

150+ Maths and Physics Questions PDF for RRB ALP Stage II Exam Part - A

Powered by :

gradeup

1. In the figure, $O R \perp O P$ and $O S \perp O Q$. Find $\angle S O R$ if $\angle Q O P=30^{\circ}$

(a) 20°
(b) 30°
(c) 40°
(d) None of these

Ans.(b)
Sol.
$\angle \mathrm{QOR}=90^{\circ}-\angle \mathrm{POQ}$
$=90^{\circ}-30^{\circ}$
$=60^{\circ}$
$\therefore \angle \mathrm{ROS}=90^{\circ}-\angle B O P$
$=90^{\circ}-60^{\circ}$
$=30^{\circ}$
2 .PQ and RS are two parallel lines, $A B$ cuts $P R$ and $R S$ at A and B respectively. $M L$ is the bisector of $\angle B M Q$. If $\angle L M Q=40^{\circ}$ then \angle RNB will be:
(a) 70°
(b) 55°
(c) 100°
(d) 125°

Ans.(c)
Sol.
$\angle B M Q=2 \angle B M L=80^{\circ}$
$\because \angle P M N=\angle M N L=180-80=100^{\circ}(\because \mathrm{PQ} \| \mathrm{RS})$
$\therefore \angle \mathrm{RNB}=\angle \mathrm{MNL}=100^{\circ}$

3. $\triangle A B C$ and $\triangle P Q R$ both are similar and perimeter of $\triangle A B C$ and $\triangle P Q R$ are 45 cm and 60 cm respectively if $A B=12 \mathrm{~cm}$. Find $P Q$?
(a) 16
(b) 18
(c) 20
(d) 10

Ans.(a)
Sol.
If two triangles are similar then ratio of side $=$ ratio of perimeter
$\frac{\text { perimeterof } \triangle A B C}{\text { Perimeterof } \triangle P Q R}=\frac{45}{60}=\frac{3}{4}=\frac{A B}{P Q}$
$\mathrm{PQ}=\frac{4}{3} \times 12$
$P Q=16 \mathrm{~cm}$
4. In triangle $A B C, P$ and Q are the mid points of the sides $A B$ and $A C$ respectively. R is a point on the segment $P Q$ such that $P R: R Q$ is $2: 5$ if $P R=4 \mathrm{~cm}$. find the length of $B C$.
(a) 16 cm
(b) 18 cm
(c) 10 cm
(d) 28 cm

Ans.(d)
Sol.

$\triangle \mathrm{APQ} \sim \triangle \mathrm{ABC}$
$\therefore \frac{A P}{A B}=\frac{P Q}{B C}$
$\frac{1}{2}=\frac{P Q}{B C}$
$B C=2 P Q$
$B C=2(P R+R Q)$
$B C=2 \times 14$
$B C=28 \mathrm{~cm}$
5. $A B C$ is a triangle D, E and F are the mid points of $A B, A C$ and $B C$. Find the ratio of area of $\triangle D E F$ and area of $\triangle A B C$.
(a) $1: 2$
(b) $1: 4$
(c) $1: 6$
(d) $1: 16$
5. (b)

D and E are mid points of $A B$ and $A C$
\therefore DE || BC

$D E=\frac{1}{2} B C$
In same manner
$D F=\frac{1}{2} A C$ and $E F=\frac{1}{2} A B$
Ratio of side $=1: 2$
Ratio of area of $\triangle \mathrm{DEF}$ and $\triangle \mathrm{ABC}=1: 4$
6. If PA and $P B$ are tangents, and $\angle A C B=$ 110°, find $\angle \mathrm{APB}$

(a) 50°
(b) 100°
(c) 40°
(d) 80°

Ans.(c)
Sol.

$$
\angle O A P=\angle O B P=90^{\circ}
$$

In cyclic quadrilateral ACBD,
$\angle \mathrm{ADB}+\angle \mathrm{ACB}=180^{\circ}$
$\angle \mathrm{ADB}=70^{\circ}$
$\angle A O B=\frac{1}{2} \angle \mathrm{ADB}=140^{\circ}$
$\angle A O B+\angle A P B=180^{\circ}$
$\angle A P B=180^{\circ}-140^{\circ}$
$\angle A P B=40^{\circ}$
7. Two circle of equal radius of ' r ' passes through centre of each other. Find the length of common tangent.
(a) 3 r
(b) $\sqrt{5} r$
(c) $\sqrt{3} r$
(d) $2 r$

Ans.(c)
Sol.

$\mathrm{AB}=$ common tangent
C_{1} and C_{2} are centres of circle with radius ' r '.
$C_{1} A=r$
$C_{1} C_{2}=r$
$C_{1} O=\frac{r}{2}$

$$
\begin{aligned}
& A O=\sqrt{r^{2}-\left(\frac{r}{2}\right)^{2}}=\frac{\sqrt{3} r}{2} \\
& \mathrm{AB}=2 \mathrm{AO} \\
& \mathrm{AB}=\sqrt{3} r
\end{aligned}
$$

8. Two circle of radius 13 cm and 5 cm and distance between their centre is 17 cm . Find the length of direct common tangent of the circles.
(a) 11 cm
(b) 12 cm
(c) 10 cm
(d) 8 cm

Ans.(b)
Sol.
Direct common tangent $=\sqrt{d^{2}-(R-r)^{2}}$
$=\sqrt{(17)^{2}-(13-5)^{2}}$
$=15 \mathrm{~cm}$
9. 'PQ' is a tangent at ' $\mathrm{C}^{\prime} \angle \mathrm{BCQ}=40^{\circ}$.

Find $\angle B A C$

(a) 30°
(b) 20°
(c) 40°
(d) 60°

Ans.(c)
Sol.

Free mock test for
SSC CGL/ CPO/ STENOGRAPHER/ MTS
RRB ALP/ RPF/ IB \& STATE EXAMS

Let centre of circle is ' O^{\prime}
$\angle O C Q=90^{\circ}$
$\therefore \angle \mathrm{OCB}=50^{\circ}$
$\angle \mathrm{OBC}=\angle \mathrm{OCB}=50^{\circ}$
$\angle B O C=80^{\circ}$
$\therefore \angle B A C=40^{\circ}$
10. $A B$ is chord of length of $5 \sqrt{2} \mathrm{~cm}$ and $\angle A C B=45^{\circ}$ where ' C^{\prime} is a point on circle. Find area of circle.
(a) $25 \pi \mathrm{~cm}^{2}$
(b) $18 \pi \mathrm{~cm}^{2}$
(c) $27 \pi \mathrm{~cm}^{2}$
(d) None of these

Ans.(a)
Sol.

Let centre of circle is ' O^{\prime}
$\angle A O B=90^{\circ}$
$\mathrm{OA}=\mathrm{OB}=$ radius of circle
$\therefore r \sqrt{2}=5 \sqrt{2}$
$r=5$
Area of circle $=\pi r^{2}$
$=\pi(5)^{2}$
$=25 \pi \mathrm{~cm}^{2}$
11. The distance between the points $(3,7)$ and $(k,-5)$ is 13 . What is the value of k ?
(a) 1
(b) 3
(c) -2
(d) -3

Ans.(c)
Sol.
ATQ,
$\sqrt{(-5-7)^{2}+(K-3)^{2}}=13$
$144+(K-3)^{2}=169$
$(K-3)^{2}=25$
$(K-3)= \pm 5$
$K-3=5$ or $K-3=-5$
$K=8$ or $K=-2$
$K=-2$ \{as it is given in options\}
12. What is the equation of the line perpendicular to the line $4 x+6 y=-12$ and having Y-axis intercept 4 ?
(a) $3 x-2 y=6$
(b) $3 x-2 y=-8$
(c) $2 x-3 y=-6$
(d) $2 x-3 y=8$

Ans.(b)
Sol.
Slope of given line $=\frac{-2}{3}$
Slope of \perp line $=\frac{3}{2}$
Equation of \perp line $\Rightarrow(y-4)=\frac{3}{2}(x-0)$
$\Rightarrow 2 y-8=3 x \Rightarrow 3 x-2 y=-8$
13. Point A divides segment $B C$ in the ratio $1: 3$. Co-ordinates of B are $(4,-4)$
and C are $(0,6)$. What are the co-
ordinates of point A ?
(a) $(-3,1.5)$
(b) $(-1.5,3)$
(c) $(3,-1.5)$
(d) $(1.5,3)$

Ans.(c);
Sol.

$(4,-4) \quad(x, y)$
$(0,6)$
By section formula,
$\Rightarrow \frac{1 \times 0+3 \times 4}{1+3}=x$ and $\frac{1 \times 6+3(-4)}{1+3}=y$
$\Rightarrow x=3$ and $y=-1.5$
$\therefore A(x, y)=(3,-1.5)$
14. What is the slope of the line parallel to the line passing through the points (-3, 2) and (4, -3)?
(a) $1 / 7$
(b) $-1 / 7$
(c) -7
(d) 7

Ans.(b);
Sol. Slope of given line $=\frac{-3-(-2)}{4-(-3)}=-\frac{1}{7}$
Because lines are parallel, hence slope will be the same for both lines.
15. What is the reflection of the point $(4,-7)$ in the y-axis?
(a) $(-4,3.5)$
(b) $(-4,-7)$
(c) $(-7,-4)$
(d) $(7,-4)$

Ans.(b);
Sol.

Free mock test for
SSC CGL/ CPO/ STENOGRAPHER/ MTS
ATTEMPT NOW
RRB ALP/ RPF/ IB \& STATE EXAMS
16. Value of $\sec ^{2} \theta-\frac{\sin ^{2} \theta-2 \sin ^{4} \theta}{2 \cos ^{4} \theta-\cos ^{2} \theta}$ is
(a) 1
(b) 2
(c) -1
(d) 0

Ans: (a)
Sol.
$\sec ^{2} \theta-\frac{\sin ^{2} \theta-2 \sin ^{4} \theta}{2 \cos ^{4} \theta-\cos ^{2} \theta}$
$=\sec ^{2} \theta-\frac{\sin ^{2} \theta\left(1-2 \sin ^{4} \theta\right)}{\cos ^{2} \theta\left(2 \cos ^{2} \theta-1\right)}$
$\left[\because \quad \sin ^{2} \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta\right]$
$=\sec ^{2} \theta-\tan ^{2} \theta$
$=1$
17. $\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$ is equal to
(a) $2 \cos \theta$
(b) $2 \sin \theta$
(c) $2 \cot \theta$
(d) $2 \sec \theta$

Ans: (d)
Sol.
$\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$
$=\frac{(\sqrt{1+\sin \theta})^{2}+(\sqrt{1-\sin \theta})^{2}}{\sqrt{1-\sin ^{2} \theta}}$
$=\frac{1+\sin \theta+1-\sin \theta}{\cos \theta}$
$=\frac{2}{\cos \theta}=2 \sec \theta$
18.The numerical value of
$\frac{11}{\operatorname{cosec}^{2} \theta}+5 \cos ^{2} \theta+\frac{6}{1+\tan ^{2} \theta}$:
(a) 7
(b) 11
(c) 9
(d) 5

Ans: (b)
Sol.
$\frac{11}{\operatorname{cosec}^{2} \theta}+5 \cos ^{2} \theta+\frac{6}{1+\tan ^{2} \theta}$
$=11 \sin ^{2} \theta+5 \cos ^{2} \theta+\frac{6}{1+\tan ^{2} \theta}$
$\because \quad \quad \therefore \theta=\sec ^{2} \theta$)
$=11 \sin ^{2} \theta+5 \cos ^{2} \theta+6 \cos ^{2} \theta$
$=11\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
$=11\left(\because \quad \cos ^{2} \theta=1\right)$
$=11$
19.The value of
$\tan 4^{\circ} \cdot \tan 43^{\circ} \cdot \tan 47^{\circ} \cdot \tan 86^{\circ}$ is
(a) 2
(b) 3
(c) 1
(d) 4

Ans: (c)
Sol.
$\tan 4^{\circ} \tan 43^{\circ} \tan 47^{\circ} \tan 86^{\circ}$
Here,
$\tan 86^{\circ}=\tan \left(90^{\circ}-4^{\circ}\right)=\cot 4^{\circ}$
$\tan 47^{\circ}=\tan \left(90^{\circ}-43\right)=\cot 43^{\circ}$
$\tan 4^{\circ} \cdot \cot 4^{\circ}, \tan 43^{\circ} \cdot \cot 43^{\circ}=1$
20.If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{4}{3}$, the value of
$\frac{\tan ^{2} \theta+1}{\tan ^{2} \theta-1}$ is
(a) $\frac{25}{16}$
(b) $\frac{25}{7}$
(c) $\frac{25}{24}$
(d) $\frac{24}{25}$

Ans: (c)

Sol.
$\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{4}{3}$
$3 \sin \theta+3 \cos \theta=4 \sin \theta-4 \cos \theta$
$\sin \theta=7 \cos \theta$
$\frac{\sin \theta}{\cos \theta}=7$
$\tan \theta=7$
$\frac{\tan ^{2} \theta+1}{\tan ^{2} \theta-1}=\frac{7^{2}+1}{7^{2}-1}$
$=\frac{50}{48}=\frac{25}{24}$
21. If $a=256, b=258$ and $c=260$ the value of $a^{3}+b^{3}+c^{3}-3 a b c$ is
(a) 9360
(b) 9240
(c) 9288
(d) 10780

Ans.(c)
Sol
$=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$=\frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$
$=\frac{1}{2}(256+258+260)\left[(-2)^{2}+(-2)^{2}+4^{2}\right]$
$=\frac{1}{2} \times 774 \times 24=9288$
22.If $x^{2}+y^{2}+z^{2}=2(x-y-z)-3$, then the value of $6 x-5 y+3 z$?
(a) 6
(b) 8
(c) 7
(d) 9

Ans(b)
Sol.
$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-2 \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}+1+1+1=0$
$\left(x^{2}-2 x+1\right)+\left(y^{2}+2 y+1\right)+\left(z^{2}+2 z+1\right)=0$
$(x-1)^{2}+(y+1)^{2}+(z+1)^{2}=0$
$\therefore \mathrm{x}=1, \mathrm{y}=-1$ and $\mathrm{z}=-1$
$6(1)-5(-1)+3(-1)$
$6+5-3=11-3=8$
23. If $x=4+\sqrt{15}$, the value of $\left(x^{2}+\frac{1}{x^{2}}\right)$ is
(a) $32 \sqrt{2}$
(b) 64
(c) 48
(d) 62

Ans(d)

Sol.
$\frac{1}{\mathrm{x}}=\frac{1}{4+\sqrt{15}} \times \frac{4-\sqrt{15}}{4-\sqrt{15}}$
$=\frac{4-\sqrt{15}}{16-15}=4-\sqrt{15}$
$x+\frac{1}{x}=4+\sqrt{15}+4-\sqrt{15}$
$x+\frac{1}{x}=8$
$x^{2}+\frac{1}{x^{2}}=8^{2}-2=64-2=62$
24. Given that, $10^{0.30}=a, 10^{0.75}=b$ and $a^{c}=b^{2}$, then the value of c is
(a) 3.45
(b) 5
(c) 2.9
(d) 3.5

Ans(b)
Sol.
$\because 10^{0.30}=a \& 10^{0.75}=b$
$\Rightarrow a^{c}=b^{2}$
$\Rightarrow\left(10^{0.30}\right)^{c}=\left(10^{0.75}\right)^{2}$
$\Rightarrow 10^{0.30 c}=\left(10^{0.75}\right)^{2}$
$=0.30 c=1.5$
$=c=\frac{1.5}{.30}=5$
25. Quantity I : $x^{2}-9 x+20=0$

Quantity II : $\mathrm{y}^{2}+3 \mathrm{y}-10=0$
(a) if $x<y$
(b) if $x \leq y$
(c) if $x=y$ or no relation can be established between x and y.
(d) if $x>y$

Ans(c)
Sol.
Quantity I: $x^{2}-5 x-4 x+20=0$
$x(x-5)-4(x-5)=0$
$x=4,5$
Quantity II : $\mathrm{y}^{2}+3 \mathrm{y}-10=0$
$y^{2}+5 y-2 y-10=0$
$y(y+5)-2(y-5)=0$
$y=2,5$
Hence, no relation established
26. The ratio of curved surface area of two cones is $2: 3$ and the ratio of slant height of the two cones is
$3: 4$. What is the ratio of the radius of the two cones?
(a) $2: 7$
(b) $3: 4$

(c) $8: 9$
(d) $1: 1$

Ans.(c)
Sol.
ATQ, Curved surface area of two cones = 2:3
Ratio of slant height of two cones $=3: 4$
So, curved surface area of cone $=\pi r l$
So, $\frac{2}{3}=\frac{\pi r_{1} l_{1}}{\pi r_{2} l_{2}} \Rightarrow \frac{r_{1}}{r_{2}}=\frac{2}{3} \times \frac{4}{3}=\frac{8}{9}$
27. Radius of hemisphere is thrice that of a sphere. What is the ratio of total surface area of hemisphere and sphere?
(a) $27: 4$
(b) $9: 4$
(c) $4: 3$
(d) $6: 13$
27. Ans.(a)

Sol. ATQ,
Radius of hemisphere $=3 \times$
radius of sphere
$r=3 \times R$
The ratio of total surface area of hemisphere
\& Sphere $=\frac{3 \pi r^{2}}{4 \pi R^{2}}$
$=\frac{3}{4} \times \frac{(3 R)^{2}}{R^{2}}=\frac{3}{4} \times 9=\frac{27}{4}$
28. Diameter of a cycle wheel is 28 cm . A cyclist takes 30 minutes to reach a destination at a speed of $22 \mathrm{~km} / \mathrm{h}$. How many revolutions will the wheel make during the journey?
(a) 12500
(b) 157000
(c) 17750
(d) 20000

Ans.(a)
Sol. ATQ,
Radius of cycle wheel $=14 \mathrm{~cm}$
So, distance covered by 1 revolution of cycle.
$=2 \pi r=2 \times \frac{22}{7} \times 14=88 \mathrm{~cm}$
Distance covered in given time $=30 \mathrm{~min}$.
$=\frac{22000}{2}=11000 \mathrm{~m}$.
$\Rightarrow 100 \times 11000=88 \times$ No. of revolutions
So, No. of revolutions $=12500$
29.If the perimeter of a square is 100 cm , then what is the diagonal of the square (in cm)?
(a) $25 \sqrt{ } 2$
(b) $40 \sqrt{ } 2$
(c) $80 \sqrt{ } 2$
(d) 25

Ans.(a)
Sol.
$4 \mathrm{a}=100$
$a=25 \mathrm{~cm}$
Diagonal of the square $=\sqrt{2} a=25 \sqrt{2} \mathrm{~cm}$
30.If the radius of sphere is decreased by 10%, then by what percent volume of sphere will decrease?
(a) 30
(b) 27.1
(c) 29.3
(d) 28.5

Ans.(b)
Sol.
Radius = 10: 9
Volume = 1000: 729
$\%$ decrease in volume $=\frac{271}{1000} \times 100$
= 27.1\%
31. The value of $\frac{\sqrt{3}}{\sin 20^{\circ}}-\frac{1}{\cos 20^{\circ}}$ is
(a) 1
(b) 4
(c) 3
(d) None of these
31. Ans.(b)

Sol.

$$
\begin{aligned}
& \frac{\sqrt{3}}{\sin 20^{\circ}}-\frac{1}{\cos 20^{\circ}} \\
& =\frac{\sqrt{3} \cos 20-\sin 20}{\sin 20 \cos 20^{\circ}}=\frac{2 \times \frac{\sqrt{3}}{2} \cos 20-2 \times \frac{1}{2} \sin 20}{\frac{1}{2} \times 2 \times \sin 20 \cos 20} \\
& =\frac{2 \times 2|\sin 60 \cos 20-\cos 60 \sin 20|}{\sin 40^{\circ}}\left(\because \frac{1}{2}\right. \\
& \left.=\cos 60^{\circ} \text { and } \frac{\sqrt{3}}{2}=\sin 60^{\circ}\right) \\
& =\frac{4\left|\sin \left(60^{\circ}-20^{\circ}\right)\right|}{\sin 40^{\circ}}=\frac{4 \sin 40}{\sin 40} \\
& =4
\end{aligned}
$$

32. If $\tan \theta=\frac{1}{\sqrt{6}}$ and $0<\theta<\frac{\pi}{2}$, then the value of $\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\sec ^{2} \theta}$ is
(a) $\frac{3}{4}$
(b) $\frac{5}{7}$
(c) $\frac{6}{5}$
(d) $\frac{7}{6}$

Ans.(b)
Sol.

$\tan \theta=\frac{1}{\sqrt{6}}=\frac{P}{B}$
$H=\sqrt{1^{2}+(\sqrt{6})^{2}}=\sqrt{7}$
$\operatorname{cosec}^{2} \theta=\frac{7}{1}, \sec ^{2} \theta=\frac{7}{6}$
so, $\frac{7-\frac{7}{6}}{7+\frac{7}{6}}=\frac{1-\frac{1}{6}}{1+\frac{1}{6}}=\frac{5}{7}$
33. If $\tan \theta=\frac{\sin \alpha+\cos \alpha}{\sin \alpha-\cos \alpha}$, then $(\theta+\alpha)=$?
(a) 120°
(b) 60°
(c) 90°
(d) 135°

Ans.(d)
Sol.
$\tan \theta=\frac{\sin \alpha+\cos \alpha}{\sin \alpha-\cos \alpha}$
$\Rightarrow \tan \theta=\frac{\frac{\sin \alpha}{\cos \alpha}+1}{\frac{\sin \alpha}{\cos \alpha}-1}=\frac{\tan \alpha+1}{\tan \alpha-1}$
$\Rightarrow \tan \theta=\frac{\tan \frac{\pi}{4}+\tan \alpha}{-\left(1-\tan \frac{\pi}{4} \cdot \tan \alpha\right)}=-\tan \left(\frac{\pi}{4}+\alpha\right)$
ortan $\theta=\tan \left(\pi-\frac{\pi}{4}-\alpha\right)=\tan \left(\frac{3 \pi}{4}-\alpha\right)$
$\theta=\frac{3 \pi}{4}-\alpha$
$\theta+\alpha=\frac{3 \pi}{4}=135^{\circ}$
34. If $0^{\circ}<\theta<90^{\circ}$ and $2 \cot \theta=3 \sec \theta$, then θ is -
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{5}$

Ans.(a)
Sol.
$2 \cot \theta=3 \sec \theta$
$\frac{2 \cos \theta}{\sin \theta}=\frac{3}{\cos \theta} \Rightarrow 2 \cos ^{2} \theta=3 \sin \theta$
$2-2 \sin ^{2} \theta=3 \sin \theta$
$2 \sin ^{2} \theta+3 \sin \theta-2=0$
$2 \sin ^{2} \theta+4 \sin \theta-\sin \theta-2=0$
$2 \sin \theta(\sin \theta+2)-1(\sin \theta+2)=0$
$(2 \sin \theta-1)(\sin \theta+2)=0$
$2 \sin \theta-1=0, \sin \theta+2 \neq 0$
$\sin \theta=\frac{1}{2}$
$\theta=30^{\circ}$ or $\frac{\pi}{6}$
35. If $\sec \alpha+\tan \alpha=4$, then the value of $\sin \alpha$ is (assume that $0^{\circ}<a<90^{\circ}$)
(a) $\frac{17}{8}$
(b) $\frac{1}{2}$
(c) $\frac{15}{17}$
(d) $\frac{8}{17}$

Ans.(c)
Sol.
$\sec \alpha+\tan \alpha=4$
We know that $\sec ^{2} \alpha-\tan ^{2} \alpha=1$
So $\sec \alpha+\tan \alpha=\frac{1}{\sec \alpha-\tan \alpha}=\frac{1}{4}$
$\sec \alpha+\tan \alpha=4$
$\frac{\sec _{+} \alpha-\tan \alpha=\frac{1}{4}}{2 \sec \alpha=\frac{17}{4}}$
$\sec \alpha=\frac{17}{8}, \cos \alpha=\frac{8}{17}$
$\sin \alpha=\sqrt{1-\cos ^{2} \alpha}=\sqrt{1-\frac{64}{289}}$
$\sin \alpha=\frac{15}{17}$
36.What is the simplified value of $8 .\left(3^{2}+\right.$ 1) $\left(3^{4}+1\right)\left(3^{8}+1\right) ?$
(a) $3^{8}-1$
(b) $3^{16}-1$
(c) $3^{32}-1$
(d) $3^{64}-1$

Ans.(b)
Sol. $=(3-1)(3+1)\left(3^{2}+1\right)\left(3^{4}+1\right)\left(3^{8}+1\right)$
$(\because$ we can write $8=(3-1) \times(3+1))$
$=\left(3^{2}-1\right)\left(3^{2}+1\right)\left(3^{4}+1\right)\left(3^{8}+1\right)$
$=\left(3^{4}-1\right)\left(3^{4}+1\right)\left(3^{8}+1\right)$
$=\left(3^{16}-1\right)$
37. Which one among $\sqrt{ } 10+\sqrt{ } 4, \sqrt{ } 11+$ $\sqrt{ } 3, \sqrt{ } 7+\sqrt{ } 7$ is the smallest number?
(a) $\sqrt{ } 10+\sqrt{ } 4$
(b) $\sqrt{ } 11+\sqrt{ } 3$
(c) $\sqrt{ } 7+\sqrt{ } 7$
(d) All are equal

Ans.(b)
Sol. Smallest No. $=\sqrt{11}+\sqrt{3}$
38. If 37 N is divisible by 11 , then what is the value of N ?
(a) 1
(b) 3
(c) 4
(d) 9

Ans.(c)
Sol.

$\Rightarrow 4 \mathrm{~N}$ should be 11 .
$N=4$
39. The sum of three consecutive natural numbers is always divisible by \qquad _.
(a) 3
(b) 9
(c) 15
(d) 21

Ans.(a)
Sol. Let three consecutive natural no$n,(n+1)$ and ($n+2$)
So, the sum $=n+n+1+n+2=3 n+3=$ 3($n+1$)
That is always divisible by 3.
40. Neha added all natural numbers from 1 to 21 , however he missed one number due to which the sum
becomes211. What is the number which Neha missed?
(a) 17
(b) 10
(c) 15
(d) 20

Ans.(d)
Sol. Given that,
Sum of all natural no. from 1 to $21=\frac{n(n+1)}{2}$
$=\frac{21}{2} \times 22=231$
But Neha missed one number and the sum becomes = 205
So, Difference $=231-211=20$
41. If $p \times q=p+q+\frac{p}{q}$, the value of 6×3 is-
(a) 6
(b) 10
(c) 11
(d) 16

Ans: (c)
Sol.
$6 \times 3=6+3+\frac{6}{3}$
$=>9+2=11$
42. The value of

$$
\left(1+\frac{2}{x}\right)\left(1+\frac{2}{x+2}\right)\left(1+\frac{2}{x+4}\right)\left(1+\frac{2}{x+6}\right) \text { is: }
$$

(a) $1+\frac{1}{x+4}$
(b) $x+8$
(c) $\frac{1}{x}$
(d) $\frac{x+8}{x}$

Ans: (d)
Sol.

$$
\left(1+\frac{2}{x}\right)\left(1+\frac{2}{x+2}\right)\left(1+\frac{2}{x+4}\right)\left(1+\frac{2}{x+6}\right)
$$

Taking LCM of each term

$$
\begin{aligned}
& \left(\frac{x+2}{x}\right)\left(\frac{x+2+2}{x+2}\right)\left(\frac{x+4+2}{x+4}\right)\left(\frac{x+6+2}{x+6}\right) \\
& =>\frac{1}{x} \times(x+8) \Rightarrow \frac{x+8}{x}
\end{aligned}
$$

43. If $8^{5 x+5}=1$, then x equals-
(a) 0
(b) -1
(c) 1
(d) $-\frac{4}{5}$

Ans: b
Sol. $8^{5 x+5}=1$
$8^{5 x+5}=8^{0}\left(a^{0}=1\right)$ [if bases are same then
power are equal]
$5 x+5=0$
$5 x=-5$
$x=-1$
44. If $3^{x+3}+7=736$, then x is equal to-
(a) 5
(b) 3
(c) 2
(d) 1

Ans: (b)
Sol. $3^{x+3}+7=736$
$3^{x+3}=736-7$
$3^{x+3}=729$
$3^{x+3}=3^{6}$
$x+3=6$
$x=3$
45. If $x: y=4: 5$, then $(7 x+3 y):(7 x-3 y)$ is equal to
(a) $5: 2$
(b) $4: 3$
(c) $43: 13$
(d) $37: 19$

Ans(c)
Sol.
$x: y=4: 5$

$$
\begin{aligned}
& \frac{7 x+3 y}{7 x-3 y}=\frac{y}{y}\left(\frac{7 \frac{x}{y}+3}{7 \frac{x}{y}-3}\right)=\frac{7 \times \frac{4}{5}+3}{7 \times \frac{4}{5}-3} \\
& =\frac{\frac{28}{5}+3}{\frac{28}{5}-3}=\frac{\frac{28+15}{5}}{\frac{28-15}{5}}=\frac{43}{13}
\end{aligned}
$$

46.A bag contains 6 white, 7 red and 5 black balls, find the chance that three balls drawn at random are all white?
(a) $\frac{5}{204}$
(b) $\frac{204}{5}$
(c) $\frac{6}{18}$
(d) none of these

Ans.(a)
Sol. Three balls can be drawn out of $(6+7+5)=18$ balls in $18 c_{3}=816$
And, 3 balls can be drawn out of 6 white balls in $6 C_{3}=20$ ways
So, the chance that three balls are drawn at random and are all white is-
$\frac{20}{816}=\frac{5}{204}$
47. Which one of the following is true-?
(a) $\mathrm{H} . \mathrm{M} \leq \mathrm{G} . \mathrm{M} \leq \mathrm{A} . \mathrm{M}$
(b) $A . M \leq G . M \leq H . M$
(c) G.M $\leq A . M \leq H . M$ (d) none of the above

Ans.(a)
sol. Harmonic mean of a number series is always grater or equal to geometric mean of that number series and geometric mean of a number series is always grater or equal to arithmetic mean. So option(a) is correct.
48.from a pack of 52 cards are drawn at random. Find the chance that one is king and the other is queen.
(a) $\frac{8}{663}$
(b) $\frac{8}{660}$
(c) $\frac{4}{270.25}$
(d) $\frac{4}{270725}$

Ans.(a)
Sol. Exhaustive no. of cases $=52 \mathrm{C}_{2}$
A king can be drawn in $4 C_{1}$ ways and similarly a queen in $4 \mathrm{C}_{1}$ ways.
Therefore the required probability
$=\frac{4 C_{1} \times 4 C_{1}}{52 C_{2}}=\frac{8}{633}$
49. the arithmetic mean of two numbers is 12.5 and geometric mean is 10 , then the numbers are
(a)20,5
(b) 13,12
(c) 10,15
(d) 9,16

Ans(a)
Sol. Let the numbers be a and b
$\frac{a+b}{2}=12.5$
$a+b=25$
$b=25-a$
G. $\mathrm{M}=\sqrt{a b}=10$
$a b=100$

on solving..
we have- $a=20, b=5$
50.Qualitative data can be graphically represented by using a/an
(a)Histogram
(b) frequency polygon
(c)Ogive
(d) Bar graph

Ans(d)
Sol. Qualitative data can be graphically represented by using a Bar graph.
51. Find the 11th term of the arithmetic progression 2, 4.5, 7, 9.5.........
(a)25
(b)22.5
(c)27
(d) 26

Ans(c)
Sol. $\mathrm{d}=4.5-2=7-4.5=2.5$
$\mathrm{n}=11$
a is the first term=2
11th term $=a+(n-1) d=2+(11-1) 2.5=$ $2+10 \times 2.5=2+25=27$
52. The sum of five consecutive numbers is 120. Find the first number.
(a) 18
(b) 21
(c)22
(d) 23

Ans(b)
Sol.
5 consecutive numbers form an arithmetic progression with difference 1.
$\mathrm{n}=5$,
$S(5)=120$,
d = 1
Let the first number be a
$S(n)=\frac{n}{2}(2 a+(n-1) d)$
$120=\frac{5}{2}(2 a+4 \times 1)$
$48=2 a+4$
$2 \mathrm{a}=44$
a $=22$
The first number is 22 , and the other numbers are 22, 23, 24, 25, 26.
53. Let a_{n} be an arithmetic progression, for which $d=12$ and $a_{3}=46$. Find $a_{1-}{ }^{-}$
(a) 20
(b) 21
(c) 22
(d) 18

Ans(c)
Sol. $a n=a 1+(n-1) . d$ $=>a_{1}=a_{n}-(n-1) . d$

We substitute $n=3$ and get -
$\mathrm{a}_{1}=\mathrm{a}_{3}-(3-1) \mathrm{d}=\mathrm{a}_{1}=46-24$
$a_{1}=22$
54. What is the sum of the first 13 terms of an arithmetic progression if the 5th term is 1 and the 8th term is -17 ?
(a) -140
(b) 61
(c) -143
(d) 166

Ans(c)
Sol.
$\mathrm{T}_{5}=1$
$a+4 d=1$... (i)
and
$\mathrm{T}_{8}=-17$
$a+7 d=-17$
On solving (i) and (ii) we get,
$a=25$ and $d=-6$
$\mathrm{S}_{13}=\frac{13}{2}[2 \times 25+(13-1)(-6)]$
$=\frac{13}{2}[50-72]=-143$
55. The $3^{\text {rd }}$ and $7^{\text {th }}$ term of an arithmetic progression are 19 and 43 respectively. What is the $13^{\text {th }}$ term?
(a) 79
(b) 43
(c) 45
(d) 49

Ans.(a)
Sol. $\mathrm{T}_{3}=19$
a $+2 d=19$
and $\mathrm{T}_{7}=43$
$a+7 d=43 \ldots$ (ii)
On solving (i) and (ii) we get
$\mathrm{a}=7$ and $\mathrm{d}=6$
$\mathrm{T}_{13}=\mathrm{a}+12 \mathrm{~d}$
$=7+12 \times 6=79$
56. $(\sqrt{2}+\sqrt{7-2 \sqrt{10}})$ is equal to-
(a) $\sqrt{2}$
(b) $\sqrt{7}$
(c) $\sqrt{5}$
(d) $2 \sqrt{5}$

Ans(c)
Sol.
$(\sqrt{2}+\sqrt{7-2 \sqrt{10}})=\sqrt{2}+\sqrt{5+2-2 \sqrt{10}}$
$\sqrt{2}+\sqrt{(\sqrt{5}-\sqrt{2})^{2}}$
$\sqrt{2}+\sqrt{5}-\sqrt{2}$
$\sqrt{5}$
$57 .(0.5 \times 5+0.25 \times 0.5+0.5 \times 4+0.5 \times 0.75)$
is equal to-
(a) 5
(b) 10
(c)20
(d) 15

Ans.(a)
Sol. . $0.5 \times 5+0.25 \times 0.5+0.5 \times 4+0.5 \times$
0.75)
$=(2.5+0.125+2+0.375)$
$=(2.5+2+0.5)$
=5
58. The value of $1 \div[1+1 \div\{1+1 \div(1+1 \div$ 2)\}] is-
(a) 1
(b) 2
(c) $\frac{1}{2}$
(d) $\frac{5}{8}$

Ans(d)
Sol. $1 \div[1+1 \div\{1+1 \div(1+1 \div 2)\}]$
$=1 \div\left[1+1 \div\left\{1+1 \div\left(1+\frac{1}{2}\right)\right\}\right]$
$=1 \div\left[1+1 \div\left\{1+\frac{2}{3}\right\}\right]$
$=1 \div\left[1+1 \div \frac{5}{3}\right]$
$=1 \div\left[1+\frac{3}{5}\right]$
$=1 \div\left[\frac{8}{5}\right]$
$=\frac{5}{8}$
59. $\frac{2 \frac{3}{4}}{1 \frac{5}{6}} \div \frac{7}{8} \times\left(\frac{1}{3}+\frac{1}{4}\right)+\frac{5}{7} \div \frac{3}{4} o f \frac{3}{4}$ is equal to-
(a) $\frac{55}{77}$
(b) $\frac{49}{80}$
(c) $\frac{143}{63}$
(d) $3 \frac{2}{9}$

Ans(c)
Sol. $\frac{\frac{11}{4}}{\frac{11}{6}} \div \frac{7}{8} \times\left(\frac{7}{12}\right)+\frac{5}{7} \div \frac{3}{4} \times \frac{3}{4}$
$=\frac{6}{4} \times \frac{8}{7} \times \frac{7}{12}+\frac{5}{7} \times \frac{16}{9}$
$=1+\frac{80}{63}$
$=\frac{143}{63}$
60. $3 \frac{2}{7}$ of $4 \frac{4}{11}$ of $\frac{3}{35}$ of 5390 is equal to-
(a)6624
(b) 6948
(c) 7014
(d) 6124

Ans(a)
Sol. $3 \frac{2}{7}$ of $4 \frac{4}{11}$ of $\frac{3}{35}$ of 5390
$=\frac{23}{7} \times \frac{48}{11} \times \frac{3}{35} \times 5390$
$=6624$
61. Two posts are 4 m apart. Both posts are on same side of a tree. If the angles of depressions of these posts when observed from the top of the tree are 45° and 60° respectively, then what is the height(in meters) of the tree?
(a) $\sqrt{ } 3+1$
(b) $\sqrt{ } 3(\sqrt{ } 3+1)$
(c) $2 \sqrt{ } 3(\sqrt{ } 3+1)$
(d) $4 \sqrt{ } 3(\sqrt{ } 3+1)$

Ans.(c)
Sol.

In $\triangle A B C$,
$\tan 60^{\circ}=\frac{h}{B C}$
$\Rightarrow B C=\frac{h}{\sqrt{3}}$
In $\triangle \mathrm{ABD}$,
$\tan 45^{\circ}=\frac{h}{B C+C D}$
$h=B C+4$
$\mathrm{h}=\frac{h}{\sqrt{3}}+4$
$\mathrm{h}\left(\frac{\sqrt{3}-1}{\sqrt{3}}\right)=4$
h $=\frac{4 \sqrt{3}}{\sqrt{3}-1}=\frac{4 \sqrt{3}(\sqrt{3}+1)}{2}$
$=2 \sqrt{3}(\sqrt{3}+1) m$
62.The angles of elevation of the top of a building from the top and bottom of a tree are 30° and 60° respectively. If the height of the tree is 70 m , then what is the height of the building?
(a) $70 \sqrt{ } 3 \mathrm{~m}$
(b) 105 m
(c) $70(\sqrt{ } 3+1) \mathrm{m}$
(d) $75 \sqrt{ } 3 \mathrm{~m}$

Ans.(b)
Sol.

From fig. $E B=x \sqrt{3}$
$\& D C=\frac{70+\mathrm{x}}{\sqrt{3}}$
But, $\mathrm{EB}=\mathrm{DC}$

Free mock test for
$\Rightarrow 3 x=70+x$
$\Rightarrow x=35$
So, height of building $=105 \mathrm{~m}$
63. A person observes that the angle of elevation of the top of a pole of height 24 m is 60°. What is the distance (in meters) of the person from the pole?
(a) 15
(b) $8 \sqrt{ } 3$
(c) $24 \sqrt{ } 3$
(d) 30

Ans.(b)
Sol.

$\tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$
$B C=\frac{24}{\sqrt{3}} \mathrm{~m}$
$\mathrm{BC}=8 \sqrt{3} \mathrm{~m}$
64. If $8 x / 3+[7(5-2 x / 3)] / 2=1 / 2$, then what is the value of x ?
(a) -17
(b) 51
(c) -51
(d) 17

Ans(c)
Sol.

$$
\begin{aligned}
& \frac{8 x}{3}+\frac{\left[7\left(5-\frac{2 x}{3}\right)\right]}{2}=\frac{1}{2} \\
& \Rightarrow \frac{16 x}{3}+35-\frac{14 x}{3}=1 \\
& \Rightarrow \frac{2 x}{3}=-34 \\
& \Rightarrow x=\frac{-34 \times 3}{2}=-51
\end{aligned}
$$

65. A fraction is greater than its reciprocal by $9 / 20$. What is the fraction?
(a) $5 / 4$
(b) $4 / 5$
(c) $3 / 4$
(d) $4 / 3$

Ans(a)
Sol.
ATQ,
Let fraction $=\frac{x}{y}$
So, $\frac{x}{y}=\frac{y}{x}+\frac{9}{20}$ \qquad
By options. $\frac{x}{y}=\frac{5}{4}$ So, put in R.H.S.
$\Rightarrow \frac{4}{5}+\frac{9}{20}=\frac{16+9}{20}=\frac{25}{20}=\frac{5}{4}$
So, the fraction is $\frac{5}{4}$
66. A ladder 20 m long is placed in street so as to reach a window 16 m high. On turning the ladder on the other side of the street, it reaches a point 12 m high. The width of the street is
(a)28.5
(b) 28 m
(c) 27 m
(d) 32 m

Ans(b)
Sol.

In the given figure, width of the street $=(x+y)$
$=\sqrt{20^{2}-16^{2}}+\sqrt{20^{2}-12^{2}}$
$=\sqrt{144}+\sqrt{256}$
$=12+16$
$=28 \mathrm{~m}$
63. A tower standing on a horizontal plane subtends a certain angle at a point 240 meter apart from the foot of the foot of the tower. On moving 90 meter towards it, it is found that top of the tower subtend an angle twice as before. The height of the tower is-
(a) 120 m
(b) 160 m
(c) 80 m
(d)none of these

Ans(a)
Sol.

In $\triangle \mathrm{ACD}$,
$\angle A C B=\angle C A D+\angle A D C$
$\angle C A D=2 a-a=\alpha$
$\mathrm{AC}=\mathrm{CD}=150 \mathrm{~m}$
In $\triangle A B C$,
$\mathrm{AB}=\sqrt{A C^{2}-B C^{2}}=\sqrt{(150)^{2}-(90)^{2}}=120 \mathrm{~m}$

Height of the tower $=120 \mathrm{~m}$
68. If the height and the radius of base of a cone is 12 cm and 9 cm respectively, the find the slant height of the cone-
(a) 15 cm
(b) 16 cm
(c) 20 cm
(d) 8 cm

Ans(a)
Sol

By Pythagoras theorem-
$A B=\sqrt{A D^{2}+B D^{2}}=\sqrt{12^{2}+9^{2}}$ $=15 \mathrm{~cm}$
69. If perimeter of a square if 40 cm the find the length of its diagonal-
(a) $5 \sqrt{2} \mathrm{~cm}$
(b) $10 \sqrt{2} \mathrm{~cm}$
(c) $\frac{20}{\sqrt{3}} \mathrm{~cm}$
(d) 10 cm

Ans(b)
Sol. Perimeter of square $=40 \mathrm{~cm}$
So, length of side $=\frac{40}{4}=10 \mathrm{~cm}$
Length of diagonal $=\sqrt{10^{2}+10^{2}}=10 \sqrt{2} \mathrm{~cm}$ 70. Neha walks 4 km . due north and the 3 km . due east. How far has she walked the crow flies from her starting point?
(a) 4.5 km
(b) 7 km
(c) 8 km
(d) 5 km

Ans(d)
Sol.

Required distance $=\sqrt{4^{2}+3^{3}}=5 \mathrm{~km}$. 71. Identify an irrational number-
(a) $\sqrt{0.49}$
(b) 2.5
(c) $\sqrt{24}$
(d) $\sqrt{144}$

Ans(c)

Sol. An irrational is a number which cannot be written as a quotient of two integers,
$\sqrt{0.49}=.7=\frac{7}{10}, \sqrt{144}=12$ and $2.5=\frac{5}{2}$ 24 in not a perfect square, $\sqrt{24}$ cannot be written as a quotient of two integer, And $\sqrt{24}=4.898979485566 \ldots$, which is a non-terminating and non-repeating decimal.
So, $\sqrt{24}$ is an irrational number.
72. Find an irrational number between 2
and 3
(a) 2.5
(b) 2.9
(c) $\sqrt{11}$
(d) $\sqrt{5}$

Ans(d)
Sol.An irrational number between 2 and 3 is $\sqrt{5}$.
73. How many rational and irrational number can be inserted between 4 and 5 ?
(a) 0
(b) infinite
(c) 2
(d) none of these

Ans(b)
Sol. There are infinite number of rational and irrational number between 4 and 5.
74.zero is a -
(a) rational number
(b) irrational number
(c) both rational and irrational number
(d) none of the above.

Ans(a)
Sol.
Rational number are the ones that can be expressed in the form $\mathbf{p / q}$ such that \mathbf{p} is an integer and q a non-zero integer. zero(0), it can be expressed in many ways with one of the cases being ratio of two integers (eg. 0/1 = 0/2 = ... = 0), so, zero is rational numbers.
75.the greater number, that divides 122 and 243 leaving remanders respectively 2 and 3 is
(a) 12
(b) 24
(c)30
(d)120

Ans(d)
Sol. Required no. = H.F.C of (122-2)
and(243-3)
$=$ H.C.F of 120 and $240=120$.

SSC CGL/CPO/ \& RRB GRP. D /ALP/ TECHNICIAN \&RPF SI/CONST. \& STATE EXAMS 2018

- Based on latest exam pattern
- Available in Hindi \& English
- All India Rank \& Performance analysis
- Based on latest pattern
- Detailed explanation of Solutions
- Available on Desktop \& Mobile

GET IT ON
 Google Play

