CDS I 2021 PYSP Mathematics: Solution

1. Ans. B.
$\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots+\frac{1}{n(n+1)}=\frac{99}{100}$
$\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{n}-\frac{1}{n+1}\right)=\frac{99}{100}$
$1-\frac{1}{n+1}=\frac{99}{100}$
$\frac{n}{n+1}=\frac{99}{100}$
$n=99$
2. Ans. B.
speed of the train $=\frac{200+100}{10}=30 \mathrm{~m} / \mathrm{s}$

3. Ans. A.

let their incomes are $7 \mathrm{~m}, 9 \mathrm{~m}$ and 10 m and their expenditures are $8 \mathrm{n}, 9 \mathrm{n}$ and $15 n$. then their savings are $(7 m-8 n),(9 m-9 n)$ and ${ }^{(10 m-15 n)}$. Now, given that
$7 m-8 n=\frac{1}{4}(7 m) \Rightarrow 21 m=32 n$
Now ratio their savings are $\Rightarrow(7 m-8 n):(9 m-9 n):(10 m-15 n)$
$\Rightarrow 7\left(\frac{32}{21}\right) n-8 n: 9\left(\frac{32}{21}\right) n-9 n:: 12\left(\frac{32}{21}\right) n-15 n$
$\Rightarrow \frac{56}{21}: \frac{99}{21}: \frac{69}{21}$
$\Rightarrow 56: 99: 69$
4. Ans. C.
the ratio of boys and girls in the class is ${ }^{2 \cdot 1}$, let the number of boys and girls in the class are 3 k and k . Given that the average score of the class is p and average score of the boys is $(p+1)$, let the average score of the girls is ${ }^{*}$, then total score of the class
$\Rightarrow(4 k) \times p=3 k(p+1)+k(x)$
$\Rightarrow x=p-3$
5. Ans. D.
change after adding 3 to both the numerator and denominator of all the fractions
$\frac{5}{6}-\frac{2}{3}=\frac{3}{6}$
$\frac{6}{7}-\frac{3}{4}=\frac{3}{28}$
$\frac{7}{8}-\frac{4}{5}=\frac{3}{40}$
$\frac{8}{9}-\frac{5}{6}=\frac{3}{54}$
We can see the minimum change is with fraction $\frac{5}{6}$.
6. Ans. C.
let $f(x)=4 x^{3}+12 x^{2}-x-3$
Now $f\left(-\frac{1}{2}\right)=4 \times \frac{(-1)}{8}+12 \times \frac{1}{4}-\frac{(-1)}{2}-3=0$
Hence $\begin{aligned} x=-\frac{1}{2} \text { or } 2 x+1=0 & \text { is a factor of } f(x)\end{aligned}$

And

$$
f\left(\frac{1}{2}\right)=4 \times \frac{1}{8}+12 \times \frac{1}{4}-\frac{1}{2}-3=0
$$

Hence $x=\frac{1}{2}$ or $2 x-1=0$ is a factor of $f(x)$
7. Ans. B.
given that the sum of the roots and the product of roots are 6.

$$
-\frac{(-6)}{p}=\frac{q}{p}=6 \Rightarrow q=6 \text { and } p=1
$$

So, $(p+q)=6+1=7$
8. Ans. C.
if a quadratic equation $a x^{2}+b x+c=0$ has equal roots,
the discriminant, $D=0 \Rightarrow h^{2}=4 a c$
$(2 k)^{2}=4 \times 4 \times 3 k$
$k(k-12)=0$
$k=0,12$
9. Ans. B.
given that $x+\frac{1}{x}=\frac{5}{2}$

$$
\begin{aligned}
x^{2}+\frac{1}{x^{2}} & =\left(x+\frac{1}{x}\right)^{2}-2=\frac{25}{4}-2=\frac{17}{4} \\
x-\frac{1}{x} & =\sqrt{\left(x+\frac{1}{x}\right)^{2}-4}=\sqrt{\left(\frac{5}{2}\right)^{2}-4}=\frac{3}{2} \\
x^{4}-\frac{1}{x^{4}} & =\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}\right) \\
& =\frac{5}{2} \times \frac{3}{2} \times \frac{17}{4}=\frac{255}{16}
\end{aligned}
$$

10. Ans. C.
for a quadratic equation $a x^{2}+b x+c=0$ to be perfect square, the discriminant, $D=0 \Rightarrow b^{2}=4 a c$

$$
\begin{aligned}
& (12 k-24)^{2}=4(6 k)(16) \\
& 12 \times 12\left(k^{2}-4 k+4\right)=4 \times 6 \times 16 k \\
& 3 k^{2}-12 k+12=8 k \\
& 3 k^{2}-20 k+12=0 \\
& (k-6)(3 k-2)=0 \\
& k=6, \frac{2}{3}
\end{aligned}
$$

11. Ans. C.

$$
\begin{aligned}
a & =\frac{b+\sqrt{b^{2}-2 b x}}{b-\sqrt{b^{2}-2 b x}} \\
\frac{a+1}{a-1} & =\frac{b}{\sqrt{b^{2}-2 b x}} \\
\frac{a^{2}+2 a+1}{a^{2}-2 a+1} & =\frac{b^{2}}{b^{2}-2 b x} \\
\frac{a^{2}-2 a+1}{a^{2}+2 a+1} & =\frac{b-2 x}{b}=1-\frac{2 x}{b} \\
x & =\frac{b}{2}\left(1-\frac{a^{2}-2 a+1}{a^{2}+2 a+1}\right) \\
& =\frac{b}{2}\left(\frac{4 a}{a^{2}+2 a+1}\right) \\
& =\frac{2 a b}{(a+1)^{2}}
\end{aligned}
$$

12. Ans. A.
we know that the unit digits of $7^{4 k+1} \equiv 7,7^{4 k+2} \equiv 9,7^{4 k+3} \equiv 3,7^{4 k+4} \equiv 1$
$67^{32} \equiv 7^{32} \equiv 7^{4 \times 7+4} \equiv 1$
13. Ans. B.
$p=\frac{\sqrt{3 q+2}+\sqrt{3 q-2}}{\sqrt{3 q+2}-\sqrt{3 q-2}}$
$\frac{p+1}{p-1}=\frac{\sqrt{3 q+2}}{\sqrt{3 q-2}}$
[by componendo-divindo]
$\frac{p^{2}+2 p+1}{p^{2}-2 p+1}=\frac{3 q+2}{3 q-2}$
[by squaring both sides]
$\frac{2\left(p^{2}+1\right)}{4 p}=\frac{6 q}{4}$
[by componendo-divindo]
$p^{2}+1=3 p q$
$p^{2}-3 p q+1=0$
$p^{2}-3 p q+2=1$
14. Ans. D.
we have $a+b+c=0$
Squaring both sides

$$
\begin{align*}
& a^{2}+b^{2}+c^{2}+2(a b+b c+c a)=0 \\
& a^{2}+b^{2}+c^{2}=-2(a b+b c+c a) \tag{ii}\\
& a+b+c=0 \Rightarrow a+b=-c
\end{align*}
$$

Cubing both sides

$$
\begin{align*}
& (a+b)^{3}=(-c)^{3} \\
& a^{3}+b^{3}+3 a b(a+b)=-c^{3} \\
& a^{3}+b^{3}+c^{3}=-3 a b(a+b) \tag{ii}\\
& a^{3}+b^{3}+c=-3 a b(-c) \\
& a^{3}+b^{3}+c=3 a b c \tag{iii}
\end{align*}
$$

15. Ans. A.

$$
\begin{aligned}
27^{27}-15^{27} & =(24+3)^{27}-(12+3)^{27} \\
& =\left(24 k_{1}+3^{27}\right)-\left(12 k_{2}+3^{27}\right) \\
& =12\left(2 k_{1}-k_{2}\right)
\end{aligned}
$$

Here, we can see that it is always divisible by 6.
16. Ans. D.
since all the numbers are different then total number of terms
$==3 \times 4 \times 5=60$

17. Ans. B.

prime numbers between 50 to 100 are $53,59,61,67,71,73,79,83,89$ and 97.
$59-53=67-61=79-73=6$
Such number of pairs are 3.
18. Ans. A.
here
$\frac{x}{y}+\frac{y}{x}=2$
$x^{2}+y^{2}-2 x y=0$
$(x-y)^{2}=0$
$x=y$
Since $x \neq y$ then, there are no such pairs.
19. Ans. B.
we have to find remainder of $\frac{2^{1000000}}{7}$

We know $R\left[\frac{2^{3}}{7}\right]=R\left[\frac{8}{7}\right]=1$
$R\left[\frac{2^{1000000}}{7}\right]=R\left[\frac{\left(2^{3}\right)^{333333} \times 2}{7}\right]=R\left[\frac{\left(2^{3}\right)^{333333}}{7}\right] \times R\left[\frac{2}{7}\right]=1 \times 2=2$
20. Ans. D.
we know that the rule of divisibility by 13 is "if $n_{1} n_{2} \cdots \cdots$ is a number N , then if the number formed by the alternative sum and difference of blocks of 3-3 digits from right to left is divisible by 13 then N is divisible by 13 ".

So, for $413283 P 759387$ is divisible by 13
$387-759+83 P-132+4=83 P-500=330+P$ must be divisible by 13.
$330+P=13(26)-8+P$ must be divisible by 13 . So, P must be 8 .
21. Ans. D.

$$
\begin{aligned}
& \frac{1}{b c(a-b)(a-c)}+\frac{1}{c a(b-c)(b-a)}+\frac{1}{a b(c-a)(c-b)} \\
& \Rightarrow \frac{a(c-b)+b(a-c)+c(b-a)}{a b c(a-b)(b-c)(c-a)} \\
& \Rightarrow \frac{a c-a b+b a-b c+c b-c a}{a b c(a-b)(b-c)(c-a)} \\
& \Rightarrow 0
\end{aligned}
$$

22. Ans. A.

$$
\text { given that } x(x-1)(x-2)(x-3)+1=k^{2}
$$

$$
\begin{aligned}
k^{2} & =x(x-1)(x-2)(x-3)+1 \\
& =\left(x^{2}-3 x\right)\left(x^{2}-3 x+2\right)+1 \\
& =y(y+2)+1 \quad\left[t=x^{2}-3 x\right] \\
& =y^{2}+2 y+1 \\
& =(y+1)^{2} \\
k & =y+1 \\
k & =x^{2}-3 x+1
\end{aligned}
$$

23. Ans. C.

$$
\begin{aligned}
& x=\frac{12}{7-\frac{6}{7-\frac{3}{5-x}}} \\
& x=\frac{12}{7-\frac{6(5-x)}{35-7 x-3}} \\
& x=\frac{12(32-7 x)}{224-49 x-30+6 x} \\
& x=\frac{384-84 x}{194-43 x} \\
& 194 x-43 x^{2}=384-84 x \\
& 43 x^{2}-278 x+384=0 \\
& (x-2)(43 x-192)=0
\end{aligned}
$$

Integer value of $x=2$.
24. Ans. A.
$\Rightarrow \frac{8 x}{1-x^{4}}-\frac{4 x}{x^{2}+1}+\frac{x+1}{x-1}-\frac{x-1}{x+1}$
$\Rightarrow \frac{8 x}{(1-x)(1+x)\left(1+x^{2}\right)}-\frac{4 x}{x^{2}+1}+\frac{(x+1)^{2}-(x-1)^{2}}{(x-1)(x+1)}$
$\Rightarrow \frac{8 x-4 x\left(x^{2}+1\right)}{(1-x)(1+x)\left(1+x^{2}\right)}+\frac{4 x}{(1-x)(1+x)}$
$\Rightarrow \frac{8 x-4 x\left(x^{2}+1\right)+4 x\left(x^{2}-1\right)}{(1-x)(1+x)\left(1+x^{2}\right)}$
$\Rightarrow \frac{8 x-4 x^{3}-4 x+4 x^{3}-4 x}{(1-x)(1+x)\left(1+x^{2}\right)}$
$\Rightarrow 0$
25. Ans. D.
factorizing both polynomials

$$
\begin{aligned}
& x^{3}-19 x+30=(x-2)(x-3)(x+5) \\
& x^{2}-5 x+6=(x-2)(x-3) \\
& \text { HCF }=(x-2)(x-3)
\end{aligned}
$$

Gradeup

Green Card

26. Ans. C.

Statement-I: $x \propto z \Rightarrow x=k_{1} z$ and $y \propto z \Rightarrow y=k_{2} z$

$$
\begin{aligned}
x^{2}-y^{2} & =k_{1}^{2} z^{2}-k_{2}^{2} z^{2} \\
& =\left(k_{1}^{2}-k_{2}^{2}\right) z^{2} \\
\left(x^{2}-y^{2}\right) & \propto z^{2}
\end{aligned}
$$

Statement-I: $\quad x \propto \frac{1}{z} \Rightarrow x z=k_{1}$ and $y \propto \frac{1}{z} \Rightarrow y z=k_{2}$

$$
\begin{gathered}
(x z)(y z)=k_{1} k_{2}=k \\
x y z^{2}=k \\
x y=\frac{k}{z^{2}} \\
x y \propto \frac{1}{z^{2}}
\end{gathered}
$$

27. Ans. B.

If $(x-k)$ is the HCF of $x^{2}+a x+b$ and $x^{2}+c x+d$, then $x=k$ will satisfy both $x^{2}+a x+b=0$ and $x^{2}+c x+d=0$ equations.

Then, $k^{2}+a k+b=0$
And $k^{2}+c k+d=0$
By equation (i) and (ii)

$$
\begin{aligned}
& \left(k^{2}+a k+b\right)-\left(k^{2}+c k+d\right)=0 \\
& k(a-c)+(b-d)=0 \\
& k=\frac{d-b}{a-c}
\end{aligned}
$$

28. Ans. C.
let $x=a^{2}$ and $y=b^{2}$ then it satisfy both the equations, now
$\frac{x}{a^{2}}-\frac{y}{b^{2}}=\frac{a^{2}}{a^{2}}-\frac{b^{2}}{b^{2}}=0$

Or
You can also put $x=y=a=b=1$.
29. Ans. A.
we should be add

$$
\begin{aligned}
& =\frac{2 x-5}{\left(x^{2}-5 x+6\right)(x-4)}-\frac{1}{(x-2)(x-4)} \\
& =\frac{2 x-5}{(x-2)(x-3)(x-4)}-\frac{1}{(x-2)(x-4)} \\
& =\frac{1}{(x-2)(x-4)}\left[\frac{2 x-5}{x-3}-1\right] \\
& =\frac{1}{(x-2)(x-4)}\left(\frac{x-2}{x-3}\right) \\
& =\frac{1}{(x-3)(x-4)} \\
& =\frac{1}{x^{2}-7 x+12}
\end{aligned}
$$

30. Ans. B.

$$
\frac{\left(x^{3}-1\right)\left(x^{2}-9 x+14\right)}{\left(x^{2}+x+1\right)\left(x^{2}-8 x+7\right)}=\frac{(x-1)\left(x^{2}+x+1\right)(x-7)(x-2)}{\left(x^{2}+x+1\right)(x-7)(x-1)}=(x-2)
$$

31. Ans. A.
let a man works a unit of work in days then,

$$
y=(x-1)(x+1) \quad \text { and } z=(x+2)(x-1)
$$

And $y: z=9: 10$

$$
\begin{aligned}
& \frac{(x-1)(x+1)}{(x+2)(x-1)}=\frac{9}{10} \\
& \frac{x+1}{x+2}=\frac{9}{10} \\
& 10 x+10=9 x+18 \\
& x=8
\end{aligned}
$$

32. Ans. C.
let a person can clean 1 unit of floor in one day. then, 20 persons clean 20 floors $\equiv 20$ days

20 persons clean 1 floor $\equiv 1$ day
1 person cleans 1 floor $\equiv 20$ days
1 person cleans 16 floors $\equiv 20 \times 16$ days $=320$ days
16 persons clean 16 floors $\equiv \frac{320}{16}$ days $=20$ days
Or

$$
\begin{aligned}
\frac{M_{1} \times D_{1}}{W_{1}} & =\frac{M_{2} \times D_{2}}{W_{2}} \\
\frac{20 \times 20}{20} & =\frac{16 \times D_{2}}{16} \\
D_{2} & =20
\end{aligned}
$$

33. Ans. B.
liquid in 80 litres of mixture $=25 \%$ of $80=20$
And water in the mixtue $=80-20=60$
Let x litres of water is added in the mixture, so
$\frac{20}{80+x}=20 \%$
$\frac{20}{80+x}=\frac{1}{5}$
$80+x=100$
$x=20$ litres
34. Ans. B.
let the price of X^{\prime} 's goods is x then,
Y^{\prime} s goods price $=\frac{x}{1-0.25}=\frac{4 x}{3}$
Z's goods price $=\frac{x}{1+0.25}=\frac{4}{5} x$

Percentage cheaper of Z 's goods than Y 's good
$=\frac{(4 x / 3)-(4 x / 5)}{4 x / 3} \times 100 \%=40 \%$
35. Ans. B.
let the cost price is $C P$ and selling price is $S P$.
$100 \times C P=80 \times S P$
$\frac{S P}{C P}=\frac{80}{100}=\frac{4}{5}$
$\frac{S P-C P}{S P}=\frac{1}{5}$
\%age profit $=\frac{S P-C P}{S P} \times 100 \%=\frac{1}{5} \times 100 \%=20 \%$
36. Ans. A.
let the speed of the man is v and time take by him is t.
Then , distance
$\Rightarrow v t=\frac{4 v}{5}(t+12)$
$\Rightarrow 5 t=4 t+48$
$\Rightarrow t=48$ minutes
37. Ans. C.

Average speed,

$$
v_{a v}=\frac{\text { total distance }}{\text { total time }}=\frac{600+900}{5+10}=\frac{1500}{15}=100 \mathrm{kmph}
$$

38. Ans. D.
let the principal amount is Rs. P and the rate of interest is 12% for 2 years. Then,

$$
\begin{aligned}
& C I-S I=72 \\
& P\left[\left(1+\frac{12}{100}\right)^{2}-1\right]-\frac{P \times 12 \times 2}{100}=72 \\
& P\left(\frac{212}{100}\right)\left(\frac{12}{100}\right)-\frac{24 P}{100}=72 \\
& P\left(\frac{144}{10000}\right)=72 \\
& P=5,000
\end{aligned}
$$

39. Ans. A.

let the sum of amount is Rs. P and rate of simple interest is $\mathrm{r} \%$ and invested it for 5 years, then

$$
S I=\frac{P \times r \times 5}{100}=\frac{\mathrm{P} \times r}{20}
$$

According to the question if the rate of interest was 5% more then, new S.I.

$$
\begin{aligned}
\frac{P \times(r+5) \times 5}{100} & =\frac{P \times r}{20}+500 \\
\frac{P}{4} & =500 \\
P & =2000
\end{aligned}
$$

40. Ans. B.
if successive discounts are $20 \%, 10 \%$ and 5% then, overall discounts $=[1-(1-0.2)(1-0.1)(1-0.05)] \times 100 \%=31.6 \%$

41. Ans. A.

we know that for real solution $b^{2} \geq 4 a c$

$$
\begin{aligned}
& 4 y^{2} \sin ^{4} \theta \geq 4 y^{2} \\
& \sin ^{4} \theta \geq 1 \\
& \sin \theta \geq 1
\end{aligned}
$$

But, $\quad \sin \theta=1$
So, $x^{2}+y^{2}-2 x y \sin ^{2} \theta=0$

$$
\begin{aligned}
& x^{2}+y^{2}-2 x y=0 \\
& (x-y)^{2}=0 \\
& x=y
\end{aligned}
$$

42. Ans. B.
let $p=2-2 \sin x-\sin ^{2} x, \quad 0 \leq \theta \leq \frac{\pi}{2}$

$$
\begin{array}{ll}
p=2-\left(1+2 \sin x+\sin ^{2} x\right)+1 & \\
p=3-(1+\sin x)^{2} & \\
\left.p\right|_{\max }=3-(1+0)^{2}=2 & {\left[\left.\sin x\right|_{\min }=0\right]} \\
\left.p\right|_{\min }=3-(1+1)^{2}=-1 & {\left[\left.\sin x\right|_{\max }=1\right]}
\end{array}
$$

So, the required ratio will be -2 .
43. Ans. A.
we have $p=\sin ^{2} \theta+\cos ^{4} \theta$ for $0 \leq \theta \leq \frac{\pi}{2}$

$$
\begin{aligned}
p & =\sin ^{2} \theta+\cos ^{4} \theta \\
& =\sin ^{2} \theta+\left(1-\sin ^{2} \theta\right)^{2} \\
& =1+\sin ^{2} \theta-2 \sin ^{2} \theta+\sin ^{4} \theta \\
& =1-\sin ^{2} \theta+\sin ^{4} \theta \\
& =\cos ^{2} \theta+\sin ^{4} \theta \\
2 p & =1+\sin ^{4} \theta+\cos ^{4} \theta \\
& =1+\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin \theta \cos \theta \\
& =1+1-\sin 2 \theta \\
p & =1-\frac{1}{2} \sin 2 \theta
\end{aligned}
$$

As we know that in $0 \leq \theta \leq \frac{\pi}{2}$
$0 \leq \sin 2 \theta \leq 1$
$\left.p\right|_{\max }=1-\frac{1}{2}(0)=1$ and $\left.p\right|_{\min }=1-\frac{1}{2}(1)=\frac{1}{2}$

We can see that p can never be more that 1 and less than $\frac{1}{2}$.
44. Ans. B.
given that $0 \leq \theta \leq \frac{\pi}{2} \Rightarrow 0 \leq 2 \theta \leq \pi$
We can write it as $0 \leq 2 \theta \leq \frac{\pi}{2}$ or $\frac{\pi}{2} \leq 2 \theta \leq \pi$
Taking sine

$$
\begin{aligned}
\sin 0 & \leq \sin 2 \theta \leq \sin \frac{\pi}{2} \\
0 & \leq 2 \sin \theta \cos \theta \leq 1 \\
0 & \leq \sin \theta \cos \theta \leq \frac{1}{2}
\end{aligned}
$$

45. Ans. C.

we have $3 \sin ^{2} \theta+4 \cos ^{2} \theta=3\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\cos ^{2} \theta=3+\cos ^{2} \theta$
$\left(3 \sin ^{2} \theta+4 \cos ^{2} \theta\right)_{\min }=3+\left.\cos ^{2} \theta\right|_{\min }=3$
46. Ans. A.
we have $5^{x-3}=8=2^{3}$
Taking log both side at base 10

$$
\begin{aligned}
\log _{10} 5^{x-3} & =\log _{10} 2^{3} \\
(x-3) \log _{10} 5 & =3 \log _{10} 2 \\
(x-3) \log _{10}(10 / 2) & =3 \log _{10} 2 \\
(x-3)\left(1-\log _{10} 2\right) & =3 \log _{10} 2 \\
x-3 & =\frac{3 \log _{10} 2}{1-\log _{10} 2} \\
x & =\frac{3 \log _{10} 2}{1-\log _{10} 2}+3 \\
x & =\frac{3}{1-\log _{10} 2}
\end{aligned}
$$

47. Ans. D.
let $\mathrm{n}=1$ then $5^{2 n}-1=5^{2}-1=24$
$\mathrm{n}=2$ then $5^{4}-1=\left(5^{2}-1\right)\left(5^{2}+1\right)=24\left(5^{2}-1\right)$
$\mathrm{n}=3$ then $5^{6}-1=\left(5^{2}-1\right)\left(5^{4}+5^{2}+1\right)=24\left(5^{4}+5^{2}+1\right)$
we can observe that we get always factor of 24 and factors of 24 are $1,2,3,4,6,8,12,24$.

So, number of natural numbers that divides $5^{2 n}-1$ are 8 .
48. Ans. C.
let the let two alternate natural numbers are a and a+2, then according to the question,

$$
\begin{aligned}
\frac{1}{a}+\frac{1}{a+2} & =\frac{7}{24} \\
\frac{2 a+2}{a(a+2)} & =\frac{7}{24} \\
7 a^{2}-34 a-48 & =0 \\
(a-6)(7 a+8) & =0 \\
a & =6, a \neq \frac{-8}{7}
\end{aligned}
$$

So, the numbers are 6 and 8 . And their sum is 14 .
49. Ans. A.

$$
\begin{aligned}
15-4 \sqrt{14} & =15-2 \times 2 \times \sqrt{7} \times \sqrt{2} \\
& =8-2 \times 2 \sqrt{2} \times \sqrt{7}+7 \\
& =(2 \sqrt{2})^{2}-2(2 \sqrt{2})(\sqrt{7})+(\sqrt{7})^{2} \\
& =(2 \sqrt{2}+\sqrt{7})^{2} \text { or }(\sqrt{7}+2 \sqrt{2})^{2}
\end{aligned}
$$

Or let $\sqrt{a}-\sqrt{b}$ is the square root of $15-4 \sqrt{14}$
$15-4 \sqrt{14}=(\sqrt{a}-\sqrt{b})^{2}$
$15-2 \sqrt{56}=a+b-2 \sqrt{a b}$

By comparing we get $a+b=15$ and $a b=56$
By observation we get $(a, b)=8,7$ or $(a, b)=7,8$
So, square root of $15-4 \sqrt{14}$ is $2 \sqrt{2}-\sqrt{7}$ or $\sqrt{7}-2 \sqrt{2}$.
50. Ans. A.
we can write $31.25=\frac{3125}{100}=\frac{125}{4}=\frac{1000}{32}$
$\log _{10} 31.25=\log _{10}\left(\frac{1000}{32}\right)=\log _{10} 10^{3}-\log _{10} 2^{5}=3-5 \log _{10} 2$
51. Ans. A.
let the side of the cube is s and radius of the cube is r. Then
$6 s^{2}=4 \pi r^{2}$
$\frac{s^{2}}{r^{2}}=\frac{2 \pi}{3}$
If is the volume of the cube and ${ }^{"}$ is the volume of the sphere.

$$
\begin{aligned}
\frac{x}{y} & =\frac{s^{3}}{4 \pi r^{3} / 3}=\frac{3 s^{3}}{4 \pi r^{3}} \\
\frac{x^{2}}{y^{2}} & =\frac{9}{16 \pi^{2}} \times\left(\frac{s^{2}}{r^{2}}\right)^{3} \\
& =\frac{9}{16 \pi^{2}} \times\left(\frac{2 \pi}{3}\right)^{3} \\
& =\frac{\pi}{6}
\end{aligned}
$$

52. Ans. D.

ABC is a triangle right angled at A , then $B C=\sqrt{A B^{2}+A C^{2}}$ area of the triangle $A B C$,

$\frac{1}{2} A D \times B C=\frac{1}{2} A B \times A C$
$h(20.5)=\left(\sqrt{h^{2}+64}\right)\left(\sqrt{156.25+h^{2}}\right)$
$420.25 h^{2}=\left(h^{2}+64\right)\left(156.25+h^{2}\right)$
$420.25 h^{2}=h^{4}+220.25 h^{2}+10000$
$h^{4}-200 h^{2}+10000=0$
$\left(h^{2}-100\right)^{2}=0$
$h^{2}=100$
$h=10 \mathrm{~cm}$
53. Ans. C.

Two isosceles triangles have equal vertical angles and let their heights and bases are h_{1}, h_{2} and b_{1}, b_{2}, then $\frac{h_{1}}{h_{2}}=\frac{l_{1}}{l_{2}}$. Now,
$\frac{A_{1}}{A_{2}}=\frac{\frac{1}{2} l_{1} h_{1}}{\frac{1}{2} l_{2} h_{2}}=\frac{4.84}{5.29}$
$\frac{h_{1}^{2}}{h_{2}^{2}}=\frac{2.2^{2}}{2.3^{2}}$
$\frac{h_{1}}{h_{2}}=\frac{22}{23}$
54. Ans. B.
${ }^{1 n r}$ is similar to ${ }^{n n r}$. Then
$\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$ then
$\frac{B C+C A}{E F+F D}=\frac{A B+B C+C A}{D E+E F+F D}=\frac{40}{30}=\frac{4}{3}$
55. Ans. B.

If The diagonal $A C$ and $B D$ intersect at P. then
$\frac{A P}{P C}=\frac{B P}{P D}$
$\frac{4}{4(x-1)}=\frac{2 x-1}{2 x+4}$
$2 x+4=2 x^{2}-3 x+1$
$2 x^{2}-5 x-3=0$
$(2 x+1)(x-3)=0$
$x=3, x \neq \frac{-1}{2}$
56. Ans. B.
perimeter of a semicircular park with radius r,
$\pi r+2 r=360$
$r=70 \mathrm{~m}$

Area of semicircle $A=\frac{1}{2} \pi r^{2}=7700 \mathrm{~m}^{2}$
57. Ans. D.
perimeter of the rhombus $=$ circumference of circle
$4 a=2 \pi(70)$
[${ }^{-}=$side of rhombus]
$a=110 \mathrm{~cm}$
58. Ans. A.
angle obtained by sector on the centre of the circle
$\theta=\frac{\text { length of thearc }}{\text { radius }} \mathrm{rad}=\frac{55}{21} \mathrm{rad}$

Area of the sector, $A=\pi r^{2} \times \frac{\theta}{2 \pi}=(21)^{2} \times \frac{1}{2} \times \frac{55}{21}=577.5 \mathrm{~cm}^{2}$
59. Ans. B.
the height of the water in the vessel raised due the volume of the sphere.

$$
\begin{aligned}
\frac{4}{3} \pi(3)^{3} & =\pi(6)^{2} h \\
h & =1 \mathrm{~cm}
\end{aligned}
$$

60. Ans. C.
surface area of the cloth and the tent remains same/
$b h=\pi r l$
$3 h=\frac{22}{7} \times 6 \times 7$
$h=44 m$

61. Ans. C.

let the angle B and angle D are κ° and 45° as shown in the figure. Then,

$\tan 45^{\circ}=\frac{O A}{O D} \Rightarrow O A=O D$
$\tan 60^{\circ}=\frac{O A}{O B} \Rightarrow O A=\sqrt{3} O B$
And $O C=\sqrt{O B^{2}+O D^{2}}=\sqrt{\frac{O A^{2}}{3}+O A^{2}}=\frac{2}{\sqrt{3}} O A$
Now, $\cot \theta=\frac{O C}{O A}=\frac{2}{\sqrt{3}}$
62. Ans. B.
let the pole is $B C$ which makes an angle of 60° with the vertical, then $\angle C B A=30^{\circ}$

And $C D=B D$

$A B=x$ meter and $A D$ is common in both triangles
Then both the triangles are congruence then
It means, $\angle A D B=\angle A D C$
Now as we now AD cut the CB then

$$
\begin{aligned}
\angle A D B+\angle A D C & =180^{\circ} \\
2 \angle A D B & =180^{\circ} \\
\angle A D B & =90^{\circ}=\angle A D C
\end{aligned}
$$

Now Triangle ADB is right angle triangle
Then
$A B \cos 30^{\circ}=B D$

$$
\frac{\sqrt{3}}{2} x=B D=C D
$$

Now length of pole $=B D+D C=\sqrt{3} x$
63. Ans. D.
given that ${ }^{6+8 \tan A}=\sec A$ and $8-6 \tan A=k \sec A$
Add both after squaring,

$$
\begin{aligned}
& \left(36+96 \tan \theta+64 \tan ^{2} \theta\right)+\left(64-96 \tan \theta+36 \tan ^{2} \theta\right)=\left(1+k^{2}\right) \sec ^{2} \theta \\
& 100\left(1+\tan ^{2} \theta\right)=\left(1+k^{2}\right) \sec ^{2} \theta \\
& 100=1+k^{2} \\
& k^{2}=99
\end{aligned}
$$

64. Ans. C.

$$
\begin{aligned}
& (1+\cot \theta-\csc \theta)(1+\tan \theta+\sec \theta) \\
= & \frac{\sin \theta+\cos \theta-1}{\sin \theta} \times \frac{\cos \theta+\sin \theta+1}{\cos \theta} \\
= & \frac{(\sin \theta+\cos \theta)^{2}-1}{\sin \theta \cos \theta} \\
= & \frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta} \\
= & 2
\end{aligned}
$$

65. Ans. C.
given $\sec \theta+\cos \theta=\frac{5}{2}$, where $0 \leq \theta \leq 90^{\circ}$
$\frac{1+\cos ^{2} \theta}{\cos \theta}=\frac{5}{2}$
$2 \cos ^{2} \theta-5 \cos \theta+2=0$
$(2 \cos \theta-1)(\cos \theta-2)=0$
$\cos \theta=\frac{1}{2}, \cos \theta \neq 2$
$\sin ^{2} \theta=1-\cos ^{2} \theta=1-\frac{1}{4}=\frac{3}{4}$
66. Ans. A.
let $\alpha=\beta=0^{\circ}$ that satisfy both the
equation $\cos \theta+\cos \beta=2$ and $\sin \theta+\sin \beta=0$.
Then $\cos 2 \alpha-\cos 2 \beta=1-1=0$
67. Ans. D.
given ABC be a triangle right angled at C , then $\angle C=90^{\circ}$

$$
\begin{aligned}
& \tan A+\tan B \\
= & \tan A+\tan \left(90^{\circ}-A\right) \\
= & \tan A+\cot A \\
= & \frac{a}{b}+\frac{b}{a} \\
= & \frac{a^{2}+b^{2}}{a b} \\
= & \frac{c^{2}}{a b}
\end{aligned}
$$

68. Ans. D.
given that, $\csc \theta-\cot \theta=m$
$\csc ^{2} \theta-\cot ^{2} \theta=1$
$(\csc \theta+\cot \theta)(\csc \theta-\cot \theta)=1$
$\csc \theta+\cot \theta=\frac{1}{m}$
From equation (i) and (ii)
$\csc \theta=\frac{1}{2}\left(m+\frac{1}{m}\right)$
69. Ans. A.
$p=\sec \theta-\tan \theta=\frac{1-\sin \theta}{\cos \theta}$ and $q=\csc \theta+\cot \theta=\frac{1+\cos \theta}{\sin \theta}$
$p+q(p-1)$
$=(p-q)+p q$
$=\left(\frac{1-\sin \theta}{\cos \theta}-\frac{1+\cos \theta}{\sin \theta}\right)+\left(\frac{1-\sin \theta}{\cos \theta} \times \frac{1+\cos \theta}{\sin \theta}\right)$
$=\frac{\sin \theta-\sin ^{2} \theta-\cos \theta-\cos ^{2} \theta}{\sin \theta \cos \theta}+\frac{1-\sin \theta+\cos \theta-\sin \theta \cos \theta}{\sin \theta \cos \theta}$
$=\frac{\sin \theta-\cos \theta-1}{\sin \theta \cos \theta}+\frac{1-\sin \theta+\cos \theta-\sin \theta \cos \theta}{\sin \theta \cos \theta}$
$=\frac{-\sin \theta \cos \theta}{\sin \theta \cos \theta}$
$=-1$
70. Ans. A.

$$
\cos 57^{\circ}=\cos (90-33)^{\circ}=\sin 33^{\circ}>\sin 1^{\circ}
$$

So, statement I is true.
$\cos 60^{\circ}=\cos \left(90^{\circ}-30^{\circ}\right)=\sin 30^{\circ}<\sin 57^{\circ}$
So, statement is not correct.
71. Ans. A.

If the internal and external radii are 5 cm and 6 cm respectively, then volume of the sphere
$V=\frac{4}{3} \pi\left(6^{3}-5^{3}\right)=\frac{1144}{3} \mathrm{~cm}^{3}$
Mass of the sphere, $M=V \times d=\frac{1144}{3} \times 3=1144 \mathrm{~cm}^{3}$
72. Ans. C.
the volume of the largest cylinder when it is rolled along its width, so $2 \pi r=22 \Rightarrow r=3.5$
$x=\pi(3.5)^{2}(44)$

And the volume of the largest cylinder when it is rolled along its height, so
$2 \pi r=44 \Rightarrow r=7$
$y=\pi(7)^{2}(22)$

Required ratio,

$$
\frac{x}{y}=\frac{\pi(3.5)^{2}(44)}{\pi(7)^{2}(22)}=\frac{1}{2}
$$

73. Ans. C.
curved surface area $=550 \mathrm{~cm}^{2}$
$\pi r l=550$
$\frac{22}{7} \times r l=550$
$r l=175$
height of cone $=24 \mathrm{~cm}$
$\sqrt{l^{2}-r^{2}}=24$
$l^{2}-r^{2}=576$
Divide equation (ii) by equation (i)
$\frac{l^{2}-r^{2}}{l r}=\frac{576}{175}$
$\frac{l}{r}-\frac{r}{l}=\frac{576}{175}$
$\frac{1}{x}-x=\frac{567}{175} \quad\left[\frac{r}{l}=x\right]$
$175 x^{2}+576 x-175 x=0$
$(25 x-7)(7 x+25)=0$
$\frac{r}{l}=x=\frac{7}{25}$
74. Ans. C.
let the radius of the cone is r. since the volume remains equal.
$\frac{1}{3} \pi \times r^{2} \times 21=22^{3}$
$r=22 \mathrm{~cm}$
75. Ans. B.
volume of both the vessel should be equal
$\frac{1}{3} \pi(5)^{2}(24)=\pi(10)^{2} h$
$h=2 \mathrm{~cm}$
76. Ans. C.
let the edge of third cube is h, and the volume of the cube remains constant

$$
\begin{aligned}
24^{3} & =12^{3}+16^{3}+h^{3} \\
h^{3} & =24^{3}-12^{3}-16^{3} \\
& =4^{3}\left(6^{3}-3^{3}-4^{3}\right) \\
& =4^{3}(125) \\
h & =4 \times 5=20 \mathrm{~cm}
\end{aligned}
$$

Now, the surface area of the third cube $=6 h^{2}=6 \times 400=2400 \mathrm{~cm}^{2}$

77. Ans. D.

. If R is the outer radius and r is the inner radius of the pipe and length is 14 cm . then

Difference between outside and inside surface area $=2 \pi(R-r) h$
$44=2 \times \frac{22}{7} \times(R-r) \times 14$
$R-r=0.5$
Volume of the pipe $=\pi\left(R^{2}-r^{2}\right) h$
$99=\frac{22}{7} \times(R+r) \times(R-r) \times 14$
$9=4 \times(R+r) \times 0.5$
$R+r=\frac{9}{2}=4.5 \mathrm{~cm}$
78. Ans. C.
let the radius of base and height of the cylinder is $2 x$ and $3 x$ respectively.
And the volume of the cylinder

$$
\begin{aligned}
& V=\pi r^{2} h \\
& 1617=\frac{22}{7} \times\left(4 x^{2}\right) \times(3 x) \\
& x^{3}=\frac{49 \times 7}{8}=\frac{7^{3}}{2^{3}} \\
& x=\frac{7}{2}
\end{aligned}
$$

Curved surface area of the con $=2 \pi r h=2 \times \frac{22}{7} \times 2 x \times 3 x=\frac{3 \times 8 \times 11}{7} \times \frac{49}{4}=462 \mathrm{~cm}^{2}$ 79. Ans. A.
let the radius of the wire is r. since volume remains equal.
sphere of radius $=30 \mathrm{~mm}=3 \mathrm{~cm}$

$$
\begin{aligned}
\frac{4}{3} \pi(3)^{3} & =\pi r^{2}(144) \\
r^{2} & =\frac{36}{144}=\frac{1}{4} \\
r & =\frac{1}{2}=0.5 \mathrm{~cm}
\end{aligned}
$$

80. Ans. B.
let the height and radius of cone are h and r. Since bases of cone and hemisphere are equal then radius of hemisphere is r.

And given that the volumes are equal, then
$\frac{1}{3} \pi r^{2} h=\frac{2}{3} \pi r^{3}$
$h=2 r$
$\frac{h}{r}=2$
81. Ans. B.
let the circle touches the side of quadrilateral $A B, B C, C D$ and $D A$ at P, Q, R and S.

$$
\begin{aligned}
& A B=A P+P B=9 \\
& B C=B Q+Q C=8 \\
& C D=C R+R D=12 \\
& D A=D S+S A=?
\end{aligned}
$$

we know that the tangents from a point to the circle are equal. So,

$$
\begin{aligned}
& A P=A S \\
& B P=B Q \\
& C Q=C R \\
& D R=D S
\end{aligned}
$$

Now,

$$
\begin{aligned}
D A & =D S+S A \\
& =D R+A P \\
& =(12-C R)+(9-P B) \\
& =21-(C Q+B Q) \\
& =21-8 \\
& =13
\end{aligned}
$$

82. Ans. D.

given that $A B C D$ is a trapezium in which $A B$ is parallel to $D C$.

$$
\begin{array}{ll}
\angle A O B=\angle D O C & \text { (vert. opposite angles) } \\
\angle A B O=\angle B D C & \text { (alternate angles) }
\end{array}
$$

So, $\triangle A O B \cong \triangle C O D \quad$ (AAA)
Now, $\frac{\triangle A O B}{\triangle C O D}=\frac{A B^{2}}{C D^{2}}=\left(\frac{3}{2}\right)^{2}=\frac{9}{4}$
83. Ans. C.

If $B C=6 \mathrm{~cm}$ and $C A=8 \mathrm{~cm}$, then
$A B=\sqrt{6^{2}+8^{2}}=10 \mathrm{~cm}$
Area of the triangle $A B C$
$\frac{1}{2} C A \times C B=\frac{1}{2} A B \times P C$
$8 \times 6=10 \times p$
$p=4.8 \mathrm{~cm}$
84. Ans. C.
let the base and height of the right-angled triangle is b and h.
$b^{2}+h^{2}=13^{2}$
Perimeter $\Rightarrow b+h+13=30 \Rightarrow b+h=17$
$(b+h)^{2}=17^{2}$
$b^{2}+h^{2}+2 b h=289$
$2 b h=120$
$b h=60$
Or $b=5, h=12$
Now, the area of the triangle $A=\frac{1}{2} b h=30 \mathrm{~cm}^{2}$
85. Ans. C.
we know that $P T^{2}=P A \times P B$
$12^{2}=9 \times P B$
$P B=16 \mathrm{~cm}$
$A B=P B-P A=16-9=7 \mathrm{~cm}$
86. Ans. C.

let the sides $A B, A C$ and $B C$ of a triangle $A B C$ are $4 \mathrm{~cm}, 6 \mathrm{~cm}$ and 8 cm . let the touching pointing of the circles are L, M and N such that $A N=A L$, $B L=B M$ and $C N=C M$.

Let $A N=a \mathrm{~cm}$ then $\mathrm{CN}=\mathrm{CM}=6-\mathrm{acm}$
Then $B M=B L=8-(6-a)=2+a$
And $A L=A N=4-(2+a)=2-a$
But $A N=a$ then
$a=2-a$
$a=1 \mathrm{~cm}$
sum of the radii of the circle $=A N+B M+C L=1+5+3=9 \mathrm{~cm}$
87. Ans. C.

ABC is a equilateral triangle then each angle will be 60°. We know that angle made by same chord on the circumference of circle is equal.
So $\angle B D C=60^{\circ}$.
88. Ans. D.

we know that the intersecting points of diameter of circle intersects at center of circle.

We know that angle made by a chord on centre is two times to the angle made on it circumference.

So, $\angle B P D=120^{\circ}$
89. Ans. C.
given that $A M=M N=N B$ and $M P\|N Q\| B C$

$\frac{A B}{B C}=\frac{A N}{N Q}=\frac{A M}{M P}$
$\frac{3 A M}{12}=\frac{2 A M}{N Q}=\frac{A M}{M P}$
$\frac{1}{4}=\frac{2}{N Q}=\frac{1}{M P}$
$M P=4, N Q=8$
$(M P+N Q)=4+8=12 \mathrm{~cm}$
90. Ans. C.

The sides of a right-angled triangle are in the ratio $x:(x-1):(x-18)$

$$
\begin{aligned}
& x^{2}=(x-1)^{2}+(x-18)^{2} \\
& x^{2}=2 x^{2}-38 x+325 \\
& x^{2}-38 x+325=0 \\
& (x-13)(x-25)=0 \\
& x=13,25 \\
& x \neq 13 \text { as } x-13<0
\end{aligned}
$$

So, the ratio of sides $25: 24: 7$
So, perimeter $25+24+7=56$ units.
91. Ans. A.

Year	I	III	IV	III+IV
2000	160	70	90	160
$\mathbf{2 0 0 1}$	$\mathbf{2 0 0}$	$\mathbf{8 5}$	$\mathbf{1 6 0}$	$\mathbf{2 4 5}$
2002	135	44	95	139
2003	240	120	80	200
2004	180	85	95	180
2005	210	100	92	192

In year 2001.
92. Ans. C.
percentage drop in total production in 2004 compared to 2001 $=\frac{695-585}{595} \times 100 \%=\frac{110}{595} \times 100 \%$
percentage drop in total production in 2000 compared to 2001 $=\frac{695-475}{595} \times 100 \%=\frac{220}{595} \times 100 \%$
required ratio $=\frac{110}{220}=\frac{1}{2}$
93. Ans. A.
total number of tablets produced each year
2000: $160+80+70+90+75=475$
2001: $200+150+85+160+100=695$
2002: $135+35+44+95+85=394$

2003: $240+95+120+80+120=655$
2004: $180+110+85+95+115=585$
2005: $210+150+100+92+110=662$
(2003, 2005): $|655-662|=7$
$(2001,2005):|695-662|=33$
$(2003,2004):|655-585|=70$
$(2000,2002):|475-394|=81$
$(2003,2005)$ is minimum
94. Ans. B.
total production of each tablet over years 2000-2005.
Type I: $160+200+135+240+180+210=1125$
Type II: $80+150+35+95+110+150=620$
Type III: $70+85+44+120+85+100=504$
Type IV: $90+160+95+80+95+92=612$
Type V: $75+100+85+120+115+110=605$
So the least is type III
95. Ans. C.
given that the average $\bar{a}_{m}=p, \bar{a}_{n}=q$, where $p \leq q$ and $\overline{a_{m+n}}=c$
Sum of m observation $=m p$ and sum of the n observation $=n q$ and
So, sum of $(m+n)$ observation $=\frac{m p+n q}{m+n}=c$

$$
\begin{array}{rrr}
p+\frac{n(q-p)}{m+n}=c & \text { or } & q-\frac{m(q-p)}{m+n}
\end{array}=c
$$

Where $q \geq p \Rightarrow q-p \geq 0 \Rightarrow k_{1}, k_{2} \in I$
96. Ans. B.
average marks of the students $=\frac{21+27+19+26+32}{5}=\frac{125}{5}=25$
After adding 5 grace marks to each student.
The revised average marks $=25+5=30$
97. Ans. D.
first ten composite numbers are $4,6,8,9,10,12,14,15,16,18$
Mean $=\frac{4+6+8+9+10+12+14+15+16+18}{10}=\frac{112}{10}=11.2$
98. Ans. B.
arranging the number in the ascending order
$-1,2,2,3,6,8,9$

There are 7 terms, so the median

$$
=\left(\frac{n+1}{2}\right) \text { thterm }=\frac{7+1}{2} \text { thterm }=4 \text { th term }=3
$$

99. Ans. D.
total number of students are 90.
Number of students who scored less than or equals to 50% marks $=$ $5+8+10+13+18=54$
\%age of such students $=\frac{54}{90} \times 100 \%=60 \%$
100. Ans. C.

	Year 2015	Year 2016	Change in 2016 over 2015	\%age change
Country A	35	38	3	8.57%
Country B	45	47	2	4.44%
Country C	88	93	5	5.68%
Country D	75	79	2	5.33%
Country E	58	60.9	2.9	5%

Only A, C, D and E

