

CDS I 2021 PYSP Mathematics: Solution

1. Ans. B.

$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots + \frac{1}{n(n+1)} = \frac{99}{100}$$

$$\left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = \frac{99}{100}$$

$$1 - \frac{1}{n+1} = \frac{99}{100}$$

$$\frac{n}{n+1} = \frac{99}{100}$$

$$n = 99$$

2. Ans. B.

the train
$$=\frac{200+100}{10}=30 \, m \, / \, s$$

speed of the train

3. Ans. A.

let their incomes are 7m, 9m and 10m and their expenditures are 8n, 9n and 15n. then their savings are (7m-8n),(9m-9n) and (10m-15n). Now, given that

$$7m - 8n = \frac{1}{4}(7m) \Longrightarrow 21m = 32n$$
 ...(i)

Gradeup

Green Card

Now ratio their savings are $\Rightarrow (7m-8n):(9m-9n):(10m-15n)$

$$\Rightarrow 7\left(\frac{32}{21}\right)n - 8n : 9\left(\frac{32}{21}\right)n - 9n :: 12\left(\frac{32}{21}\right)n - 15n$$
$$\Rightarrow \frac{56}{21} : \frac{99}{21} : \frac{69}{21}$$
$$\Rightarrow 56 : 99 : 69$$

4. Ans. C.

the ratio of boys and girls in the class is $3 \cdot 1$, let the number of boys and girls in the class are 3k and k. Given that the average score of the class is p and average score of the boys is (p+1), let the average score of the girls is $\tilde{}$, then total score of the class

Unlimited Access to 300+ Defence Mock Tests

1

www.gradeup.co

 \Rightarrow (4k)× p = 3k(p+1)+k(x) $\Rightarrow x = p - 3$

5. Ans. D.

change after adding 3 to both the numerator and denominator of all the fractions

 $\frac{5}{6} - \frac{2}{3} = \frac{3}{6}$ $\frac{6}{7} - \frac{3}{4} = \frac{3}{28}$ $\frac{7}{8} - \frac{4}{5} = \frac{3}{40}$ $\frac{8}{9} - \frac{5}{6} = \frac{3}{54}$

We can see the minimum change is with fraction $\overline{6}$.

5

6. Ans. C.

let $f(x) = 4x^3 + 12x^2 - x - 3$

Now $f\left(-\frac{1}{2}\right) = 4 \times \frac{(-1)}{8} + 12 \times \frac{1}{4} - \frac{(-1)}{2} - 3 = 0$

Hence
$$x = -\frac{1}{2}$$
 or $2x+1=0$ is a factor of $f(x)$

And $f\left(\frac{1}{2}\right) = 4 \times \frac{1}{8} + 12 \times \frac{1}{4} - \frac{1}{2} - 3 = 0$

Hence $x = \frac{1}{2}$ or 2x - 1 = 0 is a factor of f(x)

7. Ans. B.

given that the sum of the roots and the product of roots are 6.

$$-\frac{(-6)}{p} = \frac{q}{p} = 6 \Longrightarrow q = 6 \text{ and } p = 1$$

Gradeup

Unlimited Access to 300+ Defence **Green Card** Mock Tests

2

So,
$$(p+q)=6+1=7$$

8. Ans. C.

if a quadratic equation $ax^2 + bx + c = 0$ has equal roots,

the discriminant, $D = 0 \Longrightarrow b^2 = 4ac$

 $(2k)^2 = 4 \times 4 \times 3k$ k(k-12) = 0*k* = 0,12

9. Ans. B.

given that $x + \frac{1}{x} = \frac{5}{2}$

$$x^{2} + \frac{1}{x^{2}} = \left(x + \frac{1}{x}\right)^{2} - 2 = \frac{25}{4} - 2 = \frac{17}{4}$$

$$x - \frac{1}{x} = \sqrt{\left(x + \frac{1}{x}\right)^{2} - 4} = \sqrt{\left(\frac{5}{2}\right)^{2} - 4} = \frac{3}{2}$$

$$x^{4} - \frac{1}{x^{4}} = \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) \left(x^{2} + \frac{1}{x^{2}}\right)$$

$$= \frac{5}{2} \times \frac{3}{2} \times \frac{17}{4} = \frac{255}{16}$$

10. Ans. C.

for a quadratic equation $ax^2 + bx + c = 0$ to be perfect square,

the discriminant, $D = 0 \Longrightarrow b^2 = 4ac$

Gradeup

Unlimited Access to 300+ Defence **Green Card** Mock Tests

3

$$(12k-24)^{2} = 4(6k)(16)$$

$$12 \times 12(k^{2}-4k+4) = 4 \times 6 \times 16k$$

$$3k^{2}-12k+12 = 8k$$

$$3k^{2}-20k+12 = 0$$

$$(k-6)(3k-2) = 0$$

$$k = 6, \frac{2}{3}$$

11. Ans. C.

$$a = \frac{b + \sqrt{b^2 - 2bx}}{b - \sqrt{b^2 - 2bx}}$$

$$\frac{a + 1}{a - 1} = \frac{b}{\sqrt{b^2 - 2bx}}$$

$$\frac{a^2 + 2a + 1}{a^2 - 2a + 1} = \frac{b^2}{b^2 - 2bx}$$

$$\frac{a^2 - 2a + 1}{a^2 + 2a + 1} = \frac{b - 2x}{b} = 1 - \frac{2x}{b}$$

$$x = \frac{b}{2} \left(1 - \frac{a^2 - 2a + 1}{a^2 + 2a + 1} \right)$$

$$= \frac{b}{2} \left(\frac{4a}{a^2 + 2a + 1} \right)$$

$$= \frac{2ab}{(a + 1)^2}$$

12. Ans. A.

we know that the unit digits of $7^{4k+1} \equiv 7, 7^{4k+2} \equiv 9, 7^{4k+3} \equiv 3, 7^{4k+4} \equiv 1$

$$67^{32} \equiv 7^{32} \equiv 7^{4 \times 7 + 4} \equiv 1$$

13. Ans. B.

$$p = \frac{\sqrt{3q+2} + \sqrt{3q-2}}{\sqrt{3q+2} - \sqrt{3q-2}}$$

Gradeup

Green Card

 $\frac{p+1}{p-1} = \frac{\sqrt{3q+2}}{\sqrt{3q-2}}$ [by componendo-divindo]

4 Unlimited Access to 300+ Defence Mock Tests

 $\frac{p^2 + 2p + 1}{p^2 - 2p + 1} = \frac{3q + 2}{3q - 2}$ [by squaring both sides] $\frac{2(p^2 + 1)}{4p} = \frac{6q}{4}$ [by componendo-divindo]

 $p^{2}+1=3pq$ $p^{2}-3pq+1=0$ $p^{2}-3pq+2=1$

14. Ans. D.

we have a+b+c=0

Squaring both sides

 $a^{2} + b^{2} + c^{2} + 2(ab + bc + ca) = 0$ $a^{2} + b^{2} + c^{2} = -2(ab + bc + ca) \qquad \dots (ii)$

 $a+b+c=0 \Longrightarrow a+b=-c$

Cubing both sides

$$(a+b)^{3} = (-c)^{3}$$

$$a^{3} + b^{3} + 3ab(a+b) = -c^{3}$$

$$a^{3} + b^{3} + c^{3} = -3ab(a+b)$$
...(ii)
$$a^{3} + b^{3} + c = -3ab(-c)$$

$$a^{3} + b^{3} + c = 3abc$$
...(iii)

15. Ans. A.

$$27^{27} - 15^{27} = (24 + 3)^{27} - (12 + 3)^{27}$$
$$= (24k_1 + 3^{27}) - (12k_2 + 3^{27})$$
$$= 12(2k_1 - k_2)$$

Gradeup

Green Card

Here, we can see that it is always divisible by 6.

16. Ans. D.

5 Unlimited Access to 300+ Defence Mock Tests

since all the numbers are different then total number of terms = $3 \times 4 \times 5 = 60$

17. Ans. B.

prime numbers between 50 to 100 are 53, 59, 61, 67, 71, 73, 79, 83, 89 and 97.

59 - 53 = 67 - 61 = 79 - 73 = 6

Such number of pairs are 3.

18. Ans. A.

here

$$\frac{x}{y} + \frac{y}{x} = 2$$
$$x^{2} + y^{2} - 2xy = 0$$
$$(x - y)^{2} = 0$$
$$x = y$$

Since $x \neq y$ then, there are no such pairs.

19. Ans. B.

2¹⁰⁰⁰⁰⁰⁰

we have to find remainder of 7

$$R\left[\frac{2^{3}}{7}\right] = R\left[\frac{8}{7}\right] = 1$$

We know

$$R\left[\frac{2^{1000000}}{7}\right] = R\left[\frac{\left(2^{3}\right)^{33333} \times 2}{7}\right] = R\left[\frac{\left(2^{3}\right)^{33333}}{7}\right] \times R\left[\frac{2}{7}\right] = 1 \times 2 = 2$$

20. Ans. D.

we know that the rule of divisibility by 13 is "if n_1n_2 is a number N, then if the number formed by the alternative sum and difference of blocks of 3-3 digits from right to left is divisible by 13 then N is divisible by 13".

So, for 413283P759387 is divisible by 13

387 - 759 + 83P - 132 + 4 = 83P - 500 = 330 + P must be divisible by 13.

330 + P = 13(26) - 8 + P must be divisible by 13. So, P must be 8.

21. Ans. D.

$$\frac{1}{bc(a-b)(a-c)} + \frac{1}{ca(b-c)(b-a)} + \frac{1}{ab(c-a)(c-b)}$$
$$\Rightarrow \frac{a(c-b) + b(a-c) + c(b-a)}{abc(a-b)(b-c)(c-a)}$$
$$\Rightarrow \frac{ac-ab+ba-bc+cb-ca}{abc(a-b)(b-c)(c-a)}$$
$$\Rightarrow 0$$

22. Ans. A.

given that $x(x-1)(x-2)(x-3)+1=k^2$

$$k^{2} = x(x-1)(x-2)(x-3)+1$$

= $(x^{2}-3x)(x^{2}-3x+2)+1$
= $y(y+2)+1$ $[t = x^{2}-3x]$
= $y^{2}+2y+1$
= $(y+1)^{2}$
 $k = y+1$
 $k = x^{2}-3x+1$

23. Ans. C.

Gradeup Green Card Unlimited Access to 300+ Defence Mock Tests

7

$$x = \frac{12}{7 - \frac{6}{7 - \frac{3}{5 - x}}}$$

$$x = \frac{12}{7 - \frac{6(5 - x)}{35 - 7x - 3}}$$

$$x = \frac{12(32 - 7x)}{224 - 49x - 30 + 6x}$$

$$x = \frac{384 - 84x}{194 - 43x}$$

$$194x - 43x^2 = 384 - 84x$$

$$43x^2 - 278x + 384 = 0$$

$$(x - 2)(43x - 192) = 0$$

Integer value of x = 2.

24. Ans. A.

$$\Rightarrow \frac{8x}{1-x^4} - \frac{4x}{x^2+1} + \frac{x+1}{x-1} - \frac{x-1}{x+1} \Rightarrow \frac{8x}{(1-x)(1+x)(1+x^2)} - \frac{4x}{x^2+1} + \frac{(x+1)^2 - (x-1)^2}{(x-1)(x+1)} \Rightarrow \frac{8x-4x(x^2+1)}{(1-x)(1+x)(1+x^2)} + \frac{4x}{(1-x)(1+x)} \Rightarrow \frac{8x-4x(x^2+1)+4x(x^2-1)}{(1-x)(1+x)(1+x^2)} \Rightarrow \frac{8x-4x^3-4x+4x^3-4x}{(1-x)(1+x)(1+x^2)} \Rightarrow 0$$

25. Ans. D.

factorizing both polynomials

$$x^{3}-19x+30 = (x-2)(x-3)(x+5)$$
$$x^{2}-5x+6 = (x-2)(x-3)$$

HCF =(x-2)(x-3)

Gradeup Green Card

8 Unlimited Access to 300+ Defence Mock Tests

26. Ans. C.

Statement-I: $x \propto z \Rightarrow x = k_1 z$ and $y \propto z \Rightarrow y = k_2 z$

$$x^{2} - y^{2} = k_{1}^{2} z^{2} - k_{2}^{2} z^{2}$$
$$= (k_{1}^{2} - k_{2}^{2}) z^{2}$$
$$(x^{2} - y^{2}) \propto z^{2}$$

Statement-I: $x \propto \frac{1}{z} \Rightarrow xz = k_1$ and $y \propto \frac{1}{z} \Rightarrow yz = k_2$

$$(xz)(yz) = k_1k_2 = k$$
$$xyz^2 = k$$
$$xy = \frac{k}{z^2}$$
$$xy \propto \frac{1}{z^2}$$

27. Ans. B.

If (x-k) is the HCF of $x^2 + ax + b$ and $x^2 + cx + d$, then x = k will satisfy both $x^2 + ax + b = 0$ and $x^2 + cx + d = 0$ equations.

Then,
$$k^2 + ak + b = 0$$
 ...(i)

And $k^2 + ck + d = 0$...(ii)

By equation (i) and (ii)

$$\left(k^{2} + ak + b\right) - \left(k^{2} + ck + d\right) = 0$$
$$k\left(a - c\right) + \left(b - d\right) = 0$$
$$k = \frac{d - b}{a - c}$$

28. Ans. C.

let $x = a^2$ and $y = b^2$ then it satisfy both the equations, now

$$\frac{x}{a^2} - \frac{y}{b^2} = \frac{a^2}{a^2} - \frac{b^2}{b^2} = 0$$

Gradeup Green Card

Unlimited Access to 300+ Defence Mock Tests

9

Or

You can also put x = y = a = b = 1.

29. Ans. A.

we should be add

$$=\frac{2x-5}{(x^2-5x+6)(x-4)} - \frac{1}{(x-2)(x-4)}$$
$$=\frac{2x-5}{(x-2)(x-3)(x-4)} - \frac{1}{(x-2)(x-4)}$$
$$=\frac{1}{(x-2)(x-4)} \left[\frac{2x-5}{x-3} - 1\right]$$
$$=\frac{1}{(x-2)(x-4)} \left(\frac{x-2}{x-3}\right)$$
$$=\frac{1}{(x-3)(x-4)}$$
$$=\frac{1}{x^2-7x+12}$$

30. Ans. B.

$$\frac{(x^3-1)(x^2-9x+14)}{(x^2+x+1)(x^2-8x+7)} = \frac{(x-1)(x^2+x+1)(x-7)(x-2)}{(x^2+x+1)(x-7)(x-1)} = (x-2)$$

31. Ans. A.

let a man works a unit of work in days then,

$$y = (x-1)(x+1) \text{ and } z = (x+2)(x-1)$$

And $y: z = 9:10$
$$\frac{(x-1)(x+1)}{(x+2)(x-1)} = \frac{9}{10}$$

$$\frac{x+1}{x+2} = \frac{9}{10}$$

$$10x+10 = 9x+18$$

 $x = 8$
32 Ans C

32. ANS. C.

Gradeup **Green Card**

10 **Unlimited Access** to 300+ Defence Mock Tests

let a person can clean 1 unit of floor in one day. then,

20 persons clean 20 floors = 20 days

20 persons clean 1 floor \equiv 1 day

1 person cleans 1 floor = 20 days

1 person cleans 16 floors = 20×16 days = 320 days

16 persons clean 16 floors = $\frac{320}{16}$ days = 20 days

Or

$$\frac{M_1 \times D_1}{W_1} = \frac{M_2 \times D_2}{W_2}$$
$$\frac{20 \times 20}{20} = \frac{16 \times D_2}{16}$$
$$D_2 = 20$$

33. Ans. B.

liquid in 80 litres of mixture = 25% of 80 = 20

And water in the mixtue = 80 - 20 = 60

Let x litres of water is added in the mixture, so

 $\frac{20}{80+x} = 20\%$ $\frac{20}{80+x} = \frac{1}{5}$ 80+x = 100x = 20 litres

34. Ans. B.

let the price of X's goods is x then,

Y's goods price $=\frac{x}{1-0.25}=\frac{4x}{3}$ Z's goods price $=\frac{x}{1+0.25}=\frac{4}{5}x$ **Gradeup Green Card** | Unlin to 30 Mod

Unlimited Access to 300+ Defence Mock Tests

11

Percentage cheaper of Z's goods than Y's good

 $= \frac{(4x/3) - (4x/5)}{4x/3} \times 100\% = 40\%$

35. Ans. B.

let the cost price is CP and selling price is SP.

 $100 \times CP = 80 \times SP$ $\frac{SP}{CP} = \frac{80}{100} = \frac{4}{5}$ $\frac{SP - CP}{SP} = \frac{1}{5}$

%age profit = $\frac{SP - CP}{SP} \times 100\% = \frac{1}{5} \times 100\% = 20\%$

36. Ans. A.

let the speed of the man is v and time take by him is t.

Then , distance

$$\Rightarrow vt = \frac{4v}{5}(t+12)$$
$$\Rightarrow 5t = 4t + 48$$
$$\Rightarrow t = 48 \text{ minutes}$$

37. Ans. C.

Average speed, $v_{av} = \frac{\text{total distance}}{\text{total time}} = \frac{600 + 900}{5 + 10} = \frac{1500}{15} = 100 \, kmph$

38. Ans. D.

Gradeup

Green Card

let the principal amount is Rs. P and the rate of interest is 12% for 2 years. Then,

12 Unlimited Access to 300+ Defence Mock Tests

$$CI - SI = 72$$

$$P\left[\left(1 + \frac{12}{100}\right)^2 - 1\right] - \frac{P \times 12 \times 2}{100} = 72$$

$$P\left(\frac{212}{100}\right) \left(\frac{12}{100}\right) - \frac{24P}{100} = 72$$

$$P\left(\frac{144}{10000}\right) = 72$$

$$P = 5,000$$

39. Ans. A.

let the sum of amount is Rs. P and rate of simple interest is r% and invested it for 5 years, then

$$SI = \frac{P \times r \times 5}{100} = \frac{P \times r}{20}$$

According to the question if the rate of interest was 5% more then, new S.I.

$$\frac{P \times (r+5) \times 5}{100} = \frac{P \times r}{20} + 500$$
$$\frac{P}{4} = 500$$
$$P = 2000$$

40. Ans. B.

if successive discounts are 20%, 10% and 5% then,

overall discounts $= [1-(1-0.2)(1-0.1)(1-0.05)] \times 100\% = 31.6\%$

41. Ans. A.

we know that for real solution $b^2 \ge 4ac$

```
4y^{2}\sin^{4}\theta \ge 4y^{2}\sin^{4}\theta \ge 1\sin\theta \ge 1
```

But, $\sin \theta = 1$

$$\mathsf{So}, \ x^2 + y^2 - 2xy\sin^2\theta = 0$$

Gradeup Green Card ¹³ Unlimited Access to 300+ Defence Mock Tests

$$x^{2} + y^{2} - 2xy = 0$$
$$(x - y)^{2} = 0$$
$$x = y$$

42. Ans. B.

let $p = 2 - 2\sin x - \sin^2 x$, $0 \le \theta \le \frac{\pi}{2}$ $p = 2 - \left(1 + 2\sin x + \sin^2 x\right) + 1$ $p = 3 - \left(1 + \sin x\right)^2$ $p|_{\max} = 3 - (1+0)^2 = 2$ $[\sin x|_{\min} = 0]$ $p|_{\min} = 3 - (1+1)^2 = -1$ $\left[\sin x\right]_{\max} = 1$

So, the required ratio will be -2.

43. Ans. A.

we have
$$p = \sin^2 \theta + \cos^4 \theta$$
 for $0 \le \theta \le \frac{\pi}{2}$
 $p = \sin^2 \theta + \cos^4 \theta$
 $= \sin^2 \theta + (1 - \sin^2 \theta)^2$
 $= 1 + \sin^2 \theta - 2\sin^2 \theta + \sin^4 \theta$
 $= 1 - \sin^2 \theta + \sin^4 \theta$
 $= \cos^2 \theta + \sin^4 \theta$
 $2p = 1 + \sin^4 \theta + \cos^4 \theta$
 $= 1 + (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin \theta \cos \theta$
 $= 1 + 1 - \sin 2\theta$
 $p = 1 - \frac{1}{2}\sin 2\theta$

 $0 \le \theta \le \frac{\pi}{2}$ As we know that in

Gradeup

 $0 \leq \sin 2\theta \leq 1$

$$p|_{\max} = 1 - \frac{1}{2}(0) = 1$$
 and $p|_{\min} = 1 - \frac{1}{2}(1) = \frac{1}{2}$

Unlimited Access to 300+ Defence **Green Card** Mock Tests

14

1

We can see that p can never be more that 1 and less than $\overline{2}$.

44. Ans. B.

 $0 \le \theta \le \frac{\pi}{2} \implies 0 \le 2\theta \le \pi$ given that

 $0 \le 2\theta \le \frac{\pi}{2} \text{ or } \frac{\pi}{2} \le 2\theta \le \pi$ We can write it as

Taking sine

$$\sin 0 \le \sin 2\theta \le \sin \frac{\pi}{2}$$
$$0 \le 2\sin \theta \cos \theta \le 1$$
$$0 \le \sin \theta \cos \theta \le \frac{1}{2}$$

45. Ans. C.

we have $3\sin^2\theta + 4\cos^2\theta = 3(\sin^2\theta + \cos^2\theta) + \cos^2\theta = 3 + \cos^2\theta$

$$(3\sin^2\theta + 4\cos^2\theta)_{\min} = 3 + \cos^2\theta|_{\min} = 3$$

46. Ans. A.

we have $5^{x-3} = 8 = 2^3$

Taking log both side at base 10

$$\log_{10} 5^{x-3} = \log_{10} 2^{3}$$

$$(x-3)\log_{10} 5 = 3\log_{10} 2$$

$$(x-3)\log_{10} (10/2) = 3\log_{10} 2$$

$$(x-3)(1-\log_{10} 2) = 3\log_{10} 2$$

$$x-3 = \frac{3\log_{10} 2}{1-\log_{10} 2}$$

$$x = \frac{3\log_{10} 2}{1-\log_{10} 2} + 3$$

$$x = \frac{3}{1-\log_{10} 2}$$

Gradeup

15 **Unlimited Access** to 300+ Defence Green Card Mock Tests

47. Ans. D.

let n = 1 then $5^{2n} - 1 = 5^2 - 1 = 24$

n = 2 then
$$5^4 - 1 = (5^2 - 1)(5^2 + 1) = 24(5^2 - 1)$$

n = 3 then
$$5^6 - 1 = (5^2 - 1)(5^4 + 5^2 + 1) = 24(5^4 + 5^2 + 1)$$

we can observe that we get always factor of 24 and factors of 24 are 1,2,3,4,6,8,12,24.

So, number of natural numbers that divides $5^{2n} - 1$ are 8.

48. Ans. C.

let the let two alternate natural numbers are a and a+2, then according to the question,

$$\frac{1}{a} + \frac{1}{a+2} = \frac{7}{24}$$

$$\frac{2a+2}{a(a+2)} = \frac{7}{24}$$

$$7a^2 - 34a - 48 = 0$$

$$(a-6)(7a+8) = 0$$

$$a = 6, \ a \neq \frac{-8}{7}$$

So, the numbers are 6 and 8. And their sum is 14.

49. Ans. A.

$$15 - 4\sqrt{14} = 15 - 2 \times 2 \times \sqrt{7} \times \sqrt{2}$$

= 8 - 2 \times 2\sqrt{2} \times \sqrt{7} + 7
= (2\sqrt{2})^2 - 2(2\sqrt{2})(\sqrt{7}) + (\sqrt{7})^2
= (2\sqrt{2} + \sqrt{7})^2 or (\sqrt{7} + 2\sqrt{2})^2

Or let $\sqrt{a} - \sqrt{b}$ is the square root of $15 - 4\sqrt{14}$

$$15 - 4\sqrt{14} = \left(\sqrt{a} - \sqrt{b}\right)^2$$
$$15 - 2\sqrt{56} = a + b - 2\sqrt{ab}$$

Gradeup Green Card ¹⁶ Unlimited Access to 300+ Defence Mock Tests

By comparing we get a+b=15 and ab=56

By observation we get (a,b)=8,7 or (a,b)=7,8

So, square root of $15-4\sqrt{14}$ is $2\sqrt{2}-\sqrt{7}$ or $\sqrt{7}-2\sqrt{2}$.

50. Ans. A.

we can write
$$31.25 = \frac{3125}{100} = \frac{125}{4} = \frac{1000}{32}$$

$$\log_{10} 31.25 = \log_{10} \left(\frac{1000}{32} \right) = \log_{10} 10^3 - \log_{10} 2^5 = 3 - 5\log_{10} 2$$

51. Ans. A.

let the side of the cube is s and radius of the cube is r. Then

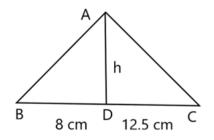
$$6s^2 = 4\pi r^2$$
$$\frac{s^2}{r^2} = \frac{2\pi}{3}$$

If is the volume of the cube and " is the volume of the sphere.

$$\frac{x}{y} = \frac{s^3}{4\pi r^3 / 3} = \frac{3s^3}{4\pi r^3}$$
$$\frac{x^2}{y^2} = \frac{9}{16\pi^2} \times \left(\frac{s^2}{r^2}\right)^3$$
$$= \frac{9}{16\pi^2} \times \left(\frac{2\pi}{3}\right)^3$$
$$= \frac{\pi}{6}$$

52. Ans. D.

ABC is a triangle right angled at A, then $BC = \sqrt{AB^2 + AC^2}$


area of the triangle ABC,

Gradeup

Green Card

¹⁷ Unlimited Access to 300+ Defence Mock Tests

$$\frac{1}{2}AD \times BC = \frac{1}{2}AB \times AC$$

$$h(20.5) = \left(\sqrt{h^2 + 64}\right) \left(\sqrt{156.25 + h^2}\right)$$

$$420.25h^2 = \left(h^2 + 64\right) \left(156.25 + h^2\right)$$

$$420.25h^2 = h^4 + 220.25h^2 + 10000$$

$$h^4 - 200h^2 + 10000 = 0$$

$$\left(h^2 - 100\right)^2 = 0$$

$$h^2 = 100$$

$$h = 10 \ cm$$

53. Ans. C.

Two isosceles triangles have equal vertical angles and let their heights

and bases are h_1, h_2 and b_1, b_2 , then $\frac{h_1}{h_2} = \frac{l_1}{l_2}$. Now,

$$\frac{A_1}{A_2} = \frac{\frac{1}{2}l_1h_1}{\frac{1}{2}l_2h_2} = \frac{4.84}{5.29}$$
$$\frac{h_1^2}{h_2^2} = \frac{2.2^2}{2.3^2}$$
$$\frac{h_1}{h_2} = \frac{22}{23}$$

54. Ans. B.

is similar to T. Then

 $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD} \text{ then}$ $\frac{BC+CA}{EF+FD} = \frac{AB+BC+CA}{DE+EF+FD} = \frac{40}{30} = \frac{4}{3}$ GradeupGreen Card

¹⁸ Unlimited Access to 300+ Defence Mock Tests

55. Ans. B.

If The diagonal AC and BD intersect at P. then

$$\frac{AP}{PC} = \frac{BP}{PD}$$

$$\frac{4}{4(x-1)} = \frac{2x-1}{2x+4}$$

$$2x+4 = 2x^2 - 3x + 1$$

$$2x^2 - 5x - 3 = 0$$

$$(2x+1)(x-3) = 0$$

$$x = 3, x \neq \frac{-1}{2}$$

56. Ans. B.

perimeter of a semicircular park with radius r,

 $\pi r + 2r = 360$ r = 70 m

Area of semicircle $A = \frac{1}{2}\pi r^2 = 7700 m^2$

57. Ans. D.

perimeter of the rhombus = circumference of circle

$$4a = 2\pi(70)$$
 [= side of rhombus]
 $a = 110 \, cm$

u = 110*cm*

58. Ans. A.

angle obtained by sector on the centre of the circle

 $\theta = \frac{\text{length of the arc}}{\text{radius}} rad = \frac{55}{21} rad$

Gradeup

Green Card

Sector,
$$A = \pi r^2 \times \frac{\theta}{2\pi} = (21)^2 \times \frac{1}{2} \times \frac{55}{21} = 577.5 \, cm^2$$

Area of the sector,

59. Ans. B.

19 Unlimited Access to 300+ Defence Mock Tests

the height of the water in the vessel raised due the volume of the sphere.

$$\frac{4}{3}\pi(3)^3 = \pi(6)^2 h$$
$$h = 1 cm$$

60. Ans. C.

surface area of the cloth and the tent remains same/

$$bh = \pi rl$$
$$3h = \frac{22}{7} \times 6 \times 7$$
$$h = 44 m$$

61. Ans. C.

let the angle B and angle D are 60° and 45° as shown in the figure. Then,

$$\tan 45^\circ = \frac{OA}{OD} \Longrightarrow OA = OD$$
$$\tan 60^\circ = \frac{OA}{OB} \Longrightarrow OA = \sqrt{3}OB$$

$$OC = \sqrt{OB^2 + OD^2} = \sqrt{\frac{OA^2}{3} + OA^2} = \frac{2}{\sqrt{3}}OA$$

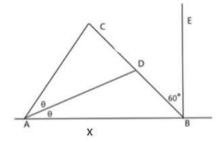
And

 $\cot \theta = \frac{OC}{OA} = \frac{2}{\sqrt{3}}$ Now,

62. Ans. B.

let the pole is BC which makes an angle of 60° with the vertical, then $\angle CBA = 30^{\circ}$

And CD = BD


Gradeup

Green Card

Unlimited Access to 300+ Defence Mock Tests

20

AB = x meter and AD is common in both triangles

Then both the triangles are congruence then

It means, $\angle ADB = \angle ADC$

Now as we now AD cut the CB then

 $\angle ADB + \angle ADC = 180^{\circ}$ $2 \angle ADB = 180^{\circ}$ $\angle ADB = 90^{\circ} = \angle ADC$

Now Triangle ADB is right angle triangle

Then

 $AB\cos 30^\circ = BD$

$$\frac{\sqrt{3}}{2}x = BD = CD$$

Now length of pole = $BD + DC = \sqrt{3}x$

63. Ans. D.

given that $6 + 8 \tan \theta = \sec \theta$ and $8 - 6 \tan \theta = k \sec \theta$

Add both after squaring,

Gradeup

Green Card

 $(36+96\tan\theta+64\tan^2\theta)+(64-96\tan\theta+36\tan^2\theta)=(1+k^2)\sec^2\theta$ $100(1+\tan^2\theta)=(1+k^2)\sec^2\theta$ $100=1+k^2$ $k^2=99$

64. Ans. C.

²¹ Unlimited Access to 300+ Defence Mock Tests

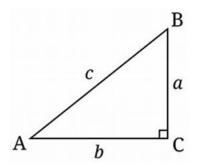
$$(1 + \cot \theta - \csc \theta)(1 + \tan \theta + \sec \theta)$$
$$= \frac{\sin \theta + \cos \theta - 1}{\sin \theta} \times \frac{\cos \theta + \sin \theta + 1}{\cos \theta}$$
$$= \frac{(\sin \theta + \cos \theta)^2 - 1}{\sin \theta \cos \theta}$$
$$= \frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta}$$
$$= 2$$

65. Ans. C.

given $\sec\theta + \cos\theta = \frac{5}{2}$, where $0 \le \theta \le 90^\circ$

 $\frac{1+\cos^2\theta}{\cos\theta} = \frac{5}{2}$ $2\cos^2\theta - 5\cos\theta + 2 = 0$ $(2\cos\theta - 1)(\cos\theta - 2) = 0$ $\cos\theta = \frac{1}{2}, \cos\theta \neq 2$

$$\sin^2 \theta = 1 - \cos^2 \theta = 1 - \frac{1}{4} = \frac{3}{4}$$


66. Ans. A.

let $\alpha = \beta = 0^{\circ}$ that satisfy both the equation $\cos \theta + \cos \beta = 2$ and $\sin \theta + \sin \beta = 0$.

Then $\cos 2\alpha - \cos 2\beta = 1 - 1 = 0$

67. Ans. D.

given ABC be a triangle right angled at C, then $\angle C = 90^{\circ}$

Gradeup Green Card 22 Unlimited Access to 300+ Defence Mock Tests

$$\tan A + \tan B$$

= $\tan A + \tan (90^{\circ} - A)$
= $\tan A + \cot A$
= $\frac{a}{b} + \frac{b}{a}$
= $\frac{a^2 + b^2}{ab}$
= $\frac{c^2}{ab}$

68. Ans. D.

given that, $\csc \theta - \cot \theta = m$...(i) $\csc^2 \theta - \cot^2 \theta = 1$ $(\csc \theta + \cot \theta)(\csc \theta - \cot \theta) = 1$ $\csc \theta + \cot \theta = \frac{1}{m}$...(*ii*)

From equation (i) and (ii)

 $\csc\theta = \frac{1}{2}\left(m + \frac{1}{m}\right)$

69. Ans. A.

 $p = \sec \theta - \tan \theta = \frac{1 - \sin \theta}{\cos \theta}$ and $q = \csc \theta + \cot \theta = \frac{1 + \cos \theta}{\sin \theta}$

$$p+q(p-1) = (p-q)+pq$$

$$= \left(\frac{1-\sin\theta}{\cos\theta} - \frac{1+\cos\theta}{\sin\theta}\right) + \left(\frac{1-\sin\theta}{\cos\theta} \times \frac{1+\cos\theta}{\sin\theta}\right)$$

$$= \frac{\sin\theta - \sin^2\theta - \cos\theta - \cos^2\theta}{\sin\theta\cos\theta} + \frac{1-\sin\theta + \cos\theta - \sin\theta\cos\theta}{\sin\theta\cos\theta}$$

$$= \frac{\sin\theta - \cos\theta - 1}{\sin\theta\cos\theta} + \frac{1-\sin\theta + \cos\theta - \sin\theta\cos\theta}{\sin\theta\cos\theta}$$

$$= \frac{-\sin\theta\cos\theta}{\sin\theta\cos\theta}$$

$$= -1$$

70. Ans. A.

Gradeup

Green Card

23 Unlimited Access to 300+ Defence Mock Tests

 $\cos 57^{\circ} = \cos (90 - 33)^{\circ} = \sin 33^{\circ} > \sin 1^{\circ}$

So, statement I is true.

 $\cos 60^{\circ} = \cos (90^{\circ} - 30^{\circ}) = \sin 30^{\circ} < \sin 57^{\circ}$

So, statement is not correct.

71. Ans. A.

If the internal and external radii are 5 cm and 6 cm respectively, then volume of the sphere

$$V = \frac{4}{3}\pi \left(6^3 - 5^3\right) = \frac{1144}{3}cm^3$$

Mass of the sphere, $M = V \times d = \frac{1144}{3} \times 3 = 1144 \text{ cm}^3$

72. Ans. C.

the volume of the largest cylinder when it is rolled along its width, so

$$2\pi r = 22 \Longrightarrow r = 3.5$$

$$x = \pi (3.5)^2 (44)$$

And the volume of the largest cylinder when it is rolled along its height, so

$$2\pi r = 44 \Longrightarrow r = 7$$

 $y = \pi(7)^2(22)$

Required ratio,
$$\frac{x}{y} = \frac{\pi (3.5)^2 (44)}{\pi (7)^2 (22)} = \frac{1}{2}$$

73. Ans. C.

curved surface area = 550 cm^2

Gradeup

Green Card

24 Unlimited Access to 300+ Defence Mock Tests

$$\pi rl = 550$$

 $\frac{22}{7} \times rl = 550$
 $rl = 175$...(i)

height of cone = 24 cm

 $\sqrt{l^2 - r^2} = 24$ $l^2 - r^2 = 576$...(*ii*)

Divide equation (ii) by equation (i)

$\frac{l^2 - r^2}{lr} = \frac{576}{175}$	
$\frac{l}{r} - \frac{r}{l} = \frac{576}{175}$	
$\frac{1}{x} - x = \frac{567}{175}$	$\left[\frac{r}{l} = x\right]$
$175x^2 + 576x - 175x = 0$	
(25x-7)(7x+25) = 0	
$r_{-x} = 7$	

$$\frac{r}{l} = x = \frac{7}{25}$$

74. Ans. C.

let the radius of the cone is r. since the volume remains equal.

$$\frac{1}{3}\pi \times r^2 \times 21 = 22^3$$
$$r = 22 \, cm$$

75. Ans. B.

volume of both the vessel should be equal

$$\frac{1}{3}\pi(5)^{2}(24) = \pi(10)^{2}h$$

h = 2 cm

Gradeup

Green Card

76. Ans. C.

25 Unlimited Access to 300+ Defence Mock Tests

let the edge of third cube is h, and the volume of the cube remains constant

$$24^{3} = 12^{3} + 16^{3} + h^{3}$$
$$h^{3} = 24^{3} - 12^{3} - 16^{3}$$
$$= 4^{3} (6^{3} - 3^{3} - 4^{3})$$
$$= 4^{3} (125)$$
$$h = 4 \times 5 = 20 \, cm$$

Now, the surface area of the third cube $=6h^2 = 6 \times 400 = 2400 \, cm^2$

77. Ans. D.

. If R is the outer radius and r is the inner radius of the pipe and length is 14 cm. then

Difference between outside and inside surface area = $2\pi (R-r)h$

$$44 = 2 \times \frac{22}{7} \times (R - r) \times 14$$
$$R - r = 0.5$$

Volume of the pipe $=\pi (R^2 - r^2)h$

$$99 = \frac{22}{7} \times (R+r) \times (R-r) \times 14$$
$$9 = 4 \times (R+r) \times 0.5$$
$$R+r = \frac{9}{2} = 4.5 \, cm$$

78. Ans. C.

let the radius of base and height of the cylinder is 2x and 3x respectively.

And the volume of the cylinder

Gradeup

Green Card

²⁶ Unlimited Access to 300+ Defence Mock Tests

$$V = \pi r^2 h$$

$$1617 = \frac{22}{7} \times (4x^2) \times (3x)$$

$$x^3 = \frac{49 \times 7}{8} = \frac{7^3}{2^3}$$

$$x = \frac{7}{2}$$

$$= 2\pi rh = 2 \times \frac{22}{7} \times 2x \times 3x = \frac{3 \times 8 \times 11}{7} \times \frac{49}{4} = 462 \, cm^2$$

Curved surface area of the con

79. Ans. A.

let the radius of the wire is r. since volume remains equal.

sphere of radius = 30 mm = 3 cm

$$\frac{4}{3}\pi(3)^{3} = \pi r^{2}(144)$$
$$r^{2} = \frac{36}{144} = \frac{1}{4}$$
$$r = \frac{1}{2} = 0.5 \, cm$$

80. Ans. B.

let the height and radius of cone are h and r. Since bases of cone and hemisphere are equal then radius of hemisphere is r.

And given that the volumes are equal, then

$$\frac{1}{3}\pi r^2 h = \frac{2}{3}\pi r^3$$
$$h = 2r$$
$$\frac{h}{r} = 2$$

81. Ans. B.

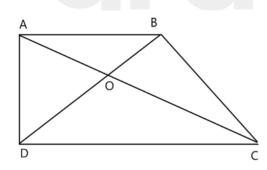
Gradeup

Green Card

let the circle touches the side of quadrilateral AB, BC, CD and DA at P, Q, R and S.

27 Unlimited Access to 300+ Defence Mock Tests

AB = AP + PB = 9BC = BQ + QC = 8CD = CR + RD = 12DA = DS + SA = ?


we know that the tangents from a point to the circle are equal. So,

AP = ASBP = BQCQ = CRDR = DS

Now,

DA = DS + SA= DR + AP = (12 - CR) + (9 - PB) = 21 - (CQ + BQ) = 21 - 8 = 13

82. Ans. D.

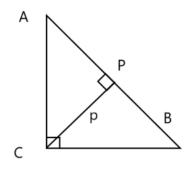
given that ABCD is a trapezium in which AB is parallel to DC.

 $\angle AOB = \angle DOC$ (vert. opposite angles)

 $\angle ABO = \angle BDC$ (alternate angles)

So, $\Delta AOB \cong \Delta COD$ (AAA)

Now, $\frac{\Delta AOB}{\Delta COD} = \frac{AB^2}{CD^2} = \left(\frac{3}{2}\right)^2 = \frac{9}{4}$


Gradeup

Green Card

²⁸ Unlimited Access to 300+ Defence Mock Tests

83. Ans. C.

If BC = 6 cm and CA = 8 cm, then

$$AB = \sqrt{6^2 + 8^2} = 10 \, cm$$

Area of the triangle ABC

$$\frac{1}{2}CA \times CB = \frac{1}{2}AB \times PC$$
$$8 \times 6 = 10 \times p$$
$$p = 4.8 \ cm$$

84. Ans. C.

let the base and height of the right-angled triangle is b and h.

$$b^2 + h^2 = 13^2$$
 ...(i)

Perimeter $\Rightarrow b + h + 13 = 30 \Rightarrow b + h = 17$...(ii)

$$(b+h)^{2} = 17^{2}$$
$$b^{2} + h^{2} + 2bh = 289$$
$$2bh = 120$$
$$bh = 60$$

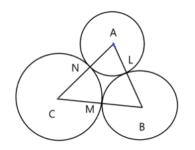
Or b = 5, h = 12

Now, the area of the triangle
$$A = \frac{1}{2}bh = 30 \, cm^2$$

85. Ans. C.

we know that $PT^2 = PA \times PB$

Gradeup Green Card Unlimited Access to 300+ Defence Mock Tests


29

 $12^2 = 9 \times PB$ $PB = 16 \, cm$

 $AB = PB - PA = 16 - 9 = 7 \, cm$

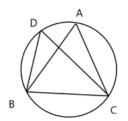
86. Ans. C.

let the sides AB, AC and BC of a triangle ABC are 4 cm, 6 cm and 8 cm. let the touching pointing of the circles are L, M and N such that AN = AL, BL = BM and CN = CM.

Let AN = a cm then CN = CM = 6 - a cm

Then BM = BL = 8 - (6 - a) = 2 + a

And AL = AN = 4 - (2 + a) = 2 - a


But AN = a then

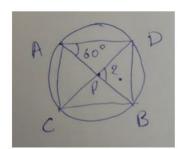
a = 2 – a

a = 1 cm

sum of the radii of the circle = AN + BM + CL = 1 + 5 + 3 = 9 cm

87. Ans. C.

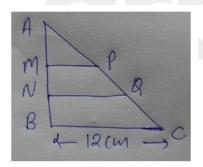
Gradeup


Green Card

ABC is a equilateral triangle then each angle will be 60° . We know that angle made by same chord on the circumference of circle is equal. So $\angle BDC = 60^{\circ}$.

> ³⁰ Unlimited Access to 300+ Defence Mock Tests

88. Ans. D.


we know that the intersecting points of diameter of circle intersects at center of circle.

We know that angle made by a chord on centre is two times to the angle made on it circumference.

So, $\angle BPD = 120^{\circ}$

89. Ans. C.

given that AM = MN = NB and $MP \parallel NQ \parallel BC$

 $\frac{AB}{BC} = \frac{AN}{NQ} = \frac{AM}{MP}$ $\frac{3AM}{12} = \frac{2AM}{NQ} = \frac{AM}{MP}$ $\frac{1}{4} = \frac{2}{NQ} = \frac{1}{MP}$ MP = 4, NQ = 8(MP + NQ) = 4 + 8 = 12cm

Gradeup

Green Card

90. Ans. C.

The sides of a right-angled triangle are in the ratio x:(x-1):(x-18)

31 Unlimited Access

Mock Tests

to 300+ Defence

 $x^{2} = (x-1)^{2} + (x-18)^{2}$ $x^{2} = 2x^{2} - 38x + 325$ $x^{2} - 38x + 325 = 0$ (x-13)(x-25) = 0x = 13, 25

 $x \neq 13$ as x - 13 < 0

So, the ratio of sides 25:24:7

So, perimeter 25+24+7=56 units.

91. Ans. A.

Year	I		IV	III+IV
2000	160	70	90	160
2001	200	85	160	245
2002	135	44	95	139
2003	240	120	80	200
2004	180	85	95	180
2005	210	100	92	192

In year 2001.

92. Ans. C.

percentage drop in total production in 2004 compared to 2001 = $\frac{695-585}{100\%} \times 100\% = \frac{110}{100\%} \times 100\%$

$$= \frac{100\%}{595} \times 100\% = \frac{100\%}{595} \times 100\%$$

percentage drop in total production in 2000 compared to 2001 = $\frac{695-475}{595} \times 100\% = \frac{220}{595} \times 100\%$

required ratio $=\frac{110}{220}=\frac{1}{2}$

93. Ans. A.

total number of tablets produced each year

2000: 160+80+70+90+75 = 475

2001: 200+150+85+160+100 = 695

2002: 135+35+44+95+85 = 394

Gradeup

Green Card

Unlimited Access to 300+ Defence Mock Tests

2003: 240+95+120+80+120 = 655

2004: 180+110+85+95+115 = 5852005: 210+150+100+92+110 = 662(2003, 2005): |655 - 662| = 7(2001, 2005): |695 - 662| = 33(2003, 2004): |655 - 585| = 70(2000, 2002): |475 - 394| = 81(2003, 2005) is minimum 94. Ans. B. total production of each tablet over years 2000-2005. Type I: 160 + 200 + 135 + 240 + 180 + 210 = 1125Type II: 80+150+35+95+110+150 = 620Type III: 70+85+44+120+85+100 = 504Type IV: 90+160+95+80+95+92 = 612Type V: 75+100+85+120+115+110 = 605So the least is type III 95. Ans. C. given that the average $\bar{a_m} = p$, $\bar{a_n} = q$, where $p \le q$ and $\overline{a_{m+n}} = c$ Sum of m observation = mp and sum of the n observation = nq and So, sum of $\binom{m+n}{m+n}$ observation $=\frac{mp+nq}{m+n}=c$ $p + \frac{n(q-p)}{m+n} = c \quad or \quad q - \frac{m(q-p)}{m+n} = c$ $p + k_1 = c \qquad \qquad q - k_2 = c$ $p \le c$ $q \ge c$ $p \le c \le q$ 33 Unlimited Access Gradeup to 300+ Defence

Mock Tests

Green Card

Where
$$q \ge p \Longrightarrow q - p \ge 0 \Longrightarrow k_1, k_2 \in I$$

96. Ans. B.

$$=\frac{21+27+19+26+32}{5}=\frac{125}{5}=25$$

average marks of the students

After adding 5 grace marks to each student.

The revised average marks = 25 + 5 = 30

97. Ans. D.

first ten composite numbers are 4,6,8,9,10,12,14,15,16,18

 $\mathsf{Mean} = \frac{4+6+8+9+10+12+14+15+16+18}{10} = \frac{112}{10} = 11.2$

98. Ans. B.

arranging the number in the ascending order

-1, 2, 2, 3, 6, 8, 9

$$= \left(\frac{n+1}{2}\right) th term = \frac{7+1}{2} th term = 4th term = 3$$

99. Ans. D.

total number of students are 90.

Number of students who scored less than or equals to 50% marks = 5+8+10+13+18 = 54

% age of such students
$$=\frac{54}{90} \times 100\% = 60\%$$

100. Ans. C.

	Year	Year	Change in 2016	%age change
	2015	2016	over 2015	
Country A	35	38	3	8.57%
Country B	45	47	2	4.44%
Country C	88	93	5	5.68%
Country D	75	79	2	5.33 %
Country E	58	60.9	2.9	5%

Gradeup

Green Card

34

Unlimited Access to 300+ Defence Mock Tests

Only A, C, D and E

gradeup

Gradeup Green Card

³⁵ Unlimited Access to 300+ Defence Mock Tests