ldots\left(\frac{\partial x}{\partial x_{3}}\right)^{2} \sigma_{x_{n}}^{2}$
where $, \sigma_{\mathrm{x}_{1}}, \sigma_{\mathrm{x}_{2}}, \ldots \ldots \ldots, \sigma_{\mathrm{x}_{\mathrm{n}}}=$ Standard deviation of $\mathrm{X} 1, \mathrm{X} 2$, Xn

Probable Error of Combination of Components
Let $X=f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
$r_{x}=\sqrt{\left(\frac{\partial x}{\partial x_{1}}\right)^{2} r_{x_{1}}^{2}+\left(\frac{\partial x}{\partial x_{2}}\right)^{2} r_{x_{2}}^{2}+\ldots\left(\frac{\partial x}{\partial x_{n}}\right)^{2} r_{x_{n}}^{2}}$
Where $r_{x_{1}}, r_{x_{1}}, \ldots ., r_{x_{n}}=$ Probable error of
$X_{1}, X_{2}, \ldots . ., X_{n}$
Uncertainty of Combination of Components
Let $X=f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
$W_{x}=\sqrt{\left(\frac{\partial X}{\delta x_{1}}\right)^{2} w_{x_{1}}^{2}+\left(\frac{\partial X}{\partial x_{2}}\right)^{2} w_{x_{2}}^{2}+\ldots .\left(\frac{\partial X}{\partial x_{n}}\right)^{2} w_{x_{n}}^{2}}$
Where $W_{x_{1}}, W_{x_{2}}, \ldots, w_{x_{n}}=$ Uncertainties of $X_{1}, X_{2}, \ldots, X_{n}$

## Chapter-2 <br> Measurement of Current \& Voltage

## D'Arsonval Galvanometer



## Deflecting torque

$\mathrm{T}_{\mathrm{d}}=\mathrm{BINA}=\mathrm{GI}$
Where,
$B=$ Flux density in air gap in $\mathrm{Wb} / \mathrm{m}^{2}$
I = current though moving coil in Ampere
$N=$ Number of turns in coil
$A=I . d=$ Area of coil in $\mathrm{m}^{2}$
I, $d=$ Length of vertical and horizontal side (width) of coil respectively in $m$ G = Displacement constant of galvanometer

## Controlling torque

$T_{c}=K \theta_{f}$
Where,
$\mathrm{K}=$ Spring constant of suspension; Nm/rad
$\theta_{\mathrm{f}}=$ Final steady deflection of moving coil;

## Final steady deflection

$\theta_{\mathrm{f}}=\left(\frac{\mathrm{NBA}}{\mathrm{K}}\right) \mathbf{i}=\left(\frac{\mathrm{G}}{\mathrm{K}}\right) \mathrm{i}$

## Dynamic behaviour of Torques in Galvanometers

Inertia torque, $T_{j}=J \frac{d^{2} \theta}{d t^{2}}$
Where $\mathrm{J}=$ moment of inertia of the moving system about the axis of rotation; $\mathrm{kg}-\mathrm{m}^{2}$, $\theta=$ deflection at any time t; radian

Damping torque, $T_{D}=D \frac{d \theta}{d t}$
Where, $\mathrm{D}=$ damping constant
Controlling torque, $\mathrm{T}_{\mathrm{c}}=\mathrm{K} \theta$ Where, $\mathrm{K}=$ control constant
Deflecting Torque, $\mathrm{T}_{\mathrm{d}}=\mathrm{GI}$
Equation of motion, $\mathrm{T}_{\mathrm{j}}+\mathrm{T}_{\mathrm{D}}+\mathrm{T}_{\mathrm{c}}=\mathrm{Td}$
$J \frac{d^{2} \theta}{d t^{2}}+\frac{D d \theta}{d t}+K \theta=G I$

## Note:

If $D^{2}<4 \mathrm{KJ}$, galvanometer is under-damped.
If $D^{2}=4 \mathrm{KJ}$, galvanometer is critically damped.
If $D^{2}>4 \mathrm{KJ}$, galvanometer is over-damped.
The total resistance of galvanometer circuit for critical damping, $R=\frac{G^{2}}{2 \sqrt{K J}}$
External series resistance is required for critical damping, $R_{e}=R-R_{g}=\frac{G^{2}}{2 \sqrt{K J}}-R_{g}$
Where $\mathrm{R}_{\mathrm{g}}=$ Resistance of galvanometer

## Sensitivity

Current sensitivity
$S_{i}=\frac{\theta_{f}}{i}=\frac{G}{k} \mathrm{rad} / A=\frac{d}{1 \times 10^{6}}$ scale divisions $/ \mu A=\frac{2000 \mathrm{G}}{\mathrm{K} \times 10^{6}} \mathrm{~mm} / \mu \mathrm{A}$
Voltage sensitivity
$S_{i}=\frac{d}{i R_{g} \times 10^{6}}$ scale division $/ \mu \mathrm{V}$
Mega ohm sensitivity
$S_{o}=\frac{d}{i \times 10^{-6}} M \Omega /$ scale division

## Remember:

The sensitive galvanometer produces a large deflection for a small current.

## Classification of Analog Meters



## Torque in Analog Meter

1. Deflecting Torque ( $\mathrm{T}_{\mathrm{D}}$ ) is proportional to quantity under measurement. This torque deflects the pointer away from the initial or zero position.
$\mathrm{T}_{\mathrm{D}} \propto$ measurable quantity
2. Controlling Torque ( Tc )

The controlling torque is opposite to deflecting torque. When deflecting torque equal to controlling torque, the pointer comes to the final steady state position.

At equilibrium, $T c=T_{D}$

## Note :

Control torque is also used to bring the pointer to zero from the initial position if there is no deflecting torque.
Except in PMMC, in all other instruments, if the control spring fails or is broken, the pointer moves to the maximum scale position.
Control torque is provided by
(i) Spring control, (ii) Gravity control

## 3. Damping Torque

It is used to damp out oscillation at the final steady state position. The time response of the instrument depends on damping torque.

Damping torque provided by:
(i) Air friction damping; Used where low magnetic fields are produced.
(ii) Fluid friction damping; Used where deflecting torque is minimum.
(iii) Eddy current damping; Used where permanent magnet produces the required deflecting torque.

## Error in Analog Meters

## 1. Frictional error

To reduce the frictional error, the torque to weight ratio of the instrument should be high.
2. Temperature error

Due to temperature change, change in resistance of meters and shunts and series multiplier occurs. To reduce this effect, resistances are made up of manganin material.

## 3. Frequency error

Due to change in frequency, error is produced in instrument because change in frequency causes a change in reactance. To reduce this error, a capacitance is used in case of voltmeter and for ammeter, the time constant and shunt impedance are maintained at same value.

## Permanent Magnet Moving Coil (PMMC)



## Deflection torque

$T_{D}=n B A I, T_{D}=G I$,
Where, $G=n B A, n=$ Number of turns, $B=$ Flux density, $A=$ Area of core
$\mathrm{I}=$ Current to be measured
Final steady-state deflection, $\theta=\left(\frac{G}{k}\right) \mathrm{I}$
Where, $\mathrm{K}=$ Spring constant

## Note:

- PMMC instrument measures only DC or average values.
- Scale is linear.
- Spring is used for controlling torque.
- Damping torque provided by eddy current damping.
- It has a high torque to weight ratio, so accuracy and sensitivity are higher than other instruments.
- In direct measurement, the PMMC measures up to a current of 50 mA or a voltage of 100 mV without any external device.


## Enhancement of Ammeters and Voltmeters

## 1. Ammeter Shunts


$I_{s h} R_{s h}=I_{m} R_{m}$
$I=\left(1+\frac{R_{m}}{R_{s h}}\right) I_{m}$
where, $\mathrm{I}=$ Current to be measured; $\mathrm{I}_{\mathrm{m}}=\mathrm{I}_{\mathrm{fs}}=$ Full scale deflection current; A
$\mathrm{R}_{\mathrm{m}}=$ Internal resistance of meter; $\Omega, \mathrm{R}_{\mathrm{sh}}=$ Resistance of the shunt; $\Omega$

## Shunt resistance

$R_{s h}=\frac{R_{m}}{m-1}$
Where, $m=\frac{1}{I_{m}}=1+\frac{R_{m}}{R_{s h}}, m=$ Multiplying factor for shunt

## Note:

To reduce the temperature effect, swamp resistance made up of manganin is added in series with an ammeter.

## 2. Universal or Ayrton Shunt


(Multi-range ammeter using universal shunt)
For switch at a position $1, R_{1}=\frac{R_{m}}{(m-1)}$
For switch at a position 2, $\mathrm{R}_{2}=\frac{\left(\mathrm{R}_{1}+\mathrm{R}_{\mathrm{m}}\right)}{\mathrm{m}_{2}}$
For switch at a position 3, $\mathrm{R}_{3}=\frac{\left(\mathrm{R}_{1}+\mathrm{R}_{\mathrm{m}}\right)}{\mathrm{m}_{3}}$
Where, $m_{1}=\frac{I_{1}}{I_{m}}, m_{2}=\frac{I_{2}}{m}, m_{3}=\frac{I_{3}}{I_{m}}$
3. Voltmeter Multipliers


The multiplying factor for the multiplier, $m=\frac{V}{V_{m}}=1+\frac{R_{s}}{R_{m}}$
Resistance of multiplier, $\mathrm{R}_{\mathrm{s}}=(\mathrm{m}-1) \mathrm{R}_{\mathrm{m}}$
Where, $\mathrm{R}_{\mathrm{s}}=$ Multiplier resistance, $\mathrm{Rm}_{\mathrm{m}}=$ Internal resistance of meter

## 4. Potential Divider Arrangement


$R_{1}=(m-1) R_{m}, R_{2}=\left(m_{2}-m_{1}\right) R_{m}, R_{3}=\left(m_{3}-m_{2}\right) R_{m}, R_{4}=\left(m_{4}-m_{3}\right) R_{m}$

Where, $\mathrm{R}_{1}=$ Resistance between point $a$ and $b$, $R_{3}=$ Resistance between point $a$ and $d$
$R_{2}=$ Resistance between point $b$ and $c$
$R_{4}=$ Resistance between point $d$ and $e$

Voltmeter Sensitivity (VS), $S_{v}=\frac{1}{l_{f s}}=\frac{R_{S}+R_{m}}{V} \Omega / V$

## Remember:

To reduce loading effect, a voltmeter with higher value of sensitivity is preferred.

## Moving Iron Instruments

Deflecting torque, $T_{d}=\frac{1}{2} \mathrm{I}^{2} \frac{\mathrm{dL}}{\mathrm{d} \theta}$,
Deflection, $\theta=\frac{1}{2} \frac{I^{2}}{\mathrm{~K}} \frac{\mathrm{dL}}{\mathrm{d} \theta}$

## Note:

- Moving iron instrument measure both A.C and D.C. quantities.
- In case of A.C, it measures RMS Value.
- Scale is nonlinear.
- Controlling torque is provided by spring, and air friction damping is used.
- Curve between $\frac{\mathrm{dL}}{\mathrm{d} \theta}$ and $\theta$ is a rectangular hyperbola.


## Shunts for Moving Iron Instruments



$$
\frac{I_{s h}}{I_{m}}=\frac{R}{R_{s h}} \frac{\sqrt{1+(\omega L / R)^{2}}}{\sqrt{1+\left(\omega L_{s h} / R_{s h}\right)^{2}}}
$$

## Multipliers for Moving Iron Instruments



Voltage multiplying factor, $m=\frac{V}{V}=\frac{\sqrt{\left(R+R_{m}\right)^{2}+\omega^{2} L^{2}}}{\sqrt{R^{2}+\omega^{2} L^{2}}}$

## Error in Moving Iron Instruments



## Shunt capacitance

$$
\mathrm{C}=0.41 \frac{\mathrm{~L}}{\mathrm{R}_{\mathrm{s}}^{2}}
$$

## Eddy currents

When $\omega$ is small, $\quad i_{e}^{\prime}=\frac{\omega^{2} M L L_{e}}{R_{e}^{2}}$
When $\omega$ is large, $\quad I_{e}^{\prime}=\frac{M L_{e} l}{R_{e}}=$ constant
Where,
$R_{e}, L_{e}=$ resistance and inductance of eddy current path

## Note:

- Moving iron instrument is not suitable for measurement of current or voltage for frequency above 125 Hz because eddy current is constant at a higher frequency.
- If meter time constant is equal to the shunt time constant then ammeter is made independent of the input supply frequency.
- To reduce hysteresis error, the iron part of moving iron is made up of Nickel iron alloy.
- To reduce the external stray magnetic fields.


## Average current through diode vacuum tube voltmeters

$\operatorname{lav}=\frac{E_{\text {av }}}{2 R}=\frac{E_{\text {rms }}}{2 \times 1.11 \times R}=0.45 \frac{E_{r m s}}{R}$
Where, $\mathrm{E}_{\text {rms }}=$ RMS value of applied voltage, Eav $=$ Average value of applied voltage $\mathrm{R}=$ Load resistance

## Difference amplifier type of electronic voltmeter



Thevenin's voltage across terminal $X-Y$
$V_{T h}=g_{m}\left(\frac{r_{d} R_{D}}{r_{d}+R_{D}}\right) v_{1}$
Thevenin's resistance looking into terminals $X-Y$
$R_{\text {th }}=\frac{2 r_{d} R_{D}}{r_{d}+R_{D}}$
Where, $R_{d}=A . C$ drain resistance in $\Omega, g_{m}=$ Transconductance in mho
Current through ammeter, $i=\frac{V_{T h}}{R_{T h}+R_{m}}=\frac{g_{m} r_{d} R_{D} /\left(r_{d}+R_{D}\right)}{2 r_{d} R_{D} /\left(r_{d}+R_{D}\right)+R_{m}} \cdot v_{1}$
Where, $R_{D} \ll r_{d}, i=\frac{g_{m} R_{D}}{2 R_{D}+R_{m}} \cdot v_{1}$

## Chapter-3

Measurement of Power \& Energy

## Electrodynamometer


(a) If $i_{1}$ and $i_{2}$ are D.C current i.e. $i_{1}=i_{2}=I, T_{d}=I^{2} \frac{d M}{d \theta}$ (Measure average value)
(b) If $i_{1}$ and $i_{2}$ are A.C current and no phase shift, $i_{1}=i_{2}=1, T_{d}=I^{2} \frac{d M}{d \theta}$ (Measure RMS value)
(c) If $i_{1}=I_{m 1} \sin \omega t$ and $i_{2}=i_{m 2} \sin (\omega t-\phi), T_{d}=I_{1} I_{2} \cos \phi \frac{d M}{d \theta}$ (Measure RMS value) where, $I_{1}=\frac{I_{\mathrm{m} 1}}{\sqrt{2}}$ and $I_{2}=\frac{I_{\mathrm{m} 2}}{\sqrt{2}}$

## Note:

- Electrodynamometer instrument is a transfer instrument
- It measures both A.C. and D.C
- Scale is nonlinear.
- Its sensitivity is lesser than PMMC and M.I. type instrument.


## Ratiometer



Deflecting torque acting on coil 1 ,
$\mathrm{T}_{\mathrm{d} 1}=\mathrm{N}_{1} \mathrm{Bl}_{1} \mathrm{~d}_{1} \mathrm{l}_{1} \cos \theta$
Deflecting torque acting on coil 2,
$\mathrm{T}_{\mathrm{d} 2}=\mathrm{N}_{2} \mathrm{Bl}_{2} \mathrm{~d}_{2} \mathrm{I}_{2} \cos \theta$
Where
$l_{1}, l_{2}=$ current in coil 1 and $2, \quad N_{1}, N_{2}=$ Number of turns in coil 1 and 2
$l_{1}, l_{2}=$ length of coil 1 and $2, \quad d_{1}, d_{2}=$ width of coil 1 and 2
$B=$ flux density of magnetic field

Deflection at equilibrium, $\theta=\mathrm{k}\left(\frac{\mathrm{l}_{1}}{\mathrm{I}_{2}}\right)$

## Measurement of Power

## 1. D.C Circuits

Ammeter connected between load, and voltmeter


Power consumed by load :
$\mathrm{P}=\mathrm{VI}-I^{2} \mathrm{Ra}_{\mathrm{a}}$
Where, $\mathrm{V}=$ Voltage across voltmeter, $\mathrm{I}=$ Current though ammeter, $\mathrm{Ra}_{\mathrm{a}}=$ Resistance of ammeter
A voltmeter connected between the load and ammeter


Power consumed by load :
$\mathrm{P}=\mathrm{VI}-\frac{\mathrm{V}^{2}}{\mathrm{R}_{\mathrm{v}}}$
Where, $\mathrm{V}=$ Voltage across voltmeter, $\mathrm{I}=$ Current through ammeter,
RV = Resistance of ammeter
2. A.C. Circuits

Instantaneous power
$P=v i=V_{m} I_{m} \sin \omega t \sin (\omega t-\phi)$
Where $v=V_{m} \sin \omega t, i=I_{m} \sin (\omega t-\phi)$
Average power, $\mathrm{P}=\mathrm{VI} \cos \phi=\frac{\mathrm{V}_{\mathrm{m}} \mathrm{m}}{2} \cos \phi$
Where V, I = RMS values of voltage and current, $\cos \phi=$ Power factor of the load Let
$v=V_{o}+\sum_{n=1}^{m} V_{n} \sin \left(n \omega t+\theta_{n}\right)$ and $i=I_{o} \sum_{n=1}^{m} I_{n} \sin \left(n \omega t+\phi_{n}\right)$ then
$p_{a v g}=V_{o} I_{o}+\frac{1}{2} \sum_{n=1}^{m} V_{n} I_{n} \cos \left[\theta_{n}-\phi_{n}\right]$

## Remember:

Wattmeter reads average active power.

## Electrodynamometer Wattmeter

## Current



## Instantaneous torque

$$
T_{i}=i_{1} i_{2}\left(\frac{d M}{d \theta}\right)
$$

where $\mathrm{i}_{1}, \mathrm{i}_{2}=$ instantaneous value of current in pressure and current coils

## Deflecting torque

$\mathrm{T}_{\mathrm{d}}=\frac{\mathrm{VI}}{\mathrm{R}_{\mathrm{p}}} \cos \phi \cdot \frac{\mathrm{dM}}{\mathrm{d} \theta}$
Where $R_{p}=$ resistance of pressure coil circuit

## Controlling torque

$$
T_{c}=K \theta
$$

Where, $\mathrm{K}=$ spring constant, $\theta=$ final steady deflection
Deflection, $\theta=\left(K_{1} \frac{d M}{d \theta}\right) P$
Where, $\mathrm{P}=$ Power being measured $=\mathrm{VI} \cos \phi, \mathrm{K}_{1}=\frac{1}{\mathrm{R}_{\mathrm{p}} \mathrm{K}}$

## Note:

Scale is linear in terms of power as $\theta \propto P$

## Errors in Electrodynamometer Wattmeter Correction factor (K)

The correction factor is multiplied by the actual wattmeter reading to get the true power.
For lagging power factor, $\quad K=\frac{\cos \phi}{\cos \beta \cos (\phi-\beta)}$
For leading power factor, $\quad K=\frac{\cos \phi}{\cos \beta \cos (\phi+\beta)}$
Where,
$\phi=$ Angle between current in the current coil and voltage of pressure coil
$\beta=$ Angle between current and voltage of pressure coil
True power = Correction factor x actual wattmeter reading

## For Very small $\boldsymbol{\beta}$

Actual wattmeter reading $=$ true power $(1+\tan \phi \tan \beta)$
Error $=\tan \varphi \tan \beta \times$ true power $=\mathrm{VI} \sin \phi \tan \beta$
\%error $=\tan \phi \tan \beta \times 100$
True power $=\mathrm{VI} \cos \phi$
Where, $\mathrm{V}=$ Voltage applied to pressure coil, $\mathrm{I}=$ Current in current coil

## Power in Poly-Phase Systems

## Blondel's Theorem

Suppose a network is supplied through $n$ conductors. In that case, the total power is measured by summing the reading of $n$ wattmeters so arranged that a current element of a wattmeter is in each line and the corresponding voltage element is connected between that line and a common point, if the common point is located on one of the lines, then the power may be measured by ( $n-1$ ) wattmeters.

## Two wattmeter method



Wattmeter
Reading of $P_{1}$ wattmeter, $P_{1}=\sqrt{3} V I \cos \left(30^{\circ}-\varphi\right)$
Reading of $P_{2}$ wattmeter, $P_{2}=\sqrt{3} V \operatorname{Icos}\left(30^{\circ}+\varphi\right)$
Total power consumed by load, $P=P_{1}+P_{2}$
Power factor, $\cos \varphi=\cos \left[\tan ^{-1}\left(\sqrt{3} \frac{P_{1}-P_{2}}{P_{1}+P_{2}}\right)\right]$

$$
\tan \varphi=\sqrt{3} \frac{P_{1}-P_{2}}{P_{1}+P_{2}}
$$

Where, V = Phase voltage, I = Phase current $\varphi=$ Angle between phase current and phase voltage

Reading of wattmeter at Different Power Factor

| S.No. | $\varphi$ | $\cos \varphi$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ | $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}$ | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | 0 | 1 | $\frac{\sqrt{3}}{2} \mathrm{~V}_{\mathrm{L}}$ | $\frac{\sqrt{3}}{2} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}$ | $\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{L}_{\mathrm{L}}$ | $\mathrm{P}_{1}=\mathrm{P}_{2}$ <br> (equal reading) |
| 2. | $30^{\circ}$ | 0.866 | $V_{\mathrm{LI}}$ | $\frac{\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}}{2}$ | $1.5 \mathrm{~V}_{\mathrm{L}}$ |  |


| 3. | $60^{\circ}$ | 0.5 | $\frac{\sqrt{3}}{2} \mathrm{~V}_{\mathrm{L} L}$ | 0 | $\frac{\sqrt{3}}{2} \mathrm{~V}_{\mathrm{L}} \mathrm{L}_{\mathrm{L}}$ | $\mathrm{P}_{2}=0, \mathrm{P}_{1}=\mathrm{P}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4. | $90^{\circ}$ | 0 | $+\frac{\mathrm{V}_{\mathrm{L}}}{2}$ | $-\frac{\mathrm{V}_{\mathrm{L}}}{2}$ | 0 | $\mathrm{P}_{1}=-\mathrm{P}_{2}$ |

## Note:

When Wattmeter reading comes in negative, reverse either P.C. or C.C. terminal and take the reading of the negative wattmeter.

## Measurement of Energy

For the measurement of energy, we use an energy meter. An energy meter is an integrating instrument that adds energy cumulatively over time.

$$
\text { Energy }=\text { Power } \times \text { time }=\int_{0}^{t} \mathrm{P} . \mathrm{dt} \mathrm{kWhr}
$$

## Note:

An energy meter works on principle of induction.

- The meter which measures A.C. energy is called a watt-hour meter.
- The meter which measures D.C. energy is called an amp-hour meter.

Deflection torque,

$$
\mathrm{T}_{\mathrm{D}} \propto \mathrm{P}
$$

Breaking torque,

$$
\mathrm{T}_{\mathrm{B}} \propto \mathrm{~N}
$$

Where,
$\mathrm{N}=$ Speed of disc in rps
At balance,

$$
T_{d}=T_{B}
$$

$$
\int \mathrm{P} . \mathrm{dt}=\mathrm{K} \int \mathrm{~N} . \mathrm{dt}
$$

Energy $\infty \int \mathrm{N} . \mathrm{dt}$

Energy meter constant (EMC)
EMC $=\frac{\text { Number of revolution made by disc }}{\text { Energy recorded in kWhr. }}$
Where $\mathrm{P}=$ Power in $\mathrm{kW}, \mathrm{T}=$ Time in hrs.
Revolution of disc due, \%Creeping Error $=\frac{\text { creeping per hour }}{\text { Revolution of disc due }} \times 100$ to total load per hour

## Remember:

Potential coil of energy meter should be highly inductive so that it measures true energy.

## Compensation in Energy meter

1. Lag compensation: Through lag coil or shading coil.
2. Low load or friction adjustment: By using shading loop.
3. Over friction or creeping: By providing holes or slots on rotating disc.
4. Overload compensation: By keeping saturable shunt magnet in series magnet or current coil.
5. Overvoltage compensation: By keeping saturable shunt magnet in shunt magnet.
6. Speed adjustment: By adjusting position of break magnet.

## Remember:

Creeping error is always positive.
If either potential coil or current coil is wrongly connected then the disc rotates in opposite direction.

## Chapter-4

## Measurement of R, L \& C (Resistors, Inductors, Capacitors)

## Frequency Errors in Resistors


(Equivalent circuit of a resistor at low and medium frequencies)

## Effective resistance

$R_{\text {eff }}=\frac{R}{1+\omega^{2} C\left(C R^{2}-2 L\right)}$
Effective inductance or residual inductance

$$
\begin{aligned}
& L_{\text {eff }}=\frac{L-C R^{2}}{1+\omega^{2} C\left(C R^{2}-2 L\right)} \\
& \tan \phi=\frac{X_{\text {eff }}}{R_{\text {eff }}}=\frac{\omega L_{\text {eff }}}{R_{\text {eff }}}=\frac{\omega\left(L-C R^{2}\right)}{R}=\omega\left(\frac{L}{R}-C R\right)
\end{aligned}
$$

Where, $\varphi=$ Phase deflection angle Time constant
Condition for resistance to remain independent of frequency, $\mathrm{CR}^{2}=2 \mathrm{~L}$
Condition for resistance to show no inductive effect, $C R^{2}=L$
Effective resistance for zero effective inductance, $R_{\text {eff }}=\frac{R}{1-\omega^{2} L C}$
Quality factor, $Q=\frac{\omega L}{R}$

## Frequency Error in Inductors

Effective resistance, $R_{\text {eff }}=\frac{R}{\left(1-\omega^{2} L C\right)}$
Effective inductance, $L_{\text {eff }}=L\left(1+\omega^{2} L C\right)$

## Capacitor

1. Parallel Representation



Dielectric loss, $P_{L}=\omega C_{p} V^{2} \tan \delta$
Dissipation factor, $D=\tan \delta=\frac{1}{\omega C_{p} R_{p}}$
Where, $\delta=$ loss angle of the capacitor.
2. Series Representation


Dissipation factor, $P_{\mathrm{L}}=\frac{\mathrm{I}^{2}}{\omega \mathrm{C}_{\mathrm{s}}} \tan \delta$
Dissipation factor, $D=\tan \delta=\omega C_{s} r_{s}$

## FREQUENCY Errors in Capacitors



Equivalent circuit of a capacitor
Equivalent Circuit of a Capacitor
Effective capacitance, $C_{\text {eff }}=\frac{C}{1-\omega^{2} L C}$

## 1. For Medium Frequency

Effective capacitance, $C_{\text {eff }}=C\left(1+\omega^{2} L C\right)$
Effective series resistance, $R_{\text {eff }}=r+\frac{R}{1+\omega^{2} R^{2} C^{2}}$
Where, $r=$ resistance of load
Loss angle, $\tan \delta=\frac{1-\omega^{2} L C}{\omega r+\frac{1}{\omega C R}}$

## 2. For Low Frequency

Effective capacitance, $C_{e f f}=C+\frac{1}{\omega^{2} \mathrm{CR}^{2}}$
Effective series resistance, $R_{\text {eff }}=\frac{R}{1+\omega^{2} C^{2} R^{2}}$
Loss angle, $\tan \delta=\frac{1}{\omega C R}$

## Classification of Resistance

1. Low resistance: All resistance of the order of $1 \Omega$ and below.

Example: Winding coils of electrical motors, generators and transformers.
2. Medium resistance: Resistances from $1 \Omega$ upwards to about $0.1 \mathrm{M} \Omega$.

Example: Resistance of heaters, potentiometers.
3. High resistance: All resistances of the order of $0.1 \mathrm{M} \Omega$ and above.

Example: Insulation of electrical cable and windings, insulation of motors, generators and transformers.

## Measurement of Medium Resistance

The different methods employed are:
(i) Ammeter - voltmeter method
(ii) Wheatstone bridge method
(iii) Ohmmeter method
(iv) Substitution method

1. Ammeter Voltmeter Method
$\mathrm{R}_{\mathrm{m}}=\frac{\text { Voltmeter reading }}{\text { Ammeter reading }}=\frac{\mathrm{V}}{\mathrm{l}}$
Where $R_{m}=$ measured value of resistance
(a) Circuit for higher resistance


The true value of resistance, $R=R_{m 1}-R_{a}$

$$
R_{m}=R_{m 1}\left(1-\frac{R_{a}}{R_{m 1}}\right)
$$

Where, $\mathrm{R}_{\mathrm{m} 1}=$ Measured value of resistance, $\mathrm{Ra}_{\mathrm{a}}=$ Resistance of ammeter

## Relative error

$$
\epsilon_{\mathrm{F}}=\frac{R_{\mathrm{m}_{1}}-R}{R}=\frac{R_{a}}{R}
$$

To get minimum error, the test resistance should be more than the ammeter resistance so that this adjustment is suitable for measurement of high resistance.
(b) Circuit for lower resistance


## The true value of resistance

$$
R=\frac{R_{m 2} R_{v}}{R_{v}-R_{m 2}}
$$

Where, $\mathrm{R}_{\mathrm{m} 2}=$ Measured value of resistance, $\mathrm{R}_{\mathrm{v}}=$ Resistance of voltmeter
For $\mathrm{R}_{\mathrm{v}} \gg \mathrm{R}_{\mathrm{m} 2}$

$$
R=R_{m 2}\left(1-\frac{R_{m 2}}{R_{v}}\right)
$$

Relative error, $\epsilon_{\mathrm{F}}=\frac{R_{m_{2}}-R}{R}=\frac{-R_{m 2}^{2}}{R_{V} R} \quad\left[R_{V} \gg R_{m_{2}}\right]$
Approximate relative error, $\epsilon=-\frac{R}{R_{V}} \quad\left[\right.$ for $\left._{m_{2}} \approx R\right]$

## Note:

Relative errors for the above two cases are equal when true value of resistance,
$R=\sqrt{R_{a} R_{V}}$
2. Wheatstone Bridge


At Balance, $R=S \frac{P}{Q}$
Sensitivity of Wheatstone bridge, $S_{B}=\frac{\theta}{\Delta R / R}=\frac{S_{v} E S R}{(R+S)^{2}} ; m m=\frac{S_{v} E}{\frac{P}{Q}+2+\frac{Q}{P}}$
Where,
$S_{v}=$ Voltage sensitivity of galvanometer, mm/volt
$E=$ Bridge voltage
$\mathrm{P}, \mathrm{Q}=$ Branch resistances
$\theta=$ Deflection of galvanometer, mm
For a bridge with equal arms, $\mathrm{S}_{\mathrm{B}}=\frac{\mathrm{S}_{\mathrm{V}} \mathrm{E}}{4}$
Note:

- For maximum bridge sensitivity

$$
\frac{P}{Q}=\frac{R}{S}=1
$$

- Sensitivity of bridge is most important parameter as compared to accuracy, precision and resolution.


## Equivalent circuit of Wheatstone bridge



Galvanometer current, $I_{g}=\frac{E_{0}}{R_{0}+G}$
Where,
$\mathrm{E}_{0}=$ Thevenin's or open circuit voltage appearing between terminals b and d with galvanometer circuit open circuited.
$\mathrm{G}=$ Resistance of the galvanometer circuit
$E_{0}=E\left[\frac{R+\Delta R}{2 R+\Delta R}-\frac{1}{2}\right] \approx E\left(\frac{\Delta R}{4 R}\right)$ as $D R \ll R$
$\Delta R=$ Change in resistance $R$
Thevenin equivalent resistance of bridge, $R_{0}=\frac{R S}{R+S}+\frac{P Q}{P+Q}$
Galvanometer deflection, $\theta=\frac{S_{V} E S \Delta R}{(R+S)^{2}}=\frac{S_{i} E S \Delta R}{\left(R_{0}+G\right)(R+S)^{2}}$
Where,
$\mathrm{S}_{\mathrm{i}}=$ Current sensitivity of galvanometer Bridge sensitivity
$S_{B}=\frac{\theta}{\Delta R / R}=\frac{S_{i} E S R}{\left(R_{0}+G\right)(R+S)^{2}}$

## Current sensitivity

$$
\mathrm{S}_{\mathrm{i}}=\frac{\theta}{\mathrm{l}_{\mathrm{g}}} ; \mathrm{mm} / \mu \mathrm{A}
$$

$\theta=$ Deflection in the galvanometer
$\mathrm{I}_{\mathrm{g}}=$ Current in galvanometer voltage sensitivity
$S_{v}=\frac{\theta}{V_{\mathrm{Th}}} ; \mathrm{mm} / \mathrm{V}$
$\mathrm{V}_{\mathrm{Th}}=$ Voltage across galvanometer

## Note:

In the Wheatstone bridge method, the effect of lead resistance is not eliminated; hence, it is unsuitable for measuring low resistance.

## 3. Ohmmeters

(a) Series Type ohmmeter


Half scale resistance, $R_{h}=R_{1}+\frac{R_{2} R_{m}}{R_{2}+R_{m}}$
Meter current, $I_{m}=\frac{E R_{2}}{\left(R_{h}+R_{X}\right)\left(R_{2}+R_{m}\right)}$
Full-scale deflection current, $\mathrm{I}_{\mathrm{fs}}=\frac{E R_{2}}{R_{h}\left(R_{2}+R_{m}\right)}$
The friction of full-scale reading, $S=\frac{I_{m}}{I_{f s}}=\frac{R_{m}}{R_{x}+R_{h}}$
(b) Shunt Type Ohmmeter


Half-scale reading of unknown resistance $R_{x}$ is

$$
R_{h}=\frac{R_{1} R_{m}}{R_{1}+R_{m}}
$$

Half scale reading of the meter, $I_{h}=0.5 I_{f s}=\frac{E R_{h}}{R_{1} R_{m}+R_{h}\left(R_{1}+R_{m}\right)}$
Where, $\mathrm{R}_{\mathrm{m}}=$ Internal resistance of meter, $\mathrm{R}_{1}=$ Adjustable resistor (as shown in figure) E = Supply voltage

## Measurement of Iow resistance

The different methods employed are:
(i) Kelvin's double bridge method
(ii) Ammeter voltmeter method
(iii) Potentiometer method

## Kelvin's Double Bridge Method



For zero galvanometer deflection, $\mathrm{E}_{\mathrm{ab}}=\mathrm{E}_{\mathrm{amd}}$
$R=\frac{P}{Q} \cdot S+\frac{q r}{p+q+r}\left[\frac{P}{Q}-\frac{p}{q}\right]$
If $\frac{P}{Q}=\frac{p}{q}$
Then $R=\frac{P}{Q} . S$

## Note:

Accuracies by Kelvin double bridge method
(i) From $1000 \mu \Omega$ to $1.0 \Omega: 0.005 \%$, (ii) From $100 \mu \Omega$ to $1000 \mu \Omega: 0.05 \%$ to $0.05 \%$
(iii) From $10 \mu \Omega$ to $100 \mu \Omega: 0.5 \%$ to $0.2 \%$

## Measurement of High Resistance

The different methods employed are:
(i) Loss of charge method
(ii) Megger
(iii) Direct deflection method
(iv) Mega ohm bridge

## 1. Loss of charge Method


$R=\frac{0.4343 \mathrm{t}}{\operatorname{Clog}_{10}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{\mathrm{C}}}\right)}$

## 2. Megger

- Megger works on the principle of electrodynamometer.
- Megger is used to measure cable, motor, generator insulation resistance, etc.
- Deflecting torque angle is proportional to the resistance of the insulator, which is under test.
- It is also used to check the continuity of cable.
- No external control torque was provided. Air friction damping is used.
- No need of an external power supply.


## Note:

High resistance have a guard terminal which is used to avoid leakage current.

## Carry Foster Slide Wire Bridge


(Bridge-1)

(Bridge-2)

Equating equation (i) and (ii)

$$
R-S=\left(I_{2}-I_{1}\right) r
$$

## Note:

Carry Foster bridge method is used for medium resistance measurement compared with standard resistance.

## A.C. Bridges:-

Used to measure self-inductance, Mutual inductance, capacitance, and frequency.


General Equation for bridge balance, $\quad \bar{z}_{1} \bar{z}_{4}=\bar{z}_{2} \bar{z}_{3}$
Magnitude condition, $\left|z_{1}\right|\left|z_{4}\right|=\left|z_{2}\right|\left|z_{3}\right|$
Angle condition, $\angle \theta_{1}+\angle \theta_{4}=\angle \theta_{2}+\angle \theta_{3}$

## Note:

Magnitude and angle conditions must be satisfied for the bridge to be balanced.
Depending upon the frequency, different null detectors are used.
Vibration galvanometer
Headphones
5 Hz to 1 kHz

Tuned amplifier detector

- 250 Hz to 4 kHz

D'Arsonval Galvanometer

- 10 Hz to 100 kHz
-DC frequency $=0 \mathrm{~Hz}$
Depending upon Phase angle $\theta$, elements are

| $\theta$ | Elements |
| :---: | :---: |
| $0^{\circ}$ | R |
| $90^{\circ}$ | $\mathrm{L}_{1}$ |
| $-90^{\circ}$ | $\mathrm{C}_{1}$ |
| $0^{\circ}<\theta_{1}<90^{\circ}$ | $\mathrm{R}_{1}, \mathrm{~L}_{1}$ |
| $-90^{\circ}<\theta_{1}<0^{\circ}$ | $\mathrm{R}_{1}, \mathrm{C}_{1}$ |

## Convergence to balance point:

If the variables are in the same arm of the bridge then minimum time is required for balancing of bridge. This is called convergence to balance point.
Quality factor (Q.F.), Q.F. $=\frac{\text { Energy Stored }}{\text { Energy disspiated }}$

## Measurement of Self Inductance

1. Maxwell's Inductance Bridge


$$
R_{1}=\frac{R_{3}}{R_{4}}\left(R_{2}+r_{2}\right), L_{1}=\frac{R_{3}}{R_{4}} \cdot L_{4}
$$

Where,
$\mathrm{L}_{1}=$ Unknown inductance of resistance $\mathrm{R}_{1}$
$L_{2}=$ Variable inductance of fixe resistance $r_{2}$
$R_{2}=$ Variable resistance connected in series with $L_{2}$
$R_{3}, R_{4}=$ Known non-inductive resistance
2. Maxwell's Inductance-capacitance Bridge

$\mathrm{R}_{1}=\frac{\mathrm{R}_{2} \mathrm{R}_{3}}{\mathrm{R}_{4}}$ and $\mathrm{L}_{1}=\mathrm{R}_{2} \mathrm{R}_{3} \mathrm{C}_{4}$
Q factor of the coil, $\mathrm{Q}=\frac{\omega \mathrm{L}_{1}}{\mathrm{R}_{1}}=\omega \mathrm{C}_{4} \mathrm{R}_{4}$

## Note:

- Not suitable for measurement of high Q coil because phase angle criteria do not satisfy.
- Not suitable for measurement of low Q-coil because of sliding balance problem.
- Suitable for measurement of medium Q coil, i.e. $(1<\mathrm{Q}<10)$.


## 3. Hay's Bridge


$\mathrm{R}_{1}=\frac{\omega^{2} \mathrm{R}_{2} \mathrm{R}_{3} \mathrm{R}_{4} \mathrm{C}^{2}{ }_{4}}{1+\omega^{2} \mathrm{C}_{4}^{2} \mathrm{R}^{2}{ }_{4}}=\frac{\mathrm{R}_{2} \mathrm{R}_{3}}{\mathrm{R}_{4}}\left(\frac{1}{1+\mathrm{Q}^{2}}\right)$
$\mathrm{L}_{1}=\frac{\mathrm{R}_{2} \mathrm{R}_{3} \mathrm{C}_{4}}{1+\omega^{2} \mathrm{C}^{2}{ }_{4} \mathrm{R}^{2}{ }_{4}}=\frac{\mathrm{R}_{2} \mathrm{R}_{3} \mathrm{C}_{4}}{1+\left(\frac{1}{\mathrm{Q}}\right)^{2}}$
For $\mathrm{Q}>10$

$$
\begin{aligned}
\mathrm{L}_{1} & =\mathrm{R}_{2} \mathrm{R}_{3} \mathrm{C}_{4} \\
\mathrm{Q} & =\frac{\omega \mathrm{L}_{1}}{\mathrm{R}_{1}}=\frac{1}{\omega \mathrm{C}_{4} \mathrm{R}_{4}}
\end{aligned}
$$

Where,
$L_{1}=$ Unknown-inductance having a resistance R1
$R_{2}, R_{3}, R_{4}=$ Know non-inductive resistance
$\mathrm{C}_{4}=$ Standard capacitor
Note: The Hay's bridge is suited for measuring high Q inductors.

## 4. Anderson's Bridge



$$
\begin{aligned}
\mathrm{R}_{1} & =\frac{\mathrm{R}_{2} \mathrm{R}_{3}}{\mathrm{R}_{4}}-r_{1} \\
\mathrm{~L}_{1} & =\frac{C R_{3}}{\mathrm{R}_{4}}\left[r\left(\mathrm{R}_{4}+\mathrm{R}_{2}\right)+\mathrm{R}_{2} \mathrm{R}_{4}\right]
\end{aligned}
$$

Where,
$\mathrm{L}_{1}=$ Self-inductance to be measured
$\mathrm{R}_{1}=$ Resistance of self-inductor
$r_{1}=$ Resistance connected in series with self-inductor
$r, R_{2}, R_{3}, R_{4}=$ Known non-inductive resistances
$C=$ Fixed standard capacitor
5. Owen's Bridge



$$
\begin{aligned}
\mathrm{L}_{1} & =\mathrm{R}_{2} \mathrm{R}_{3} \mathrm{C}_{4} \\
\mathrm{R}_{1} & =\mathrm{R}_{3} \frac{\mathrm{C}_{4}}{\mathrm{C}_{2}}
\end{aligned}
$$

Where,
$\mathrm{L}_{1}=$ Unknown self-inductance of resistance $\mathrm{R}_{1}$
$\mathrm{R}_{2}=$ Variable non-inductive resistance
$\mathrm{R}_{3}=$ Fixed non-inductive resistance
$\mathrm{C}_{2}=$ Variable standard capacitor
$\mathrm{C}_{4}=$ Fixed standard capacitor

## Note:

Owen's bridge is used for the measurement of unknown inductance and incremental inductance and incremental permeability ( $\mu$ ).

## Measurement of Incremental Inductance



Incremental inductance, $\mathrm{L} 1=\mathrm{R}_{2} \mathrm{R}_{3} \mathrm{C}_{4}$
Incremental permeability, $\mu=\frac{L_{1} i}{N^{2} A}$
Where,
$\mathrm{N}=$ Number of turns
$A=$ Area of flux path
I = Length of flux path
$\mathrm{R}_{2}=$ Variable non-inductive resistance
$\mathrm{R}_{3}=$ Fixed non-inductive resistance
$\mathrm{C}_{4}=$ Fixed standard capacitor

## Note:

- External D.C. Source is used to compensate residual magnetism.
- Capacitor, $C$ is to block D.C. from entering into A.C. and inductor, $L$ is to block A.C. from entering into D.C.


## Measurement of Capacitance

## 1. De Sauty's Bridge

(a) For lossless capacitor


$$
\mathrm{C} 1=\frac{\mathrm{C}_{2} \mathrm{R}_{4}}{\mathrm{R}_{4}}
$$

Where,
$\mathrm{C}_{1}=$ Capacitor whose Capacitance to be measured
$\mathrm{C}_{2}=\mathrm{A}$ Standard capacitor
$\mathrm{R}_{3}, \mathrm{R}_{4}=$ Non-inductive resistors
(b) For imperfect capacitor having dielectric loss


Where,
$r_{1}, r_{2}=$ Resistance representing the loss component of the two capacitors.

## Dissipation factor

$D=\omega C_{1} r_{1}=\omega C_{2} r_{2}$
2. Schering Bridge


$$
\begin{gathered}
\mathrm{r}_{1}=\frac{\mathrm{R}_{3} \mathrm{C}_{4}}{\mathrm{C}_{2}} \\
\mathbf{C}_{\mathbf{1}}=\mathbf{r}_{\mathbf{1}} \mathbf{C}_{\mathbf{2}}\left(\frac{\mathrm{R}_{4}}{\mathrm{R}_{2}}\right)
\end{gathered}
$$

## Dissipation factor

$D=\omega C_{1} r_{1}=\omega C_{2} R_{2}$
Where,
$\mathrm{C}_{1}=$ capacitor whose capacitance is to be determined
$\mathrm{r}_{1}=$ Series resistance representing the loss in the capacitor $\mathrm{C}_{1}$
$\mathrm{C}_{2}=$ Standard loss-free capacitor
$\mathrm{R}_{3}=$ Non-inductive resistance
$\mathrm{C}_{4}=$ Variable capacitor
$\mathrm{R}_{4}=$ Variable non-inductive resistance in parallel with variable capacitor $\mathrm{C}_{4}$
Note: Schering bridge is shielded with a metal screen to reduce the stray capacitance exists between the arms and arms to the earth.

## Measurement of Frequency

## Wien's Bridge



## Frequency

$$
\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}
$$

$$
f=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}} H z
$$

For $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}$ and $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}$
$f=\frac{1}{2 \pi R C}$
$\frac{R_{4}}{R_{3}}=2$

## Limitation of Wein's Bridge

If the input signal is not a sinusoidal or a signal containing harmonics, then bridging is not possible because the null detector is sensitive to the frequencies.

## Q-meter

It works on the principle of series resonance.
Measurement of the Storage Factor $\mathbf{Q}$


The resonant frequency of $Q$-Meter, $f_{0}=\frac{1}{2 \pi \sqrt{L C}}$
Measured value of $Q, Q_{m}=\frac{\omega_{0} L}{R+R_{s h}}$
True value of $Q_{,} Q_{t}=\frac{\omega_{0} L}{R}=Q_{m}=\left(1+\frac{R_{s h}}{R}\right)=Q_{m}\left(1+\frac{C_{d}}{C}\right)$
Where, $R=$ Resistance of coil, $L=$ Inductance of coil, $R_{s h}=$ Shunt resistance
$C=$ Tuning Capacitance, $C_{d}=$ Distributed or self-capacitance
Measurement of inductance, $L=\frac{1}{4 \pi^{2} f_{0}^{2} C}$
Measurement of effective resistance, $R=\frac{\omega_{0} L}{Q_{t}}$
Measurement of Distributed or self-capacitance
Resonance frequency $f_{1}=\frac{1}{2 \pi \sqrt{L\left(C_{1}+C_{d}\right)}}, f_{2}=\frac{1}{2 \pi \sqrt{L\left(C_{2}+C_{d}\right)}}$
When, $f_{2}=n f_{1}$ then, $C_{d}=\frac{C_{1}-n^{2} C_{2}}{n^{2}-1}$
where, $C_{1}=$ Tuning capacitance at frequency $f_{1}, C_{2}=$ Tuning capacitance at frequency $f_{2}$ Measurement of Unknown Capacitance $C_{x}$
Adjust capacitor $C=C_{1}$ to get resonance frequency $f 1$ with unknown capacitance $C_{x}$ in parallel.

$$
\begin{equation*}
f_{1}=\frac{1}{2 \pi \sqrt{L\left(C_{X}+C_{1}\right)}} \tag{i}
\end{equation*}
$$

Now remove $C_{x}$ and again adjust $C=C_{2}$ to get same resonance frequency $f_{1}$

$$
\begin{equation*}
f_{1}=\frac{1}{2 \pi \sqrt{L C_{2}}} \tag{ii}
\end{equation*}
$$

By equating equation (i) and (ii)

$$
C_{x}=C_{2}-C_{1}
$$



## Chapter-5

## Digital Instruments \& Instrument Transformers

## Cathode Ray Oscilloscope

CRO is a digital instrument, which works on the principle of thermionic emission i.e. emission of electron from a heated surface. It is a linear device. With the use of CRO, one can measure peak to peak, rms, peak or average value of voltage and current.

## Calibration of CRO

Calibration of CRO is done by applying a known quality of square signal.
The rise time $\left(\mathrm{tr}_{\mathrm{r}}\right)$, of signal applied to CRO and bandwidth of CRO are related as $\mathrm{t}_{\mathrm{r}} \times$ B.W. $=0.35$

If this condition fails, then the signal is distorted at the output of CRO.

## Electrostatic Deflection


where, $\mathrm{y}=$ Displacement in y -direction; $\mathrm{m}, \mathrm{e}=$ Charge of an electron; Coulomb
$\mathrm{E}_{\mathrm{y}}=$ Electric field intensity in Y -direction; $\mathrm{V} / \mathrm{m}, \mathrm{m}=$ Mass of electron; kg
$V_{\text {ox }}=$ Velocity of electron when entering the fields of deflecting plates; $\mathrm{m} / \mathrm{s}$
$\mathrm{x}=$ Displacement in x -direction; m

## Deflection

$$
D=\frac{L I_{d} E_{d}}{2 d E_{a}}
$$

Where,
$\mathrm{L}=$ Distance between screen and the center of deflecting plates; m
$l_{d}=$ Length of deflecting plates; $m$,
$E_{d}=$ Potential between deflecting plates; V
$\mathrm{d}=$ Distance between deflecting plates; m,
$\mathrm{E}_{\mathrm{a}}=$ Voltage of pre-accelerating anode; V

## Deflection sensitivity:

$$
\mathrm{S}=\frac{\mathrm{D}}{\mathrm{E}_{\mathrm{d}}}=\frac{\mathrm{L} \mathrm{I}_{\mathrm{d}}}{2 \mathrm{dE}_{\mathrm{a}}} \mathrm{~m} / \mathrm{v}
$$

## Deflection factor:

$$
\mathrm{G}=\frac{1}{\mathrm{~S}}=\frac{2 \mathrm{dE}_{\mathrm{a}}}{\mathrm{LI}_{\mathrm{d}}} \mathrm{v} / \mathrm{m}
$$

## Sawtooth Generator:


$\mathrm{V}_{0}=\mathrm{V}_{\mathrm{cc}}[1-\exp (-\mathrm{t} / \mathrm{RC})]$
Where,
$\mathrm{V}_{0}=$ Instantaneous voltage across the capacitor at time t ; $\mathrm{V}_{\mathrm{cc}}=$ Supply voltage

## Lissajous patterns

If horizontal and vertical deflecting plates are applied with sinusoidal signal, the waveform pattern appearing on the screen is called Lissajous pattern.

## Application

- Used to find the phase angle difference between the signal applied to vertical and horizontal plates.
- Used for finding the frequency ratio between vertical and horizontal plates voltage.

| Phase angle ( f ), between <br> $\mathrm{v}_{\mathrm{a}}$ and $\mathrm{v}_{\mathrm{y}}$ | Lissajous pattern |
| :---: | :---: |
|  |  |
|  |  |




Finding the phase angle $\boldsymbol{\phi}$ from given Lissajous pattern
(a) When Lissajous pattern is in first and third quadrants


First possibility, $\phi=\sin ^{-1}\left(\frac{x_{1}}{x_{2}}\right)=\sin ^{-1}\left(\frac{y_{1}}{y_{2}}\right)$
Second possibility $=360^{\circ}-\phi$
(b) When Lissajous pattern is in second and fourth quadrant


First possibility
$\phi=180^{\circ}-\sin ^{-1}\left(\frac{x_{1}}{x_{2}}\right)$
Second possibility $=360^{\circ}-\phi$

## Measurement of Frequency Using Lissajous Pattern

$\frac{f_{y}}{f_{x}}=\frac{\text { (number of intersections of the horizontal line with the curve) }}{\text { (number of intersections of the vertical line with the curve) }}$
Where,
$f_{y}=$ Frequency of signal applied to $Y$ plates
$f_{x}=$ Frequency of signal applied to $X$ plates

## Digital Meters

Basic measurable quantity in digital meter is D.C.

1. Resolution (R) of Digital Meter

The smallest change in the input that a digital meter can detect is called resolution.
$R=\frac{1}{10^{n}}$
Where, $\mathrm{n}=$ Number of full digit.

## 2. Sensitivity (S)

The smallest change in input that can be displayed within given range.
$S=$ Resolution $\times$ Range of meter

## 3. Over ranging

Switch on the extra half $(1 / 2)$ is called over ranging. Due to this over ranging, the range of the instrument increases.

## Instrument Transformers

## Ratios of Instrument Transformers:

1. Transformation Ratio (R)

It is the ratio of the magnitude of the primary phasor to the secondary phasor.
$\mathrm{R}=\frac{\text { |primary phasor } \mid}{\mid \text { sec ondary phasor } \mid}$
For current transformer (C.T.), $\mathrm{R}=\frac{\text { primary winding current }}{\text { secondary winding current }}$
For potential transformer (P.T.), $\mathrm{R}=\frac{\text { primary winding voltage }}{\text { secondary winding voltage }}$

## 2. Nominal Ratio ( $\mathrm{K}_{\mathrm{n}}$ )

It is the ratio of rated primary winding current (or voltage) to the rated secondary winding current (or voltage)
For C.T., $\mathrm{K}_{\mathrm{n}}=\frac{\text { rated primary winding current }}{\text { rated sec ondary winding current }}$
For P.T., $\mathrm{K}_{\mathrm{n}}=\frac{\text { rated primary winding voltage }}{\text { rated sec ondary winding voltage }}$

## 3. Turns Ratio (n)

For C.T., $\mathrm{n}=\frac{\text { number of turns of sec ondary winding }}{\text { number of turns of primary winding }}$
For P.T, $\mathrm{n}=\frac{\text { number of turns of primary winding }}{\text { number of turns of sec ondarywinding }}$

## 4. Ratio Correction Factor:

$R C F=\frac{R}{K_{n}}$

## Remember:

The ratio marked on the transformers is their nominal ratio.

## Current Transformer Equivalent Circuit



Where,
$r_{s}, X_{s}=$ resistance, reactance of secondary winding
$r_{e}, X_{e}=$ resistance , reactance of external burden
$E_{p}, E_{s}=$ primary and secondary winding induced voltage
$N_{p}, N_{s}=$ number of primary and secondary winding turns
$I_{p}, I_{s}=$ primary and secondary winding current
$\phi=$ flux in transformer
$\theta=$ phase angle of transformer
$\delta=$ angle between secondary winding induced voltage and secondary winding current
$\Delta=$ phase angle of secondary winding load circuit
$l_{0}=$ exciting current
$I_{m}=$ magnetizing component of exciting current
$\mathrm{l}_{\mathrm{e}}=$ loss component of exciting current
$a=$ angle between exciting current and flux

## Phasor Diagram



## Transformation ratio

$\mathrm{R}=\frac{\mathrm{I}_{\mathrm{P}}}{\mathrm{I}_{\mathrm{S}}}=\frac{\mathrm{nI}_{\mathrm{S}}+\mathrm{I}_{0} \cdot \sin (\delta+\alpha)}{\mathrm{I}_{\mathrm{S}}}=\mathrm{n}+\frac{\mathrm{I}_{0}}{\mathrm{I}_{\mathrm{S}}} \sin (\delta+\alpha)$
$\mathrm{R}=\mathrm{n}+\frac{\mathrm{I}_{0}}{\mathrm{I}_{\mathrm{S}}} \sin (\delta+\alpha)=\mathrm{n}+\frac{\mathrm{I}_{0}}{\mathrm{I}_{\mathrm{S}}}(\sin \delta \cos \alpha+\cos \delta \sin \alpha)$
$\mathrm{R}=\mathrm{n}+\frac{\mathrm{I}_{\mathrm{M}} \sin \delta+\mathrm{I}_{\mathrm{C}} \cos \delta}{\mathrm{I}_{\mathrm{S}}}$
Where, $I_{m}=I_{0} \cos \alpha$

$$
\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{o}} \sin \alpha
$$

## Phase angle

For very small angles, $\theta \approx \frac{I_{0} \cdot \cos (\delta+\alpha)}{n I_{S}+I_{0} \cdot \sin (\delta+\alpha)}$
This expression can still be simplified with the assumption $\mathrm{I}_{0} \ll \mathrm{nI}_{\mathrm{s}}$.
$\theta \approx \frac{\mathrm{I}_{0} \cdot \cos (\delta+\alpha)}{\mathrm{nI}_{\mathrm{S}}} \mathrm{rad}$
$\theta \approx \frac{\mathrm{I}_{0}(\cos \delta \cos \alpha-\sin \delta \sin \alpha)}{\mathrm{nI}_{\mathrm{S}}} \approx \frac{\mathrm{I}_{\mathrm{M}} \cos \sigma-\mathrm{I}_{\mathrm{C}} \sin \delta}{\mathrm{nI}_{\mathrm{S}}} \mathrm{rad}$
Phase angle of CT is given by
$\theta \approx \frac{180}{\pi}\left(\frac{I_{M} \cos \delta-I_{C} \sin \delta}{n I_{S}}\right)$ degrees

## Ratio error

Ratio error $=\frac{\text { nominal ratio }\left(\mathrm{K}_{\mathrm{n}}\right)-\operatorname{actual} \text { ratio }(\mathrm{R})}{\text { actual ratio }(\mathrm{R})}$

## Remember:

- The primary current of C.T depends on load connected to the system but does not depend on the secondary winding burden.
- Primary winding is single turn or bar winding and secondary has more number of turns to reduce the current in secondary.
- If primary current is very high, it causes reduction is ratio error and phase angle error. So to increase value of primary current the primary is maintained with single turn.
- The secondary number of turns is reduced by 1 or 2 , then the ratio error reduces.


## Potential transformer

Actual transformation (voltage) ratio
$R=n+\frac{\frac{I_{s}}{n}\left[R_{P} \cos \Delta+X_{p} \sin \Delta\right]+I_{e} r_{p}+I_{m} x_{P}}{V_{s}}$
Phase angle
$\theta=\frac{I_{s}}{V_{s}}\left(X_{s} \cos \Delta-R_{s} \sin \Delta\right)+\frac{I_{e} X_{p}-I_{m} r_{p}}{n V_{s}}$ rad.

## Note:

- C.T never operates with secondary winding open but P.T can be operated with secondary winding open.
- Strip wound core is used to reduce ratio and phase angle errors.


## Application of C.T and P.T

- Multiple operation with a single device.
- High current and higher voltage are step down to lower current and lower voltage so that metering is easier.
- Measuring circuit is isolated from the power circuit.
- Low power consumption.
- Replacement is easier.


## Potentiometer

## 1. Zero Order System

As input changes, output also changes immediately called zero order system. Examples: Resistor.

## 2. First Order System

As input changes, output also changes but not immediately, it takes some delay but without oscillation. Example: heater.



## 3. Second Order system

As input changes, output also changes, with some delay and oscillation.



## Remember:

The analog instruments are of second order instrument which has damping factor ( $\xi$ ) between 0.6 to 0.8 . It is under damped.

## Standards

| Quantity | Limit | Definition |
| :--- | :--- | :--- |
| Length | Meter | The length of path travelled by light in an interval of $\frac{1}{299792458}$ |
| sec. |  |  |
| Temp. | Second | $9.192631770 \times 109$ cycles of radiation from vaporized ceslum- <br> 133 atom. <br> Koltage <br> Current |
| Volt | Ampere <br> point of water is defined as $273.16^{\circ} \mathrm{K}$. <br> Standard cell voltage of Weston cell i.e., 1.0186 V. <br> One ampere is the current flowing through two infinite cross <br> section placed 1 meter apart produced a force of $2 \times 10-7 \mathrm{~N} / \mathrm{m}$. |  |

## Magnetic Measurements

## Flux density

$B=\frac{\phi}{A_{s}}=\frac{\mathrm{RK}_{\mathrm{q}} \theta_{1}}{2 N A_{\mathrm{s}}}$
Where, $\phi=$ Flux linking search coil, $A_{s}=$ Cross-sectional area of specimen,
$\mathrm{R}=$ Resistance of the ballistic galvanometer circuit
$\mathrm{K}_{\mathrm{q}} \theta_{1}=$ Charge indicated by ballistic galvanometer
$N=$ Number of turns in the search coil Hysteresis loss per unit volume, $\mathrm{P}_{\mathrm{h}}=\eta f \mathrm{~B}_{\mathrm{m}} \mathrm{k}$
Where, $\eta=$ Hysteresis coefficient, $f=$ Frequency; $\mathrm{Hz}, \mathrm{Bm}_{\mathrm{m}}=$ Maximum flux density; $\mathrm{Wb} / \mathrm{m} 2$ $k=$ Steinmetz coefficient

Note: The value of $k$ varies from 1.6 to 2.
Eddy current loss per unit volume for laminations, $\mathrm{Pe}=\frac{4 \mathrm{~K}_{\mathrm{f}}^{2} \mathrm{f}^{2} \mathrm{~B}_{\mathrm{m}}^{2} \mathrm{t}^{2}}{2 \rho}$
Where, $\mathrm{k}_{\mathrm{f}}=$ Form factor, $\mathrm{t}=$ Thickness of laminations; $\mathrm{m}, \rho=$ Resistivity of material; $\Omega-\mathrm{m}$ Total iron loss per unit volume, $p_{1}=p_{h}+p_{e}=\eta f B_{m} k+\frac{4 k_{f}^{2} f^{2} B_{m}^{2} t^{2}}{3 \rho}$

Maximum flux density, $B_{m}=\frac{E_{2}}{4 k_{f} f A_{s} N_{2}}$
For sinusoidal supply, $B_{m}=\frac{E_{2}}{4.44 \mathrm{fA}_{s} \mathrm{~N}_{2}}$
Where, $E_{2}=$ Voltage induced in secondary winding, $E_{2}=4 k_{f} f \phi_{m} N_{2}$
$K_{f}=$ Form factor ( $=1.11$ for sinusoidal), $f=$ Frequency
$A_{s}=$ Cross-sectional area of specimen, $N_{2}=$ Number of turns in secondary winding $\phi_{\mathrm{m}}=$ Maximum flux linkage

