

Study Notes on Soft Acid and Base Concept

https://byjusexamprep.com

Soft Acid and Base concept

Hard-soft acid-base concept

According to the HSAB principle, soft base tends to combine with soft acid while hard base combines with hard acid. Let us discuss each term one by one:

Soft base: Large ionic radius, highly polarizable, intermediate electronegativity, low energy HOMOs. Ex-RNC, CO, RSH, H⁻

Soft acid: Large ionic radius, low positive charge, low energy LUMOs. Ex- Ag⁺, Cs⁺, Pd²⁺

Hard acid: Small ionic radius, high positive charge, high energy LUMOs. Ex-K⁺, H⁺, Al³⁺.

Hard base: Small ionic radius, high electronegativity, weakly polarizable, high energy HOMOs. Ex- H_2O , R_2O , NH_3 .

Borderline acid and base: They have intermediate properties between hard acid/base and soft acid/base. Ex- Aniline, N₂, pyridine

Some important points regarding the stability of compound formed:

- 1. Higher the electronegativity difference between hard acid and hard base, stronger will be ionic interactions.
- 2. Due to almost the same electronegativity of soft acid and soft base, they have covalent interactions.
- 3. When hard acid and soft base or vice-versa combines, the interaction between them is polar covalent which makes them reactive.

Applications of HSAB:

- **1.** Hydrogen Bonding: H- bonding is possible when H is attached to highly electronegative elements such as N, O or F. In cases of NH₃, H₂O or HF, H-bonding is possible.
- 2. Linkage of ambidentate ligand to metal atom: Ambidentate ligand can use its different elements to bind with metal. Example- SCN⁻. It can blnd with metal both as M-NCS or M-SCN. Now which atom will combine depend on the nature of the acid or base.

Symbiotic effect: The hard-soft nature of metal ion can be changed by the presence of other groups.

3.Predict the direction of inorganic reactions: Let us understand this concept by taking 1 example:

Consider the reaction between AsF₃ and PI₃:

 $AsF_3 + PI_3 \rightarrow AsI_3 + PF_3$

This reaction will go in the right direction as As³⁺ is softer and P³⁺ and I⁻ is softer than F⁻.

- **4. Solubility in water:** The polar compound will be soluble in water while non-polar will be insoluble. Now, when soft acid combines with a soft base, the compound formed has covalent nature due to which it will be less soluble in water.
- **5. Precipitation reaction:** Soft and borderline acids can be precipitated in the form of sulfides from their aqueous solution.

Limitations of the HSAB principle:

According to Fazan's rule, salts of Be are covalent in nature but according to the HSAB principle, Be compounds show ionic nature. This is not true.

CSIR NET Chemical Science 2022 A Foundation Course

Complete Prep of Chemical Science for June 2022 Aspirants

Why take this course?

- > 450+ Hrs Live Classes & Doubt Sessions for complete conceptual clarity
- 3000+ Practice Questions covering all levels of difficulty
- > 20+ Unit Wise Study Modules & Mind Maps
- > 50+ Full Mock Tests, Chapter Wise Mock Tests, PYQs Mock Tests