Defence Exam Notes: Heights \& Distance

Here are some ratio figure which you have to remember

(i)

(ii)

(iii)

(v)

(vi)

Important short tricks are :

Note: ${ }^{x=\sqrt{D_{1} D_{2}}}$ only when the sum of angle i.e $q_{1}+q_{2}=90^{\circ}$

$$
\begin{aligned}
& \mathrm{h}=\text { height of small } \\
& \text { tower or object }
\end{aligned}
$$

Some Important questions are as follows:

Example 1: The angle of elevation of the top of a tower at a distance of 500 m from its foot is 30°. The height of the tower is :
(a) $\frac{500(\sqrt{3}-1)}{3} m$
(b) $\frac{500(\sqrt{3}+1)}{3}$
(c) 500
(d) $\frac{500 \sqrt{3}}{3} \mathrm{~m}$

Ans. (d)
$\tan 30^{\circ}=\frac{B C}{A B}=\frac{h}{500}$
b $h=500 \cdot \frac{1}{\sqrt{3}}=\frac{500 \sqrt{3}}{3}$

Short trick:

Solve it with ratio, as the angle of elevation is 30° then ratio between $P: B$: H is $1: \sqrt{3}: 2$ so $\sqrt{ } 3=500$ then $1=500 / \sqrt{ } 3$ and height is equal to $\frac{500 \sqrt{3}}{3} \mathrm{~m}$

Example 2: The banks of a river are parallel. A swimmer starts from a point on one of the banks and swims in a straight line inclined to the bank at 45° and reaches the opposite bank at a point 20 m from the point opposite to the starting point. The breadth of the river is :
(a) 20 m
(b) 28.28 m
(c) 14.14 m
(d) 40 m

Ans. (c) 14.14 m

Solution:

Let A be the starting point and B, the endpoint of the swimmer. Then $A B=20 \mathrm{~m}$ \& $Đ B A C=45^{\circ}$
$\sin 45^{\circ}=\frac{B C}{A B}$

b $\frac{1}{\sqrt{2}}=\frac{B C}{20} \quad B C=10 \sqrt{2}=14.14 \mathrm{~m}$

Short Method;

AS the angle of elevation is 45° then the ratio of $\mathrm{P}: \mathrm{B}: \mathrm{H}$ i.e. $1: 1: \sqrt{ } 2$
here $\sqrt{ } 2=20$ then $1=20 / \sqrt{ } 2$
Question 3: A man from the top a 50 m high tower, sees a car moving towards the tower at an angle of depression of 30°. After some time, the angle of depression becomes 60°. The distance (in m) travelled by car during this time is -
(a) $50 \sqrt{3}$
(b) $\frac{50 \sqrt{3}}{3}$
(c) $\frac{100 \sqrt{3}}{3}$
(d) $100 \sqrt{3}$

Ans. (c)

Solution:

$B C=\frac{50}{\sqrt{3}}, A C=50 \sqrt{3}$
$A B=A C-B C$
$=\frac{100 \sqrt{3}}{3}$

Example 4:A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite side of the bank is 60°. When he moves 50 m away from the bank, the angle of elevation becomes 30°. The height of the tree and width of river respectively are :
(a) $25,25 \sqrt{3} \mathrm{~m}$
(b) $25 \sqrt{3}, 25 \sqrt{3} \mathrm{~m}$
(c) $25 \sqrt{3} \mathrm{~m}, 25 \mathrm{~m}$
(d) None of these

Answer: c)

Solution:

(Ratio value figure)

Ratio value original value

$$
\begin{aligned}
& \quad 2 \rightarrow 50 \\
& \therefore \quad 1 \quad \rightarrow 25 \\
& \text { and } \sqrt{3} \rightarrow \quad 25 \sqrt{3}
\end{aligned}
$$

height of the tree $=\mathrm{h}($ ratio value $=\sqrt{3})=25 \sqrt{3} \mathrm{~m}$
and width of the river $=x($ ratio value $=1)=25 \mathrm{~m}$
Example 5: From the top of a pillar of height 80 m the angle of elevation and depression of the top and bottom of another pillar are 30° and 45° respectively. The height of second pillar (in metre) is:
(a) $80 \sqrt{3} \mathrm{~m}$
(b) $\frac{80}{\sqrt{3}}(\sqrt{3}-1) m$
(c) $\frac{80}{\sqrt{3}}(\sqrt{3}+1) m$
(d) $\frac{80}{\sqrt{3}} m$

Answer: (c)

Solution:

Let $A B$ and $C D$ are pillars.
Let $D E=h$

$\ln \triangle A D E, \tan 30^{\circ}=\frac{h}{A E}$
$\Rightarrow A E=h \sqrt{3} \quad \ldots \ldots .(i)$
In $\triangle A C E, \tan 45^{\circ}=\frac{80}{A E}$
$\Rightarrow A E=80 \Rightarrow h \sqrt{3}=80[\operatorname{From}(j)]$
$\Rightarrow h=\frac{80}{\sqrt{3}}$
Required height
$=80+\frac{80}{\sqrt{3}}=\frac{80}{\sqrt{3}}(\sqrt{3}+1) m$
Example 6: Two poles of equal height are standing opposite to each other on either side of a road, which is 28 m wide. From a point between them on the road, the angles of elevation of the tops are 30° and 60°. The height of each pole is:
(a) $6 \sqrt{3} \mathrm{~m}$
(b) $5 \sqrt{3} \mathrm{~m}$
(c) $4 \sqrt{3} \mathrm{~m}$
(d) $7 \sqrt{3}$

Ans. (d)

Let $A B$ and $C D$ be the pole and $A C$ be the road.
Let $A E=x$, then $E C=28-x$ and $A B=C D=h$. Then let $A B=C D=\sqrt{ } 3$
then, $\mathrm{EC}=1$ and $\mathrm{AE}=3$
$A C($ ratio value $)=3+1=4$
$4=28$ then $1=7$
and $\sqrt{ } 3=7 \sqrt{ } 3$ so height of tower is $7 \sqrt{ } 3$.
Example 7: There are two vertical posts, one on each side of a road, just opposite to each other. One post is 108 metre high. From the top of this post, the angles of depression of the top and foot of the other post are 30° and 60° respectively. The height of the other post is :
(a)36
(b) 72
(c) 76
(d) 80

Ans (b)

The height of greater Lower i.e. $\mathrm{AB}=108=\mathrm{H}$
$H=\frac{h \cot \theta_{1}}{\cot \theta_{1}-\cot \theta_{2}}$
$108=\frac{h \cot 30^{\circ}}{\cot 30^{2}-\cot 60^{2}}$
$108=\frac{h \sqrt{3}}{\sqrt{3}-\frac{1}{\sqrt{3}}} \Rightarrow 108=\frac{h \times \sqrt{3} \times \sqrt{3}}{2}$
$h \Rightarrow 72 m$
so height of tower is 72
Example 8: An aeroplane when flying at height of 5000 m from the ground passes vertically above another aeroplane at an instant, when the angles of elevation of the two aeroplanes from the same point on the ground are 60° and 45° respectively. The vertical distance between the aeroplanes at that instant is:
(a) $5000(\sqrt{3}-1)$
(b) $5000(3-\sqrt{3}) \mathrm{m}$
(c) $5000\left(1-\frac{1}{\sqrt{3}}\right) m$
(d) 4500 m

Ans (c)

$\angle A C B=60^{\circ}$
$\angle D C B=450^{\circ}$
$A B=5000 \mathrm{~m}$
From $\triangle A B C$ the angle is 60°
So, the $A B=\sqrt{3}$
$\sqrt{3}=5000$
$1=\frac{5000}{\sqrt{3}}$
$A D=\sqrt{3}-1$
$\Rightarrow 5000-\frac{5000}{\sqrt{3}}=5000\left(\frac{\sqrt{3}-1}{\sqrt{3}}\right)$
In this question we have two triangle $A B C$ and triangle $D B C$. In triangle $A B C$ we apply the ratio according to 60° and in triangle $D B C$ we apply ratio according to the 45°. That why we take $A B=\sqrt{ } 3$ and $D B=1$.

Example 9: A boy standing in the middle of a square field which is of length $50 \sqrt{ } 3 \mathrm{~m}$, observes a flying bird in the north at an angle of elevation of 30° and after 2 minutes, he observes the same bird in the south at an angle of elevation of 60°. If the bird flies all along in a straight line at a height of then its speed in km / h is:
(a) 4.5
(b) 3
(c) 9
(d) 6

Ans.(d)

In ABO
According to the ratio method

$A B$	$:$	$A O$	$:$
1	$\sqrt{3}$	2	
$50 \sqrt{3}$	150	$100 \sqrt{3}$	

From triangle DCO

$D C$	$:$	$C O$	$:$	$D O$
$\sqrt{3}$	$:$	1	$:$	2
$50 \sqrt{3}$		50		100

$D O \cot A O=150+50=200 m$
Speed $=\frac{D}{t}=\frac{200}{2}=100 \mathrm{~m} /$ minute
$=\frac{100}{1000} \times 60 \mathrm{kmph}=6 \mathrm{~km} / \mathrm{h}$
Example 10: A tree is broken by the wind. If the top of the tree struck the round at an angle of 30° and at a distance of 30 m from the root, then the height of the tree is :
(a) $25 \sqrt{3} \mathrm{~m}$
(b) $30 \sqrt{3} \mathrm{~m}$
(c) $15 \sqrt{3} \mathrm{~m}$
(d) $20 \sqrt{3} \mathrm{~m}$

Ans. (b)

$\sqrt{ } 3=30$
$1=10 \sqrt{ } 3 \& 2=20 \sqrt{ } 3$
so total height is $1+2=10 \sqrt{ } 3+20 \sqrt{ } 3=30 \sqrt{ } 3$
Example 11: The angle of elevation of a cloud from height h above the level of water in a lake is a and the angle of the depression of its image in the lake is b. Then, the height of the cloud above the surface of the lake is :
(a) $h \cot \beta$
(b) $h(\cot \alpha+\cot \beta)$
(c) $h \cot \alpha$
(d) $h \frac{(\cot \alpha+\cot \beta)}{(\cot \alpha-\cot \beta)}$

Ans. (d)
Let P be the cloud at height H above the level of the water in the lake Q its image in the water

$\therefore O Q=O P=H$,
B is at a point at a height $A B=h$, above the water, Angle of elevation of P and depression of Q from B are respectively
In triangle PBM
$\tan \alpha=\frac{H-h}{B M}$
$\therefore B M=(H-h) \cot \alpha$
In $\triangle Q M B$,
$\tan \beta=\frac{Q M}{B M}$
$\therefore B M=(H+h) \cot \beta$ \qquad
From equations (i) and (ii),
$(H-h) \cot \alpha=(H+h) \cot \beta$
$\Rightarrow H(\cot \alpha-\cot \beta)=h(\cot \alpha+\cot \beta)$
$\therefore H=\frac{h(\cot \alpha+\cot \beta)}{\cot \alpha-\cot \beta}$

ZERO TO HERO In NDA 2022

Cover 25\% Syllabus in 40 Hours

Starts From: 蘭10th June 2022, 7 PM KNOW MORE

Download the schedule of Zero to Hero for NDA 2022 by clicking here

"Math \& Science are the deciding factors which determine the chances of a student to clear the Cut-off for NDA Exam and the recent trend suggests the Cut-off is on the increasing trend which only suggests that no stones can be left unturned while preparing for NDA 2022 Exam" Said Sanjeev sir who will be one of the hosts for our Zero to Hero Series for NDA 2022 Exam.

This Free series will run over the span of 40 days covering 1 important topic each day at 7PM, LIVE.

