पुस्तिका में पृष्ठों की संख्या—16 No. of pages in Booklet -16 पुस्तिका में प्रश्नों की संख्या—100 No. of Questions in Booklet -100 Subject Code — 03

विषय / SUBJECT : Electrical

Engineering

NEAP-81

PAPER-II

Question Paper Booklet No.
प्रश्न-पत्र पुरितका संख्या
3003257

अधिकतम अंक : 200 Maximum Marks: 200

समय : 2.00 घण्टे Time: 2.00 Hours

प्रश्न−पत्र पुस्तिका एवं उत्तर पत्रक के पेपर सील ∕ पॉलिथीन बैग को खोलने पर परीक्षार्थी यह सुनिश्चित कर लें कि उसके प्रश्न−पत्र पुस्तिका पर वही प्रश्न−पत्र पुस्तिका संख्या अंकित है जो उत्तर पत्रक पर अंकित है। इसमें कोई भिन्नता हो तो वीक्षक से दूसरा प्रश्न−पत्र प्राप्त कर लें। ऐसा न करने पर जिम्मेदारी अभ्यर्थी की होगी।

The candidate should ensure that Question Paper Booklet No. of the Question Paper Booklet and Answer Sheet must be same after opening the Paper Seal/ polythene bag. In case they are different, a candidate must obtain another Question Paper from the Invigilator. Candidate himself shall be responsible for ensuring this.

परीक्षार्थियों के लिए निर्देश

- 1. सभी प्रश्नों के उत्तर दीजिए।
- 2. सभी प्रश्नों के अंक समान हैं।
- 3. प्रत्येक प्रश्न का केवल एक ही उत्तर दीजिए।
- एक से अधिक उत्तर देने की दशा में प्रश्न के उत्तर को गलत माना जाएगा।
- 5. प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं, जिन्हें क्रमशः 1, 2, 3, 4 अंकित किया गया है। अभ्यर्थी को सही उत्तर निर्दिष्ट करते हुए उनमें से केवल एक गोले अथवा बबल को उत्तर पत्रक पर नीले बॉल प्वॉइंट पेन से गहरा करना है।
- 6. OMR उत्तर पत्रक इस परीक्षा पुरितका के साथ रखा है। जब आपको परीक्षा पुरितका खोलने को कहा जाए, तो उत्तर पत्रक निकाल कर ध्यान से केवल नीले बॉल प्वॉइंट पेन से विवरण भरें। OMR उत्तर पत्रक पर प्रश्न-पत्र पुरितका संख्या ध्यानपूर्वक भरें।
- 7. प्रत्येक गलत उत्तर के लिए प्रश्न अंक का 1/3 भाग काटा जायेगा। (गलत उत्तर से तात्पर्य अशुद्ध उत्तर अथवा किसी भी प्रश्न के एक से अधिक उत्तर से है। किसी भी प्रश्न से संबंधित गोले या बबल को खाली छोडना गलत उत्तर नहीं माना जायेगा।)
- 8. मोबाइल फोन अथवा इलेक्ट्रॉनिक यंत्र का परीक्षा हॉल में प्रयोग पूर्णतया वर्जित है। यदि किसी अभ्यर्थी के पास ऐसी कोई वर्जित सामग्री मिलती है, तो उसके विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की जायेगी।
- कृपया अपना रोल नम्बर ओ.एम.आर. पत्रक पर सावधानीपूर्वक सही भरें। गलत अथवा अपूर्ण रोल नम्बर भरने पर 5 अंक कुल प्राप्तांकों में से काटे जा सकते हैं।
- 10. यदि किसी प्रश्न में किसी प्रकार की कोई मुद्रण या तथ्यात्मक प्रकार की त्रुटि हो तो प्रश्न के हिन्दी तथा अंग्रेजी रूपान्तरों में से अंग्रेजी रूपान्तर मान्य होगा।

चेतावनी: अगर कोई अभ्यर्थी नकल करते पकड़ा जाता है या उसके पास से कोई अनिधकृत सामग्री पाई जाती है, उस अभ्यर्थी के विरुद्ध पुलिस में प्राथमिकी वर्ज कराते हुए विविध नियमों—प्रावधानों के तहत कार्यवाही की जाएगी। साथ ही विभाग ऐसे अभ्यर्थी को भविष्य में होने वाली विभाग की समस्त परीक्षाओं से विवर्णित कर सकता है

INSTRUCTIONS FOR CANDIDATES

- Answer all questions.
- All questions carry equal marks.
- 3. Only **one** answer is to be given for each question.
- If more than one answers are marked, it would be treated as wrong answer.
- Each question has four alternative responses marked serially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.
- 6. The OMR Answer Sheet is kept with this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully with blue ball point pen only. Please fill the Question Paper Booklet no. on the OMR Answer Sheet carefully.
- 7. 1/3 part of the mark(s) of each question will be deducted for each wrong answer. (A wrong answer means an incorrect answer or more than one answers for any question. Leaving all the relevant circles or bubbles of any question blank will not be considered as wrong answer.)
- Mobile Phone or any other electronic gadget in the examination hall is strictly prohibited. A candidate found with any of such objectionable materials with him/her will be strictly dealt as per rules.
- Please correctly fill your Roll Number in O.M.R. Sheet.
 Marks can be deducted for filling wrong or incomplete Roll Number.
- If there is any sort of ambiguity/mistake either of printing or factual nature then out of Hindi and English Version of the question, the English Version will be treated as standard.

Warning: If a candidate is found copying or if any unauthorized material is found in his/her possession, F.I.R. would be lodged against him/her in the Police Station and he/she would liable to be prosecuted. Department may also debar him/her permanently from all future examinations.

इस परीक्षा पुस्तिका को तब तक न खोलें जब तक कहा न जाए। Do not open this Test Booklet until you are asked to do so.

ELECTRICAL ENGINEERING

1.	The f	requency of ripple in the output voltage of a	three	phase controlled bridge rectifier depends					
	on-								
	(1)	firing angle	(2)	load inductance					
	(3)	load resistance	(4)	supply frequency					
2.	A thy	ristor has internal power dissipation of 40W	and	is operated at an ambient temperature of					
	20°C	. If thermal resistance is 1.6°C/W, the junction	on ter	nperature is-					
	(1)	114°C	(2)	164°C					
	(3)	94°C	(4)	84°C					
3.	1000	eter has a full-scale deflection of 90 degree	at a c	urrent of 1 Ampere. The response of the					
		r is square law. Assuming spring control, the		The state of the s					
	(1)	0.25 Ampere	(2)	0.50 Ampere					
-	(3)	0.67 Ampere	(4)	0.707 Ampere					
4.		MVA, 10 kV synchronous generator has X		•					
		MVA, 11 kV is-							
	(1)	5.78	(2)	0.279					
	(3)		(4)	0.44					
5.		clo-converter is operating on a 50 Hz suppl	ly. Th	e range of output frequency that can be					
	obtained with acceptable quality, is-								
	(1)		(2)	0 – 132 Hz					
	(3)	0 - 64 Hz	(4)	0 – 128 Hz					
6.	A 2 1	kVA transformer has iron loss of 150 Watts	s and	full-load copper loss of 250 Watts. The					
	maxi	mum efficiency of the transformer would oc	cur w	hen the total loss is-					
	(1)	500 W	(2)	400 W					
	(3)	300 W	(4)	275 W					
7.	The s	system described by the following state equa	tions-						
	$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ 2 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}; \mathbf{y} = \begin{bmatrix} 1 & 1 \end{bmatrix} \mathbf{x}$								
		-2 5-	•						
9 9	1.	Completely controllable							
	2.	Completely observable							
		ch of the above statement is/are correct?	(0)						
	(1)	1 only	(2)	2 only					
	(3)	Both 1 and 2	(4)	Neither 1 nor 2					
8.		nalog voltmeter uses external multiplier setti							
		V and with a multiplier setting of 80 k Ω , it	reads	352 V. For a multiplier setting of 40 $k\Omega$					
		oltmeter reads-		3					
	(1)	371 V	(2)	383 V					
	(3)	394 V	(4)	406 V					

9.	The output Q_n of a $J-K$ flip – flop is zero. It ch	ange	s to 1 when a clock pulse is applied. The
	input J _n and K _n are, respectively-		
	(1) 1 and X	(2)	0 and X
	(3) X and 0	(4)	X and 1
10.	The Bode plot of the open – loop transfer functio	n of a	system is described as follows:
	• Slope -40 dB/decade ; $\omega < 0.1 \text{ rad/s}$		
19	• Slope -20 dB/decade ; $0.1 < \omega < 10 \text{ rad/}$	S	
	• Slope $0 dB$; $\omega > 10 rad/s$		
	The system described will have-		
. 0	(1) 1 pole and 2 zeros	(2)	2 poles and 2 zeros
	(3) 2 poles and 1 zero	(4)	1 pole and 1 zero
11.	A transformer is rated at 11 kV/0.4 kV, 500 kVA		reactance. What is the short circuit MVA
	of the transformer when connected to an infinite	bus?	
	(1) 20 MVA	(2)	10 MVA
	(3) 15 MVA	(4)	5 MVA
12.	A synchronous motor is floating on infinite main	s at n	o load. If its excitation is now increased,
	it will draw-		
	(1) Unity power factor current	(2)	Zero power factor lagging current
	(3) Zero power factor leading current	(4)	No current
13.	Match list - I (Electromagnetic law) with list - II (differ	rential form) and select the correct answer
	using the codes given below the lists-		
34.7	$\underline{\text{List}} - \underline{\text{I}}$	<u>Li</u>	$\underbrace{\operatorname{st} - \operatorname{II}}_{\rightarrow}$
	A. Ampere's law 1.	∇.	$\vec{D} = \rho_{v}$
	B. Faraday's law 2.	∇.	$\vec{J} = -\frac{\partial H}{\partial t}$
	C. Gauss law 3.	7, 2	$\vec{J} = -\frac{\partial \vec{H}}{\partial t}$ $\times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ $\times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
	D. Current continuity equation 4.	V	$\times \overrightarrow{F} = -\frac{\partial \overrightarrow{B}}{}$
	Codes:		∂t
	A B C D		
	(1) 1 2 3 4		
5%	(2) 3 4 1 2		
	(3) 1 4 3 2		
	(4) 3 2 1 4		
14.	The open-loop transfer function of a feedback co	ntrol	system is given by-
	G(s) $K(s+2)$		system to given by
	$\frac{H(s)}{s(s+4)(s^2+4s+8)}$		
	One of following is a set of the centroid point co	ordina	ates, where asymptotes of the root loci of
	above transfer function meet in the s – plane:		
	(1) (-1,0)	(2)	(-2,0)
	$(3) \left(\frac{-10}{2}, 0\right)$	(4)	(2, 0)

The close-loop transfer function of a control system is given by $\frac{C(s)}{R(s)} = \frac{1}{(1+s)}$. For the input

 $r(t) = \sin(t)$, the steady state value of c(t) is equal to-

(1) $\frac{1}{\sqrt{2}}\cos(t)$

(2) 1

 $(3) \quad \frac{1}{\sqrt{2}} \sin(t)$

- $(4) \quad \frac{1}{\sqrt{2}} \sin(t \frac{\pi}{4})$
- 16. If $\overrightarrow{H} = 0.1 \sin(10^8 \pi t + \beta y) \, \hat{a}_x$ A/m for a plane wave propagating in free space, then the time average poynting vector is-
 - (1) $(0.6\pi \sin^2 \beta y) \hat{a}_y W/m^2$

(2) $-0.6\pi \hat{a}_y \text{ W/m}^2$

(3) $1.2\pi \hat{a}_x \text{ W/m}^2$

- $-1.2\pi \hat{a}_x \text{ W/m}^2$
- 17. For any superconductor material, which statements are true out of the following statements that superconductivity can be destroyed by-
 - (i) increasing the temperature above a certain limit
 - (ii) applying a magnetic field above a certain limit
 - (iii) passing a current, above a certain limit, through the material
 - (iv) decreasing the temperature to a point below the critical temperature
 - (1) (ii), (iii) and (iv) are correct
- (2) (i), (iii) and (iv) are correct
- (3) (i), (ii) and (iii) are correct
- (4) (i), (ii) and (iv) are correct
- 18. The polar plot (for positive frequencies) for the open loop transfer function of a unity feedback control system is shown in the given figure-

The phase margin and the gain margin of the system are respectively-

(1) 150° and 4

(2) 150° and ³/₄

(3) 30° and 4

- (4) 30° and $\frac{3}{4}$
- 19. If the fault current is 2000 Ampere, the relay setting is 50% and CT ratio is 400/5, then the plug setting multiplier will be-
 - (1) 25 Amp.

(2) 15 Amp.

(3) 50 Amp.

- (4) None of these.
- 20. If the corona loss on a particular system at 50 Hz is 1 kW/phase/km, then corona loss on the surface of the same system with supply frequency at 25 Hz will be-
 - (1) 1 kW/phase/km

(2) 0.5 kW/phase/km

(3) 0.667 kW/phase/km

(4) None of these

Which one of the following is the steady-state error for a step input applied to a unity feedback 21. system with the open loop transfer function-

$$G(s) = \frac{10}{s^2 + 14s + 50}$$

(1) $e_{ss} = 0$ (2) $e_{ss} = 0.83$

(3) $e_{ss} = 1$

- (4) $e_{ss} = \infty$
- 22. For a p-pole machine, the relation between electrical (θ_e) and the mechanical angle (θ_m) degrees is given by-
 - $\theta_{\rm e} = \frac{P}{(2 * \theta_{\rm m})}$

(2) $\theta_{\rm m} = \left(\frac{P}{2}\right) * \theta_{\rm e}$

 $\theta_{\rm e} = \theta_{\rm m}$

- (4) $\theta_e = \left(\frac{P}{2}\right) * \theta_{\rm m}$
- 23. The below figure shows the root locus of a unity feedback system. The open loop transfer function of the system is-

(1) $\frac{k}{s(s+1)(s+2)}$

(2) $\frac{k s}{(s+1) (s+2)}$ (4) $\frac{k (s+2)}{s (s+1)}$

- 24. If in a 3-phase, half-wave inverter, if per phase input voltage is 200 V, then the average output voltage is-
 - **(1)** 233.91 V

(2) 116.95 V

202.56 V

- (4) 101.28 V
- In a unity feedback control system with $G(s) = \frac{4}{s^2 + 0.4s}$ when subjected to unit step input, it 25. is required that system response should be settled within 2% tolerance band, the system settling time is-
 - **(1)** 1s

(2) 2s

(3)10s

- (4) 20s
- 26. The rotor power output of 3 – phase induction motor is 15 kW. The rotor copper losses at a slip of 4% will be-
 - 600 W (1)

625 W

650 W (3)

(4) 700 W

27.	Stabil	lity of a p	power system c	an be impi	oved by-			
	(1)	Using	series compens	sators				
	(2)	Using	parallel transm	ission line	S			
	(3)		ing voltage of t					
	Whic	h of the	above statemen	ts are corre	ect?			
	(1)	1 only				(2)	2 only	
	(3)	2 and 3	3			(4)	1 and 2	
28.	0.50	Area cr	riterion is emplo	oyed to det	ermine-	2 3		
	(1)		eady state stabi			(2)	The transient stab	ility
	(3)		active power li			(4)	The rating of circu	153
29.	100		a HVDC syste			3 80		
	(1)		ng current but r			(2)	no charging curren	nt but skin effect
	(3)		r charging curre			(4)		rent and skin effect
30.			tability of a po					
50.	(1)	150	ng fault clearin	37	. 10 1111-	(2)		cuit line instead of
	(1)	reduci	ing ruurt eleurin	Бите		(-)	single circuit line	
	(3)	single	pole switching			(4)	decreasing genera	tor inertia
31.		_	•	interrunts i	s hoth lev		edge sensitive?	
51.	(1)	RST 7	resolved and the st. same	interrupts	s com re	(2)	RST 5.5	
	(3)	TRAP				(4)	INTR	
32.				elow is exe	cuted by	200		lue in the accumulator
34.			after the execut					
	IIIIII	diatery	SBX: MVI		suoroum	C WIII		
			201					
			ADI	11H				
			MOV	C, A				3 (5)
			RET				A 2 1	
			, RET			(2)		1 2
	(1)	H00				(2)	11H	
	(3)	99H		20		(4)	AAH	
33.	An I	itel 8085	5 microprocesso	or is execu	ting the p	rogran	n given below-	
			MVI A, 10H					
			MVI B, 10H				9 9	
		BACI	K :NOP					
			ADD B				20 20 20 20 20 20 20 20 20 20 20 20 20 2	
			RLC				22.00	
			JNC BACK				Programme in the second	1.5/1
			HLT					5015
	The 1	number (of times that the	e operation	NOP wi	ll be ex	recuted is -	
	(1)	1				(2)	2	10 /
	(3)	3			1	(4)	4	
	h-							

34. Match List-I with List-II and select the correct answer using the code given below the lists:

	<u>I</u>	ist-I	<u>List-II</u>				
A. Imme	diate a	ddressi	ng	1	. LDA 30FF		
B. Implie	cit addı	ressing	2	. MOV A, B			
C. Regis	ter add	ressing		3.	LXI H, 2050		
D. Direc	t addre	ssing		4.	RRC		
Code:	A	В	C	D	x - *		
(1)	3	4	2	1			
(2)	1	4	2	3			
(3)	3	2	4	1			
(4)	1	2	4	3			

35. The crystal frequency of 8085 microprocessor is 6 MHz. The time required to execute instruction XTHL over this microprocessor is-

(1) $5.33 \, \mu s$

(2) 10.67 μs

(3) $4.33 \, \mu s$

(4) 8.67 μs

36. A computer employs RAM chips of 256 bytes and ROM chips of 1024 bytes. If the computer system needs 1 kB of RAM and 1 kB of ROM, then how many address lines are required to access the memory?

(1) 10

(2) 11

(3) 12

(4) 13

37. A BJT is biased with a power supply of 12V. For minimum heat dissipation, the drop across the transistor will be-

(1) 6V

(2) 9V

(3) 12V

(4) > 9V but < 12V

38. Consider the following J-K flip-flop:

In the above J-K flip-flop, $J=\overline{Q}$ and K=1. Assume that the flip-flop was initially cleared and then clocked for 6 pulses. What is the sequence at the Q output?

(1) 010000

(2) 011001

(3) 010010

(4) 010101

39.		aximum deviation allowed in an FM broads	12.0	stem is 75 kHz. If the modulating sign	iai
		0kHz, find the bandwidth of the FM signal.		150 1 11	
	(1)	85 kHz	(2)	170 kHz	
	(3)	75 kHz	(4)	340 kHz	
40.		nmeter of range 0-25A has a guaranteed acc			ent
		ared by the ammeter is 5A. The limiting error			
	(1)	2%	(2)	2.5%	
	(3)	4%	(4)	5%	
41.		VDT produces an output of 24V rms for a contract of 24V rms for a cont			
3.5		ared with a 5V full-scale voltmeter with 100		or divisions, each major division readat	ole
		divisions. The resolution of the voltmeter i			
	(1)	0.125 mm	(2)	$0.104 \times 10^{-3} \mathrm{mm}$	
	(3)	1.25 mm	(4)	10.4×10^{-3} mm	
42.	A $3\frac{1}{2}$	digit, 2V full scale dual slope ADC has its	s integ	gration time set to 300ms. If the input	to
	the AI	DC is $(1 + 1 \sin 314t)V$, then the ADC outp	ut wil	ll be-	
	(1)	1.000	(2)	1.999	
	(3)	1.414	(4)	1.500	
43.	Which	n one of the following meters has max	ximun	n loading effect on the circuit und	ler ·
		rement?	(0)	100 04-1	
	(1)	1000 Ω/volt	(2)	100 Ω/volt	
11	(3)	$1 \text{m } \Omega/\text{volt}$ oridge is suitable for measuring inductance of	(4) of whi	10m Ω/volt	
44.	(1)	Having Q value less than 10	(2)	Having Q value greater than 10	
	(3)	Of any value of Q	(4)	Having Q value gleater than 10	v
	(3)	of any value of Q	(-)	large	,
45.	In a P	CM system of telemetry, the quantization n	oise d	depends on -	
	(1)	The sampling rate and quantization levels		State of the state	55
	(3)	The number of quantization levels only			t
46.		h one of the following capacitor-star split			
		of capacitance?		en die	
	(1)	94W, 3450 rpm	(2)	187 W, 1725 rpm	
	(3)	373W, 1140 rpm	(4)	560 W, 1140 rpm (E)	
47.	In a p	ower transformer, the core loss is 50W at 4	0Hz aı	nd 100W at 60Hz, under the condition	of
	same	maximum flux density in both cases. The c	ore lo	ss at 50Hz will be-	
	(1)	64 W	(2)	73 W	
	(3)	82 W	(4)	91 W	
48.		maximum power delivered by 15kW, 3-			Hz
	synch	ronous motor with synchronous reactance of	of 4Ω		
	(1)	4271.2 kW	(2)	3505 kW	
	(3)	1206.1 kW	(4)	2078 kW	
	n				
[03]		Page 8 of 1	16		

49.		ee-pulse	converte	er has a f	reewhe	eling dic	de acr	ross its load. The operating range of t	he
	(1)	0° ≤ α ≤	< 150°				(2)	$60^{\circ} \le \alpha \le 120^{\circ}$	
	(3)	30° ≤ α					(4)	$180^{\circ} \le \alpha \le 360^{\circ}$	
50.	33.50			SCR in	the belo	w circuit		A. The minimum width of the gate pul	se
		red to turn						3 1	
					0	.1 H	V	•	
					— ()	00 ~	$\dashv \forall$		
					_ 100 V				
				-	- 5.500.00				
			20						
	(1)	7						9	
	(1)	6 μs					(2)	4 μs	
	(3)	2 μs					(4)	1 μs	
51.			, per unit	ripple is	maxim	um, whe		luty cycle 'α' is-	
	(1)	0.2					(2)	0.5	
	(3)	0.7					(4)	0.9	
52.	Matcl	n List-I w <u>List –</u> I		II and sel		correct a st –II	nswer	using the code given below the lists-	
	A.	Ferrite		1.	100	eissner e	ffect		
	B.		onductor			raday ef			
	C.	Quartz		3.		steresis	, \		
	D.	Iron		4.		ezoelectr	icity	200	
	Cod		В	C	D				
	(1)	3	1	4	2				
	(2)	2	1	4	3				
	(3)		4		2			The second secon	
	1134 50	3		1					
•	(4)	2	4	1	3				
53.		ndesirabl	_	•	lectrica	l insulați			
	(1)		electric st	rength			(2)	high relative permittivity	
02300	(3)	low den	- M				(4)	High insulation resistivity	
54.								connected in series with an undergroun	
				•			_	50 kV travels from the line end toward	ds
			unctions	, the valu	e of the	transmi	tted vo	Itage wave at the junction is-	
	(1)	30 kV				=27	(2)	20 kV	
		80 kV					(4)	-30 kV	
55.		igton pair		(7)	vides-			and the second of the second o	
	(1)	- 15 m	ghβvalu				(2)	Very low β value	
	(3)	Same β	as of one	e transist	or		(4)	None of the above	

56.	Which	type of motor is most suitable for comput	er prin	ter drive?
	(1)	Reluctance motor	(2)	Hysteresis motor
	(3)	Shaded pole motor	(4)	Stepper motor
57.	If the	length of a wire of resistance 'R' is unifor	mly sti	retched to 'n' times its original value, its
		esistance is-		
	(1)	nR	(2)	R/n
	(3)	n ² /R	(4)	R/n^2
58.		n of the following statement holds for t	he div	vergence of electric and magnetic flux
	densit		(2)	there are gore for static densities but
	(1)	both are zero	(2)	these are zero for static densities but non zero for time varying densities
	(3)	it is zero for the electric flux density	(4)	it is zero for the magnetic flux density
59.	The b	ridge method commonly used for finding r	nutual	
	(1)	Heaviside Campbell bridge	(2)	Schering bridge
	(3)	De Sauty bridge	(4)	Wien bridge
60.		p-amp, having a slew rate of 62.8 V/μ sec, i		
		maximum amplitude of the input sinusoid		
		ew rate limited distortion would set in at th		
	(1)	1.0 MHz	(2)	6.28 MHz
(1	(3)	10.0 MHz	(4)	62.8 MHz
61.		led-paper capacitor of value 0.02 µf is to b		
	width	6cm, and wax impregnated paper of thick	ness 0	.06 mm, whose relative permittivity is 3.
	The le	ength of foil strips should be-		
	(1)	0.3765 m	(2)	0.4765 m
	(3)	0.5765 m	(4)	0.7765 m
62.	A ser	ies R-L-C circuit has R=50W, L= 100 μH	and C=	=1μF. The lower half power frequency of
	the ci	rcuit is-		
	(1)	30.55 kHz	(2)	3.055 kHz
	(3)	51.92 kHz	(4)	1.92 kHz
63.	A 800	0 kV transmission line is having per phase 1	ine inc	luctance of 1.1 mH/km and per phase line
	capac	citance of 11.68 nF/km. Ignoring the length	of the	line, its ideal power transfer capability in
	MW	is-		
	(1)	1204	(2)	1504
	(3)	2085	(4)	2606
64.		rmature of a single phase alternator is comp		
1, 1		rmly. The induced voltage in each turn is 2		
	(1)	2 T Volt	(2)	1.11 T Volt
	(3)	1,414 T Volt	(4)	1.273 T Volt
[03]		Page 10 o	f 16	

- 65. An 8 pole, DC generator has a simplex wave-wound armature containing 32 coils of 6 turns each. Its flux per pole is 0.06 Wb. The machine is running at 250 rpm. The induced armature voltage is-
 - (1) 96

(2) 192

(3) 384

- (4) 768
- 66. The velocity of light in a particular medium is 10⁸ m/s. What is the relative permittivity of the medium?
 - **(1)** 1.732

(2) 3

(3) 9

- (4) 0.333
- 67. A dc to dc transistor chopper supplied from a fixed voltage DC source feeds a fixed resistive-inductive load and a free-wheeling diode. The chopper operates at 1 kHz and 50% duty cycle. Without changing the value of the average dc current through the load, if it is desired to reduce the ripple content of load current, the control action needed will be-
 - (1) increase the chopper frequency keeping its duty cycle constant.
 - (2) increase the chopper frequency and duty cycle in equal ratio.
 - (3) decrease only the chopper frequency.
 - (4) decrease only the duty cycle.
- 68. A PWM switching scheme is used with a three phase inverter to -
 - (1) reduce the total harmonic distortion with modest filtering
 - (2) minimize the load on the DC side
 - (3) increase the life of the batteries
 - (4) reduce low order harmonics and increase high order harmonics
- 69. The triac circuit shown in Figure controls the ac output power to the resistive load. The peak power dissipation in the load is –

Figure

(1) 3968 W

lie.

(2) 5290 W

(3) 7935 W

(4) 10100 W

70. For the circuit shown below, the input resistance $R_{11} = \frac{V_1}{I_1} \Big|_{I_2 = 0}$ is-

(1) -3Ω

(2) 3Ω

(3) 12Ω

(4) 13Ω

71. Obtain the energy stored in each capacitor as shown in figure below under DC conditions:

(1) 16 mJ, 68 mJ

(2) 32 mJ, 68 mJ

(3) 32 mJ, 64 mJ

(4) 16 mJ, 128 mJ

72. The number of comparisons carried out in a 4 bit flash-type A/D converter is-

(1) 16

(2) 15

(3) 4

(4) 3

73. In an 8085 microprocessor, the contents of accumulator, after the following instructions are executed will become-

XRA A

MVIB F0 H

SUB B

(1) 01 H

(2) OF H

(3) F0 H

(4) 10 H

74. Laplace transform of sin³ 2t u(t) is-

- (1)
- $\frac{24}{(s^2+4)(s^2+36)}$
- (2)
- $\frac{1}{(s^2+4)(s^2+64)}$

- (3)
- $\frac{48}{(s^2+4)(s^2+36)}$
- (4)
- $(s^2+4)(s^2+36)$

75. For a feedback control system of type-2, the steady state error for a ramp input is $_{\mathcal{T}_{i}}$

(1) infinity

(2) constant

(3) zero

(4) indeterminate

- 76. The phase lead compensation is used to-
 - (1) Increase rise time and decrease overshoot.
 - (2) Decrease both rise time and overshoot.
 - (3) Increase both rise time and overshoot.
 - (4) Decrease rise time and increase overshoot.
- 77. A 0-10 mA PMMC ammeter reads 4mA in a circuit. Its bottom control spring snaps suddenly. The meter will now read nearly-
 - (1) 10 mA

(2) 8 mA

(3) 2 mA

- (4) zero
- 78. Two systems with impulse responses $h_1(t)$ and $h_2(t)$ are connected in cascade. Then the overall impulse response of the cascaded system is given by-
 - (1) Product of $h_1(t)$ and $h_2(t)$
- (2) Sum of $h_1(t)$ and $h_2(t)$
- (3) Convolution of $h_1(t)$ and $h_2(t)$
- (4) Subtraction of $h_1(t)$ and $h_2(t)$
- 79. If the transmission parameters of the below network are A=C=1, B=2 and D=3, then the value of Z_{in} is-

 $\frac{12}{13}\Omega$

 $\frac{(2)}{12}\Omega$

(3) 3Ω

- (4) 4Ω
- 80. For a power system network with n nodes, Z_{33} of its bus impedance matrix is j 0.5 per unit. The voltage at node 3 is 1.3 \angle 10° per unit. If a capacitor having reactance of -j 3.5 per unit is now added to the network between node 3 and the reference node, the current drawn by the capacitor per unit is-
 - (1) $-0.325 \angle 100^{\circ}$

(2) 0.325 ∠80°

(3) 0.371 ∠100°

- (4) 0.433 ∠80°
- 81. The binary equivalent of hexadecimal number 4FAD is-
 - **(1)** 0101 1111 0010 1100

(2) 0100 1111 0010 1100

(3) 0100 1111 1010 1101

- **(4)** 0100 1110 0010 1101
- 82. The Boolean expression ABCD+ \overline{ABCD} + \overline{ABCD} + \overline{ABCD} is equivalent to-
 - (1) A

(2) AC

(3) ABC

- **(4)** 1
- 83. For a periodic square wave, which one of the following statements is TRUE?
 - (1) The Fourier Series Coefficients do not exist.
 - (2) The Fourier Series Coefficients exist but the reconstruction converges at no point.
 - (3) The Fourier Series Coefficients exist and the reconstruction converges at most point.
 - (4) The Fourier Series Coefficients exist and the reconstruction converges at every point.

84.	What i	s the Thevenin res	istance seen f	rom the term	inal A	AB of the circuit	shown in figure	e below?
			_		_	19,754 (1.15)		
1			(2.50.00)	3Ω 5Ω	4			
				6 4A				
			→	$\stackrel{\Omega}{\longrightarrow} \stackrel{3\Omega}{\longrightarrow} $	+	A		
			12V 😝	\$ 12Ω	ş	12Ω		
	5		- <u>L</u>			— B	*	
	(1)	2Ω			(2)	4Ω		
	(3)	8Ω			(4)	12Ω		
85.		of the following i	s a non-conv	entional sour	ce of	f energy?		
05.	(1)	Nuclear			(2)	Coal fired		
	(3)	Wind			(4)	Gas fired	a 1 mag	
96	(<i>a</i>)	ver system has 100) buses inclu				load flow analy	sis using
86.	Novet	on-Raphson metho	d in polar co	ordinates, the	sizė	of the jacobian	is-	
		189*189	a in polar co	ordinates, the	(2)	100*100		
	(1) (3)	90*90			(4)	180*180		
07	(3)	gle-phase transforn	per has no los	d loss of 64 V	, ,		n open-circuit to	est. When
87.	A Sing	rt-circuit test is per	formed on it	with 90% of	the i	rated currents flo	owing in its bot	h LV and
	a snoi	vindings, the mea	curad loce is	81W The	trans	sformer has ma	ximum efficier	ncv when
			Suicu 1035 is	of W. The	truin	ground mas ma		,
	na – 18ses – m	ted at- 50.0% of the rate	d ourrant		(2)	64.0% of the r	ated current	
	(1)		1.1		(4)	88.8% of the r		
00	(3)	80.0% of the rate)=\= aan ba			atod curront	
88.		$Id \overline{A} = 3x^2yz \overline{a}_x + x$	$^{\circ}z a_{y} + (x^{\circ}y - x^{\circ})$	zzja _z can be				
	(1)	Irrotational	.,		(2)	Divergenceles	S	
	(3)	Solenoidal	gradual de la		(4)	Rotational	lding Tl	aa waltaga
89.	A zer	to to 300 voltmeter	has guarante	ed accuracy	01 01	ne percent full s	cale reading. 11	ne vontage
		ured by the instrum	nent is 83 vo	it. The perce	(2)	1.81		
	(1) (3)	0.95 3.62			(4)	4.85	(2)	
90.	For a	"two-port reciprod	cal" network.	the output or			vided by the inp	out current
, ,		ual to-					2,0,-1.	
	(1)	1			(2)	Z ₁₂	di i	
	(1)	$\overline{h_{12}}$					S. C. N.	
	(3)	1			(4)	h ₁₂	di lo	
.0 20	(5)	<u></u>				12		
91.	Δ nl:	ane wave is travell	ing in the po	sitive X-dire	ction	in a lossless ur	bounded media	um having
71.	perm	eability same as the	ne free space	and a permit	tivit	y 9 times that of	the free space,	the phase
		city of the wave wi		7			7.21	
	(1)	3×10^8 m/s			(2)	10^8 m/s		
	(3)	$\frac{1}{3}$ × 10 ⁸ m/s			(4)	$\sqrt{3} \times 10^8 \text{m/s}$		
		$\frac{1}{3}$						
	2						7.5	, B
[03]	2			Page 14 of	16			
[oo]	1 7	on B						

84.

92.	The	line A to neutral volta	age is 10 ∠15° V for	a balaı	nced three phase	star-connected lo	and with
	phas	se sequence ABC. The	voltage of line B wit	h respe	ect to line C is gi	ven by-	Jau with
	(1)	10√3 ∠105° V		(2)	10 ∠105 ° V	ven by-	
	(3)	10032 13 0		(4)	$10\sqrt{3} / -90^{\circ} \text{V}$	7	
93.	A ho	ollow metallic sphere of	of radius r is kept at p	otentia	of 1 Volt The	otal electric flux	comina
	out	of the concentric spiler	rical surface of radius	R(>r)	is -	otal electric mux	conning
	(1)	4 πε r		(2)			
	(3)	4 πεrR		(4)	$\pi \epsilon R^2$		
94.	A po	tential field is given b	$y \phi = 2xy^2 - 3y^2z. \text{ If}$	î x, ŷ a	nd î are the unit	vectors along x	v and z
	unce	tions respectively, the	e field intensity at (0,	1, 0) is			j una z
	(1)	0 V/m		(2)	2x - 3z		
95.	(3)	$-2\hat{x} + 3\hat{z}$	2/150	(4)	$2\hat{x} + 3\hat{z}$		
93.	II in	a transistor, $\alpha = 0.98$,	Ico=6 micro Ampere	e and I	$_{\rm B} = 100 \text{ micro A}$	mpere, then the v	value of
	IC WI	II be-					
	(1)	2.3 milli Ampere		(2)	3.1 milli Ampe	re	
	(3)	4.6 milli Ampere		(4)	5.2 milli Ampe	re	
96.	The c	driving-point impedan	ce of a one -port reac	tive ne	etwork (say L.C.n	etwork) is given	hv.
	(1)	$(s^2+1)(s^2+2)$		(2)	$(s^2+1)(s^2+3)$	i si given	Uy-
		$s(s^2+3)(s^2+4)$			$\frac{(s^2+1)(s^2+3)}{s(s^2+2)(s^2+4)}$ $\frac{1}{(s+1)}$	5	
	(3)	$(s^2)(s^2+1)$		(4)	1)	85
		$\frac{(s^2+2)(s^2+3)}{(s^2+2)(s^2+3)}$		(4)	(-14)	B 2 82 9	
97.	Eon o				(S+1)		
<i>71</i> .	FOI S	ea water with $\sigma = 5 \text{ m}$	tho/m and $\varepsilon_r = 80$, wh	at is th	ne distance for w	hich radio signal	can be
		mitted with 90% atten	uation at 25kHz?				
	(1)	0.322 m		(2)	3.22 m		
	(3)	32.2 m		(4)	322 m		
98.	When	a bipolar junction trai	nsistor is operating in	the sati	uration mode, wh	ich one of the fol	lowing
	Staten	nent is TRUE about the	e state of its collector-	-base (CB) and the base-	emitter (RF) june	ctions?
	(1)	The CB junction is i	orward biased and the	e BE ju	inction is reverse	biased	
	(2) (3)	Roth the CD and DE	eversed and the BE ju	ınction	is forward biase	d.	
	(4)	Both the CB and BE	junctions are forward	d biase	d.		
99.		Both the CB and BE	d wave wound DC	biasec	l		
	rated	ole, separately excited for 230 V and 5kW at	a speed of 1200 rpm	nacnin	e with negligible	armature resista	ance is
	form a	a lap winding. What is	the rated voltage (in	volte)	and power (in k	2011s are reconnec	cted to
	rpm o	f the reconnected mac	hine if the field circuit	it is lef	and power (III K)	w) respectively a	it 1200
	(1)	230 and 5		(2)	115 and 5		
	(3)	115 and 2.5		(4)	230 and 2.5		
100.	A case	cade of three identical	modulo-5 counters h	as an o	verall modulus o	of-	
	(1)	3	All a	(2)	25		
	(3)	125		(4)	625		
		g ²	in the second				
			XX_				
1027 F	Э						
[03]	ย	* 2	Page 15 of	16			

Space for Rough Work

meel web