IBPS RRB PO 2022

40 Important Quantitative

 Aptitude Questions Solution
DOWNLOAD PDF

Solutions

1. Ans. D

The pattern is $=5^{2}+1,6^{2}+1,7^{2}+1,8^{2}+1,9^{2}+1$,
So the wrong term 63 is replace by $=8^{2}+1=65$
2. Ans. B

The pattern is all the number is regular square of the prime number so next number square is 289
3. Ans. E

The pattern of the number series is:
$\frac{1430}{2}-1=714$
$\frac{714}{2}-1=356$
$\frac{356}{2}-1=177$
$\frac{177}{2}-1=87.5$
4. Ans. A

The pattern is -
$\left(5^{*} 1\right)+\left(1^{*} 1\right)=6$
$(6 * 2)+(2 * 2)=16$
$(16 * 3)+(3 * 3)=57$
$(57 * 4)+(4 * 4)=244$
5. Ans. A

The pattern is $11^{\wedge} 3+1,12^{\wedge} 3+1,13^{\wedge} 3+1,14^{\wedge} 3+1$
So the next term is $=15^{\wedge} 3+1=3376$
6. Ans. C
44% of $125+75 \%$ of $840=55+630=685$
7. Ans. D
$\sqrt{?}=\left[(144)^{2} \div 48 \times 18\right] \div 36$
$\sqrt{?}=\left[\frac{20736}{48} \times 18\right] \div 36$
$\sqrt{?}=\frac{7776}{36}$
$\sqrt{?}=216$
$\therefore ?=(216)^{2}$
? $=46656$
8. Ans. C

Follow BODMAS rule to solve this question, as per the order given below,
Step-1-Parts of an equation enclosed in 'Brackets' must be solved first,
Step-2-Any mathematical 'Of' or 'Exponent' must be solved next,
Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,
Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

$$
\begin{aligned}
& \Rightarrow 12 \frac{2}{3} \times 12 \frac{1}{3}+22.5 \% \text { of } 480=\frac{2}{9}+\frac{1}{2} \times 426+X \\
& \Rightarrow \frac{38}{3} \times \frac{37}{3}+108=\frac{2}{9}+213+X \\
& \Rightarrow \frac{1406}{9}+108=\frac{1919}{9}+X \\
& X=108-\frac{513}{9} \\
& \Rightarrow X=108-57=51
\end{aligned}
$$

9. Ans. A
$23 \times 17.5 \approx 403 \& 321 \div 52 \approx 6$
Then, $403+64-6=466-6=460$
10. Ans. C
970% of $14 \approx 135$
310% of $43 \approx 133$
Also, $135+133=268 \approx 270$
11. Ans. A

Number of failed students in Institution B in year 2004 $=1654-1566=88$
Number of failed student in Institution B in year 2006
$=1440-1165=275$
\therefore Required Difference
$=275-88=187$
12. Ans. C

Required Average
$=\frac{1530+1886+1860+1478+1654}{5}$
$=\frac{8354}{5}=1671$ (approx)
13. Ans. B

Required Percent is minimum in year 2004
Required Percent
$=\frac{1024 \times 100}{1574}$
$=65.05$
14. Ans. D

Candidates qualified for the exam in the year of 2005 from all Institutes together
$=1500+1278+1210+1586+1498$
$=7072$
Candidates appeared for the exam in the year of 2005
from all Institutes together
$=1684+1550+1754+1806+1666$
$=8460$
Required percentage,
$=\frac{7072}{8460} \times 100$
$=83.59$

15. Ans. E

Number of candidates sitting in examination in year
2007
$=1564+1388+1214+1296+1480$
=6840
Number of successful candidates in year 2007
$=7793$
Required Percent
$=\frac{6840 \times 100}{7993}$
$=86$ (Approx.)
16. Ans. C

Required ratio $=[(20 \% * 260000) /(12 \% * 32000)]=$ 52000/3840 ---> 325:24
17. Ans. C

Required percentage $=\{(25+18) / 20\}^{*} 100=215 \%$
18. Ans. C

Required difference $=(18-15) \%$ of $32000=960$
19. Ans. D

Required percentage $=\{(32000 / 260000) * 100\}=$ 12.30\%
20. Ans. A

Cleared the entrance exam in 2007 and 2012 is $=$ $\left\{32000^{*}(12+20)\right\} / 100=10240$
21. Ans. A

Required percentage $=(27.5-22.5) / 27.5 * 100=$ 18.18\%
22. Ans. B

Required difference $=(32.5-27.5)$ lakh $=5$ lakh 23. Ans. B

Total number of mobiles manufactured in $2011=$ $(25+20+30)=75$
Total number of mobiles manufactured in $2012=$ $(30+30+25)=85$
Total number of mobiles manufactured in $2013=$ $(35+27.5+27.5)=90$
Total number of mobiles manufactured in $2014=$ $(40+32.5+22.5)=95$
Total number of mobiles manufactured in $2015=$ $(15+22.5+32.5)=70$
So 2015 is the year in which least number of mobiles were manufactured.
24. Ans. C

Production of Q type mobiles is more than the production of R type mobiles only in 2012 and 2014. We see the largest difference exists in 2014.
We can find percent production for year 2012 \& 2014. It is maximum in year 2014. So, the answer is 2014.
25. Ans. E

Total production of R type mobiles in 2011 and $2012=$ $(30+25)=55$
Total production of Q type mobiles in $2013=27.5$
So Required percentage $=55 / 27.5 * 100=200 \%$
26. Ans. E
$P^{2}-11 P+24=0$
$P=(+8,+3)$
$2 q^{2}-14 q+24=0$
$q=(+4,+3)$
So the relationship cannot be established
27. Ans. A
$p^{2}-12 p+36=0$
$(p-6)^{2}=0-\mathrm{F}=6$
$4 q^{2}-32 q+64=0$
$q^{2}-8 q+16=0$
$q=(4,4)$
So p>q
28. Ans. E
$3 P^{2}+21 P+30=0$,
$3 p^{2}+15 p+6 p+30=0$,
$p=(-5,-2)$
$3 q^{2}+17 q+24=0$,
$3 q^{2}+8 q+9 q+24=0$,
$q=(-8 / 3,-3)$
Since $-8 / 3$ and -3 lies between -5 and -2 hence No relation
29. Ans. E
$p^{2}+16 p+55=0$,
$p^{2}+11 p+5 p+55=0$,
$P=(-5,-11)$
$q^{2}+16 q+63=0$,
$p^{2}+9 q+7 p+63=0$,
$P=(-7,-9)$
So the relationship cannot be established
30. Ans. B
$P= \pm 3$
$q^{2}+6 q+9=0$,
$(q+3)^{2}=0$,
$q=-3$
$p \geq q$
31. Ans. B

Let the amount in scheme B in the original amount be Rs
$5 x$.
Profit earned at the end of first year
$=9 x \times \frac{30}{100}=2.7 x \mathrm{Rs}$

$\frac{7 \times 11.7 x}{13}=94500$

$\mathrm{x}=1500 \mathrm{Rs}$
So amount in Scheme B in original amount $=15000 * 5=$ 75000 Rs
32. Ans. C

Speed of the swimmer
$=\frac{11+5}{2}=\frac{16}{2}=8 \mathrm{~km} / \mathrm{h}$
33. Ans. C
'Rs. 2080'
Let the principal be x
SI @8p.c.p.a. for four years $=32 \%$ of $x=4000$
$x=12500$
CI @8p.c.p.a. for 2 years $=16.64 \%$ of $12500=$ Rs. 2080
34. Ans. A

Acco.to question
$7 x-5 x=3500$
$x=1750$
Required amount $=3 * 1750+5 * 1750=14,000$
35. Ans. A

Let Raghu's investment = Rs. 100
\therefore Mohit's investment $=$ Rs. 90
Pradeep's investment $=.90 \times 120 / 100=$ Rs. 108
\therefore Ratio of the investments of Pradeep, Mohit and Raghu respectively $=108: 90: 100=54 .: 45: 50$
Sum of ratios $=54+45+50=149$
\therefore Raghu's investment ' $=50 \times 17880 / 149=$ Rs 6000
36. Ans. D

Suppose the ages of Nishi and Vinnee are $6 x$ and $5 x y r$.
$\because \frac{6 x+9}{5 x+9}=\frac{9}{8}$
$48 x+72=45 x+81$
$48 x-45 x=81-72$
$3 x=9$
$x=3$
Required difference,
$6 x-5 x=x=3 y r$
37. Ans. D

CP of mobile $=\frac{1950}{75} \times 100$
Required SP of mobile
$=\frac{1950}{75} \times 100 \times \frac{130}{100}=R s .3380$
38. Ans. A

Let length of train A be x metres
\therefore Length of train $B=2 x$ metres
Speed of train $\mathrm{A}=\frac{\boldsymbol{x}}{\mathbf{2 5}} m / \mathbf{s e c}$
Speed of train $B=\frac{2 x}{75} m / s$

$$
\begin{aligned}
\therefore \text { Ratio } & =\frac{x}{25}: \frac{2 x}{75} \\
& =3: 2
\end{aligned}
$$

39. Ans. C

In 1 day (6×10) women can complete the piece of work and in 1 day (10×15) children can complete the same piece of work.
$\therefore 6 \times 10$ women $\equiv 10 \times 15$ children
$\exists_{2 \text { women }} \equiv 5$ children
$\therefore 6$ women +10 children $=(15+10)$ children $=25$ children

$$
\begin{aligned}
& \therefore M_{1} D_{1}=M_{2} D_{2} \Rightarrow 10 \times 15=25 \times D_{2} \\
& \Rightarrow D_{2}=\frac{10 \times 15}{25}=6 \text { days }
\end{aligned}
$$

40. Ans. D
$5 R+5 B+5 G=15$ balls.
$P($ at least one ball Green $)=1-P($ No green $)=1-$
[10C2/15C2] = 4/7
