Formula Sheet On Permutations \& Combination

https://byjusexamprep.com

Fundamental Principle of Counting:

1. Rule of Sum :- A task is performed in m ways and another task is performed in n ways and both tasks cannot be performed simultaneously. So, either task can be accomplished in $(m+n)$ ways.
2. Rule of Multiplication:- There are two tasks, A and B can be performed in m and n waysrespectively. So, the number of different ways of doing both tasks A and B simultaneously is $(m \times n)$ ways.

Factorial: Factorial is a notation for multiplication of consecutive integers.The factorial is represented by the symbol '!' $n!=1 \times 2 \times 3 \times 4 \times \ldots \times(n-1) \times n(n!$ mean multiplication of first n natural numbers)

Permutation: Permutation means arranging i.e. "selecting and ordering" one or more objects from the given certain objects (may be alike or different).

The number of permutations of n different objects taken r at a time is represented as :
${ }^{n} P_{r}=\frac{n!}{(n-r)} n(n-1)(n-2) \ldots \ldots \ldots(n-r+1)($ where, $0 \leq r \leq n)$
In Permutation and Combination, Combination is selection and Permutation is selection aswell as arrangements.
\square

Combination

Combination: Combination means selecting one or more objects from the given certainobjects (may be alike or different).

The combination of \boldsymbol{n} distinct objects taken r at a time, is represented and calculated as:

$$
{ }^{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

Here, r can be any positive integer less then or equals to n.

The permutation of \mathbf{n} distinct objects taken \mathbf{r} at a time, is represented and calculated as: $\quad{ }^{n} P_{r}=\frac{n!}{(n-r)!}$

Here, r can be any positive integer less then or equals to n.

The permutation of n distinct objects taken r at a time, is represented and calculated as:

The number of permutations of n objects taken all at a time in which, p are alike objects ofone kind, q are alike objects of second kind $\& r$ are alike objects of a third kind and the rest

$$
[n-(p+q+r)] \text { are all different is } \frac{n!}{p!q!r!}
$$

CSIR NET General Aptitude (Part A) 2022

A Foundation Course

Comprehensive Prep of General Aptitude (Part A of Exam)

WHY TAKE THIS COURSE?

> 80+ Interactive Live Classes \& Doubt Sessions for Foundation conceptual clarity
> $1000+$ Practice Questions covering all levels of difficulty
> Study Notes \& Formula Sheets
> 20+ Mock Tests

