Formula Sheet On Divisibility Rule

https://byjusexamprep.com

Divisibility Rule

1. Divisibility by 1 : All the integers are divisible by 1.
2. Divisibility by 2: A number is said to be divisible by 2 when the last digit of the given number is even i.e. $0,2,4,6,8$.

Example 1: 68, 484, 89232, 5820, 1446 all numbers are divisible by 2.
3. Divisibility by 3: A number is divisible by 3 when the sum of all the digits of the given number is either 3 or a multiple of 3 .
4. Divisibility by 4: A number is divisible by 4 when the last two digits of the given number is divisible by 4 or any multiple of 4 .

5. Divisibility by 5: A number is divisible by 5 when the last digit of the given number is either 0 or 5 .
6. Divisibility by 6: A number is divisible by 6 when the given number is both 2 And 3 as $6=2 \times 3$.
7. Divisibility by 7: There are various methods to find divisibility by 7 for any given number. These are as following:
Step 1: First form pairs of three-three digits from the right end of the given number. Step 2: Now add all the alternating pairs at odd places and even places simultaneously and find the difference between them. If the number obtained is exactly divided by 7 then the given number is said to be divisible by 7 .
8. Divisibility by 8: A number is divisible by 8 when the last three digits of the given number is divisible by 8 or any multiple of 8 .
9. Divisibility by 9: A number is divisible by 9 when the sum of all the digits of the given number is divisible by 9 or a multiple of 9 .
10. Divisibility by 10: Since 10 can be broken down into 2 multiplied by 5 . So, any number that is divisible by 2 and 5 simultaneously will also be divisible by 10 . Or if the last digit is 0 then the given number will be exactly divisible by 10.
11. Divisibility by 11: The divisibility rule of 11 is as following:

Step 1: Find the sum of the digits at odd places and even places.
Step 2: Find the difference between the sums. Check whether the result is 0 or 11 or a multiple of 11 . If yes then the given number will be exactly divisible by 11 .
12. Divisibility by 12: We can see that 12 is obtained by 3 multiplied by 4 . So, for a number to be divisible by 12 , it has to be exactly divisible by 3 and 4 simultaneously.
13.Divisibility by 13: The divisibility of a number by 13 is determined as following:

Step 1: First form pairs of three-three digits from the right end of the given number.

Step 2: Now add all the alternating pairs at odd places and even places simultaneously and find the difference between them.

Step 3: Now multiply the last digit of the obtained difference with 4 and add it to rest of the number.

Step 4: If the result is 0 or 13 or a multiple of 13 , then the given number will be divisible by 13 otherwise not.

Divisibility rule of powers of 2:

When the divisor is in the form of $2 n$, then check the last n digits of the given number if they are completely divisible by $2 n$ or not. If yes then the given number will be exactly divisible by 2 n .

Other Divisibility Rules:

If a number in the form of XXXXXX (6 times repetition), then the number will be completely divisible by $3,7,11,13,21,37,101$.

If a number in the form of abcabc, then the number will be completely divisible by $7,11,13,1001$.
$(a n+b n)$ is completely divisible by $(a+b)$ when n is an odd number.

Successive Division:

It is a division in which the quotient of the dividend is taken and is used as dividend of the next division.

Example 21: When 325 is successively divided by 3, 5, 11 then the remainders are:

Solution:

Divisor	Dividend	Quotient	Remainder
3	325	108	1
5	108	21	3
11	21	1	10

Thus, remainders are 1, 3 and 10 respectively.

CSIR NET General Aptitude (Part A) 2022

A Foundation Course

Comprehensive Prep of General Aptitude (Part A of Exam)

WHY TAKE THIS COURSE?

> 80+ Interactive Live Classes \& Doubt Sessions for Foundation conceptual clarity
> $1000+$ Practice Questions covering all levels of difficulty
> Study Notes \& Formula Sheets
> 20+ Mock Tests

