Formula Sheet On Coordinate Geometry

https://byjusexamprep.com

Defination

Co-ordinate Plane: A coordinate plane is a 2-D plane formed by the intersection of a vertical line called y axis and a horizontal line called x-axis. These are perpendicular lines that intersect each other at zero, and this point is called the origin $\mathrm{O}(0,0)$. The axes cut the coordinate plane into four equal sections, and each section is known as quadrant.

The two-dimensional plane is called the Cartesian plane, or the coordinate plane and the axes are called the coordinate axes or x-axis and y-axis. The given plane has four equal divisions by origin called quadrants.

Important Points

The two-dimensional plane is called the Cartesian plane, or the coordinate plane and the axes are called the coordinate axes or x-axis and y-axis. The given plane has four equal divisions by origin called quadrants.

- The horizontal line towards the right of the origin (denoted by O) is positive x-axis.
- The horizontal line towards the left of the origin is negative x-axis.
- The vertical line above the origin is positive y-axis.
- The vertical line below the origin is negative y-axis.
- The x-coordinate or abscissa of a point is its perpendicular distance from the y-axis measured along the x-axis.
- The y-coordinate or ordinate of a point is its perpendicular distance from the x-axis measured along the y-axis.
- In stating the coordinates of a point in the coordinate plane, the x-coordinate comes first, and then comes the y -coordinate. We place the coordinates in brackets as (x, y). Distance between two points ($\mathrm{x}_{1}, \mathrm{y}_{1}$), $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$:
$\mathrm{A}\left(x_{1}, y_{1}\right) \quad \mathrm{B}\left(x_{2}, y_{2}\right)$
Distance $=\mathbf{A B}=\sqrt{\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)^{2}+\left(\mathbf{y}_{2}-\mathbf{y}_{1}\right)^{2}}$

Section Formula:

Section Formula: The co-ordinates of a point $P(x, y)$, dividing the line segment joining the two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ internally in the ratio $m: n$ are given by

$$
\begin{aligned}
& \bullet \mathrm{A}\left(x_{1}, y_{1}\right) \quad \mathrm{P}(x, y) \\
& \boldsymbol{x}=\frac{\boldsymbol{m}\left(x_{2}, y_{2}\right)}{\boldsymbol{\boldsymbol { x } _ { 2 }}+\boldsymbol{n} \cdot \boldsymbol{\boldsymbol { x } _ { \boldsymbol { 1 } }}} \boldsymbol{\boldsymbol { m } + \boldsymbol { n }}, \boldsymbol{y}=\frac{\boldsymbol{m} \cdot \boldsymbol{y}_{\boldsymbol{2}}+\boldsymbol{n} \cdot \boldsymbol{y}_{\boldsymbol{1}}}{\boldsymbol{m}+\boldsymbol{n}}
\end{aligned}
$$

The co-ordinate of the point $P(x, y)$, dividing the line segment joining the two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ externally in the ratio $m: n$ are given by

$$
\begin{aligned}
& \mathrm{A}\left(x_{1}, y_{1}\right) \\
& \boldsymbol{x}=\frac{\boldsymbol{m}\left(x_{2}, \boldsymbol{x}_{2}-\boldsymbol{n} \cdot \boldsymbol{x}_{\boldsymbol{1}}\right.}{\boldsymbol{m}-\boldsymbol{n}}, \boldsymbol{y}=\frac{\boldsymbol{m} \cdot \boldsymbol{y}_{2}-\boldsymbol{n} \cdot \boldsymbol{y}_{\boldsymbol{1}}}{\boldsymbol{m}-\boldsymbol{n}}
\end{aligned}
$$

Trisection Formula of a line segment:

Trisection Formula of a line segment: If points P and Q which lie on line segment $A B$ divide it into three equal parts that means, if $A P=P Q=Q B$ then the points P and Q are called Points of Trisection of $A B$

Here, P divides $A B$ in the ratio $2: 1$ and Q divides $A B$ in the ratio $1: 2$. Now use the section formula for finding the coordinates of P and Q.

Reflection in the X-axis:

1. Reflection in the X-axis: Here, x-axis represents the plain mirror. When point M is reflected in x-axis, the image M^{\prime} is formed in the horizontally opposite quadrant whose co- ordinates are ($\mathrm{h},-\mathrm{k}$). Thus, when a point is reflected in x-axis, then the x-co-ordinate remains same, but the y co-ordinate becomes negative

Thus, the image of point $M(h, k)$ is $M^{\prime}(h,-k)$. Rule:
(i) Retain the abscissa i.e., x-coordinate.
(ii) Change the sign of ordinate i.e., y-coordinate.

Reflection in the \mathbf{Y}-axis

2. Reflection in the Y-axis: Here, y-axis represents the plane mirror. when point M is reflected in y-axis, the image M^{\prime} is formed in the vertically opposite quadrant whose co-ordinates are (-h, k). Thus, when a point is reflected in y-axis, then the y-co-ordinate remains same and then x-co-ordinate become negative.

Thus, the image of $M(h, k)$ is $M^{\prime}(-h, k)$.

Rule:

(i) Change the sign of abscissa i.e., x-coordinate.
(ii) Retain the ordinate i.e., y-coordinate.

Reflection through Origin:

3. Reflection through Origin: When a point is reflected in origin, both x-co-ordinate and y-co-ordinate change. Thus, the reflection of $M(h, k)$ is $M^{\prime}(-h,-k)$ in the origin.

Rule:
(i) Change the sign of abscissa i.e., x-coordinate.
(ii) Change the sign of ordinate i.e., y-coordinate.

The co-ordinates of midpoint of the line formed by $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$:Here, P point divides the line segment $A B$ into ratio 1:1. Thus, $m=n=1$.

$$
\mathbf{P}(\mathbf{x}, \mathrm{y})=\left(\frac{\mathbf{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathbf{y}_{1}+\mathrm{y}_{2}}{2}\right)
$$

Area of triangle whose coordinates are $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$:

Area of the Triangle $A B C \frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$

Collinear Points

Collinear points: Three or more points that lie on a same straight line are called collinear points. There are two methods to find if three points are collinear:
(i) Slope formula method: Three or more points are collinear, if slope of any two pairs of points is same. Let three points be A, B and C, three pairs of points can be formed as $A B, B C$ and $A C$.

If slope of $A B=$ slope of $B C=$ slope of $A C$, then A, B and C are collinear points. (ii) Area of triangle method: Three points are collinear if the value of area of triangle formed by the three points is zero. Slope of a line: If a line joining two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ then the slope of the line joining the two points.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=-\frac{\text { coefficient of } x}{\text { coefficient of } y}$

Angle between two lines: If two lines having slopes m_{1} and m_{2} then angle between the two lines is given by

$\tan \theta= \pm \frac{m_{2}-m_{1}{ }^{`}}{1+m_{1} m_{2}}$ where $m_{1}, m_{2}=$ slope of the lines
$\Rightarrow \theta=\tan ^{-1}\left(\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right)$

Note: If lines are parallel to each other then $\tan \theta=0^{\circ}$
If lines are perpendicular to each other then $\cot \theta=0^{\circ}$
Equation of line parallel to y-axis: The equation of a straight line to the x-axis and at a distance a from it, is given by $\mathrm{X}=\mathrm{a}$.

Equation of line parallel to x-axis: The equation of a straight line parallel to the y - axis and at a distance a from is given by $Y=b$.

Different types of Equations of line:

1. Normal equation of the line: $a x+b y+c=0 N o t e:$ Area of the triangle formed by co-ordinate axes and the line $a x+b y+c=0$ is given by $\frac{c^{2}}{2 a b}$.
2. Polar Form of an equation:

$$
r=\sqrt{x^{2}+y^{2}} ; \sin \theta=\frac{y}{r} \Rightarrow y-r \cdot \sin \theta ; \quad \cos \theta=\frac{x}{r} \Rightarrow x=r \cdot \cos \theta
$$

Co-ordinates of points in Polar Form: ($\mathbf{r S i n} \boldsymbol{\theta}, \mathbf{r} \operatorname{Cos} \boldsymbol{\theta}$)
3. Slope - Intercept Form: $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ Where, $\mathrm{m}=$ slope of the line \& $\mathrm{c}=$ intercept on Y -axis

4. Intercept Form:

$\frac{x}{A}+\frac{y}{B}=1$, Where, A and B are x-intercept and y-intercept respectively.

5. Trigonometric form of equation of line, $a x+b y+c=0$

$x \cos \theta+y \sin \theta=p$,
Where, $\cos \theta=-\frac{a}{\sqrt{a^{2}+b^{2}}}, \sin \theta=-\frac{b}{\left(\sqrt{a^{2}+b^{2}}\right)}$ and $p=\frac{c}{\sqrt{a^{2}+b^{2}}}$
6. Equation of line passing through point $(x 1, y 1) \&$ has a slope " m ": $y-y_{1}=m\left(x-x_{1}\right)$

7. Equation of two lines parallel to each other: Here, $a x+b y+c_{1}=0$ and $a x+b y+c_{2}=0$ represent the equations of two lines parallel to each other. " d " represent the distance between the two parallel lines.

$$
a x+b y+c_{2}=0
$$

Note: Here, coefficient of $x \& y$ will be same
8. Equation of two lines perpendicular to each other:
$a x+b y+c 1=0$
$b x-a y+c 2=0$

Note: Here, coefficient of $x \& y$ are opposite $\&$ in one equation there is negative sign. Note: If m_{1}, m_{2} are slopes of two perpendicular lines then $m_{1} \cdot m_{2}=-1$. The Distance of a Point from a Line: The length of perpendicular from a point $A\left(x_{1}, y_{1}\right)$ to a line with equation $a x+b y+c=0$ is:

$a x+b y+c=0$
$\mathrm{p}=\frac{\left|\mathrm{ax}_{1}+\mathrm{by} \mathrm{y}_{1}+\mathbf{c}\right|}{\sqrt{\mathbf{a}^{2}+\mathrm{b}^{2}}}$

The Distance between two parallel lines: When two parallel straight lines with equations $a x+b y+c_{1}=0$ and $a x+b y+c_{2}=0$, then the distance between them is given by:

$$
a x+b y+c_{1}=0
$$

$$
a x+b y+c_{2}=0
$$

$$
\mathbf{d}=\frac{\left|\mathbf{c}_{1}-\mathbf{c}_{2}\right|}{\sqrt{\mathbf{a}^{2}+\mathrm{b}^{2}}}
$$

CSIR NET General Aptitude (Part A) 2022

A Foundation Course

Comprehensive Prep of General Aptitude (Part A of Exam)

WHY TAKE THIS COURSE?

> 80+ Interactive Live Classes \& Doubt Sessions for Foundation conceptual clarity
> $1000+$ Practice Questions covering all levels of difficulty
> Study Notes \& Formula Sheets
> 20+ Mock Tests

