GATE 2019 Online Test Series

Electrical Engineering

PACKAGES

GATE EE 2019 SUBJECT TESTS

24 Subject Tests + 4 Part Tests + 10 Free Previous Year Papers with solution

₹500/-

GATE EE 2019 MOCK TESTS

10 Full Length Mock Test

GATE EE 2019 COMBO TESTS

24 Subject Tests + 4 Part Tests + 10 Free Previous Year Papers with solution + 10 Full Length Mock Test

₹500/-

GATE 2019 Online Test Series

Electrical Engineering

FEATURES

- 24 Subject Tests based on the latest GATE pattern
- 4 Part Test covering the multiple subjects
- 10 Full Length GATE Mock Test
- 10 Free Previous year papers with solutions
- Detailed explanation of solutions
- Video solutions for the difficult questions

TEST SERIES HIGHLIGHTS

- Trusted brand by GATE Aspirants every year
- Get your instant AIR for each test
- Based on latest GATE exam pattern & syllabus
- Test wise comparison with toppers
- 1350+ high quality questions
- Name & Marks of the toppers in each test

				V	
TEST TYPE	NUMBE 1M	R OF Qs 2M	TIME	MAX. MARKS	t
Subject Test	10Qs	10Qs	45 min	30	-
Part Test	30Qs	35Qs	180 min	100	
Mock Test	30Qs	35Qs	180 min	100	K

GATE 2019 Electronics Engineering

Online Test Series Schedule

LIVE Date	Day	GATE EC	Test Code
4 July 2018	Wednesday	GATE Mock Test 1	M1
10 July 2018	Tuesday	Signals & Systems 1	S1A
13 July 2018	Friday	Signals & Systems 2	S1B
17 July 2018	Tuesday	Networks 1	S2A
20 July 2018	Friday	Networks 2	S2B
24 July 2018	Tuesday	Control systems 1	S3A
27 July 2018	Friday	Control systems 2	S3B
1 August 2018	Wednesday	Part Test 1	P1
7 August 2018	Tuesday	Electronic Devices & Circuits 1	S4A
10 August 2018	Friday	Electronic Devices & Circuits 2	S4B
14 August 2018	Tuesday	Engineering mathematics 1	S5A
17 August 2018	Friday	Engineering mathematics 2	S5B
21 August 2018	Tuesday	Analog Circuits 1	S6A
24 August 2018	Friday	Analog Circuits 2	S6B
28 August 2018	Tuesday	Part Test 2	P2
31 August 2018	Wednesday	GATE Mock Test 2	M2
4 September 2018	Tuesday	Analog Circuits 3	S6C
7 September 2018	Friday	Digital Circuits 1	S7A

11 September 2018	Tuesday	Digital Circuits 2	S7B
14 September 2018	Friday	Communication 1	S8A
18 September 2018	Tuesday	Communication 2	S8B
21 September 2018	Friday	Communication 3	S8C
26 September 2018	Wednesday	Part Test 3	Р3
3 October 2018	Wednesday	Microprocessors	S9
6 October 2018	Saturday	Electromagnetics 1	S10A
9 October 2018	Tuesday	Electromagnetics 2	S10B
12 October 2018	Friday	Electromagnetics 3	S10C
16 October 2018	Tuesday	General Aptitude 1	S11A
18 October 2018	Thursday	General Aptitude 2	S11B
24 October 2018	Wednesday	Part Test 4	P4
26 October 2018	Friday	-	
28 October 2018	Sunday	-	
31 October 2018	Wednesday	GATE Mock Test 3	МЗ
14 November 2018	Wednesday	GATE Mock Test 4	M4
21 November 2018	Wednesday	GATE Mock Test 5	M5
28 November 2018	Wednesday	GATE Mock Test 6	M6
5 December 2018	Wednesday	GATE Mock Test 7	M7
12 December 2018	Wednesday	GATE Mock Test 8	M8
19 December 2018	Wednesday	GATE Mock Test 9	М9
26 December 2018	Wednesday	GATE Mock Test 10	M10

AW X

× W ×

Why should you join **grade**up for **GATE EE 2019 Exam?**

gradeup GATE 2019 Test Series includes questions based on latest the pattern with features such as NAT questions,
Virtual Calculator & Video Solutions for the important questions to enhance performance

Alignment of each subject in **grade**up **2019 GATE EE Test Series** with **grade**up **EE Champion Study Plan** will help you to prepare smartly & keep momentum during the preparation.

gradeup EE Champion Study Plan includes

- Detailed 130+ days schedule & Daily topic-wise Study Notes
- Related Daily Quizzes, Short Formula Notes, Subject Revision Test
- LIVE Quiz/Doubt Session for each Subject

gradeup is the platform which allow the each aspirants to prepare, practice quizzes and attempt **Online Test Series** for each subject & can clear their doubts through **grade**up mentors & thousands of other daily active aspirants for **GATE exam.**

gradeup is the one-stop solution for the best preparation and questions practice (Quizzes & Test-Series) for **GATE 2019.**

gradeup is **#1 Exam preparation app** which provides Champion Study Plan including Study notes, quizzes and other important stuff for effective GATE preparations at Zero Cost.

	GATE EE 2019 Online Test Series
	Syllabus Distribution
Test Code	Syllabus
M1	Full GATE 2019 EE Syllabus
S1A	Representation of continuous and discrete-time signals, Shifting and scaling operations, Linear Time Invariant and Causal systems, Sampling theorem, Laplace Transform
S1B	Fourier series representation of continuous periodic signals, Applications of Fourier Transform, z-Transform.
S2A	Circuit elements, network graph, KCL, KVL, Node and Mesh analysis, ideal current and voltage sources, basic filter concepts, Three phase circuits, Power and power factor in ac circuits.
S2B	Network Theorems (Thevenin's theorem- Norton's theorem, Superposition theorem, Maximum power transfer theorem, Tellegan's Theorem), Two Port Network, transient response of DC and AC networks, Sinusoidal steady state analysis,
S3A	Basics of Control Systems, Principles of feedback, transfer function, block diagrams and signal flow graphs, steady-state errors, transforms and their applications; Routh-hurwitz criterion, stability analysis, transient and frequency response analysis,
S3B	Bode plots, root loci, lag, lead and lead-lag compensation, Nyquist techniques, state space model, state transition matrix, controllability and observability, linear state variable feedback, PID and industrial controllers.
P1	S1A + S1B + S2A + S2B + S3A + S3B
S4A	Transformer (Single Phase + Three Phase Transformer + Autotransformer). Principle of Electromechanical Energy Conversion, Fractional Kilowatt Motors, Single Phase Induction Machines,
S4B	D.C Machines & Synchronous Machines. Three Phase Induction Machines
S5A	 Linear Algebra: Matrix Algebra, Systems of linear equations, Eigenvalues, Eigenvectors. Probability and Statistics: Sampling theorems, Conditional probability, Mean, Median, Mode, Standard Deviation, Random variables, Discrete and Continuous distributions, Poisson distribution, Normal distribution, Binomial distribution, Correlation analysis, Regression analysis. Numerical Methods: Solutions of nonlinear algebraic equations, Single and Multi-step methods for differential equations. Transform Theory: Fourier Transform, Laplace Transform, z-Transform.
S5B	Calculus : Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes's theorem, Gauss's theorem, Green's theorem. Method of variation of parameters, Cauchy's equation, Euler's equation, Initial and boundary value problems, Partial Differential Equations, Method of separation of variables. Complex variables: Analytic functions, Cauchy's integral theorem, Cauchy's integral formula, Taylor series, Laurent series, Residue theorem, Solution integrals.

XIN X

X H M M

S6A	Line Parameter, Per Unit System, Power Generation Concept, Economic Load Dispatch, Load Flow Analysis (Bus admittance matrix, Gauss-Seidel and Newton-Raphson load flow methods).		
S6B	Symmetrical & Un-Symmetrical Fault Analysis, Voltage & Frequency Control, System Stability, Equal area criterion, Switchgear & Protection.		
P2	S4A + S4B + S5A + S5B + S6A + S6B		
S7A	Power Semiconductor Diodes, Commutation Techniques, A.C Voltage Controller & Cycloconverter.		
S7B	Phase Controlled Rectifier, Converter, Pulse Width Modulation Techniques		
S8A	Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge- distributions, Effect of dielectric medium, Capacitance of simple configurations, Continuity Equation		
S8B	Biot Savart's law, Ampere's law, Curl, Faraday's law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations, Maxwell Law		
S9A	Basic of Electronics, Characteristics of diodes, Simple diode circuits: clipping, clamping, rectifiers; Oscillators and Feedback amplifiers; Operational amplifiers: Characteristics and applications;		
S9B	Amplifiers: Biasing, BJT, MOSFET; Circuit Analysis & Application of BJT & MOSFET, Equivalent circuit and Frequency response;		
P3	S7A + S7B + S8A + S8B + S9A + S9B		
S10A	Boolean Algebra, Minimization, Combinational Circuit, Multiplexer, Demultiplexer, Microprocessor: 8085-Microprocessor: Architecture, Programming and Interfacing.		
S10B	A/D and D/A converters, Sequential logic circuits, Simple active filters, VCOs and Timers, Schmitt trigger, Sample and hold circuits.		
S11A	Error analysis, Bridges and Potentiometers, Measurement of voltage, current, Oscilloscopes, Measurement of Resistances (Low, Medium & High),		
S11B	Measurement of power, energy and power factor; Instrument transformers, Digital voltmeters and multimeters, Phase, Time and Frequency measurement;		
S12A	Numerical Ability : Numerical computation, numerical estimation, numerical reasoning and data interpretation.		
S12B	Verbal Ability : English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning and verbal deduction.		
P4	S10A + S10B + S11A + S11B + S12A + S12B		
М3	Full GATE 2019 EE Syllabus		
M4	Full GATE 2019 EE Syllabus		
M5	Full GATE 2019 EE Syllabus		
M6	Full GATE 2019 EE Syllabus		
M7	Full GATE 2019 EE Syllabus		
M8	Full GATE 2019 EE Syllabus		

XIII X

Congratulations to our GATE 2018 Toppers

GATE CE

AIR 10

Rohit Sinha

AIR 14

Swaraj Jayswal **AIR 17**

AIR 74

Dalveer Singh

AIR 56

Abhishek Kumar **AIR 80**

GATE EE

GATE ME

Pinaki Mondal

Abhinav AIR 6

AIR 27

Kurma Akhil

AIR 33

Gaurav Kumar

AIR 124

Prashaanth R

AIR 84

Deepti Mittal **AIR 62**

AIR 108

AIR 94