## GATE 2022

## Mechanical Engineering

Forenoon Shift

Questions \& Answers (Memory Based)

## (MEMORY BASED)

1. Given, $A=50$ (In hand Inventory)

How many required of $A$ units to make $P$ of 10 (units)?

[NAT: 2 Marks]
Ans. 110 units
2. $\Psi=K x^{3} y K=1 m^{-2} s^{-1} a(x, y)=(1,1)$
[NAT: 1 Mark]
Ans. $3 \sqrt{2}$
3. Given, velocity $p \Rightarrow v=2 x \hat{i}+(y+3 t) \hat{j}$ temperature $T=2 x^{2}+x y+4 t$
Find the rate of temperature with respect to time?
At $x, y=1,1$ and time 1 sec .
A. 10
B. 16
C. 20
D. 8
[MCQ: 2 Marks]
Ans. B
4. Consider steady, one-dimensional compressible flow of a gas in a pipe of diameter 1 m . At one location in the pipe the density and velocity are $1 \mathrm{~kg} / \mathrm{m}^{3}$ and $100 \mathrm{~m} / \mathrm{s}$ respectively. At a downstream location in the pipe, the velocity is $170 \mathrm{~m} / \mathrm{s}$. If the pressure
drop between the these two locations is 10 kPa , the force exerted by the gas on the pipe between these two location is.
A. 300 п
B. 100 п
C. 350 п
D. 750 п
[NAT: 2 Marks]
Ans. D
5. $\mathrm{WT}_{1}=400 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{W} \mathrm{T}_{2}=850 \mathrm{~kJ} / \mathrm{kg}$ W $\mathrm{P}_{1}=15 \mathrm{~kJ} / \mathrm{kg}$
$\eta_{c y}=32 \%$
$\mathrm{Q}_{\mathrm{R}}=$ ?

[NAT: 2 Marks]
Ans. $2627.375 \mathrm{~kJ} / \mathrm{kg}$
6. Given swept volume $=250 \mathrm{~cm}^{3}$

Clearance volume $=37.5 \mathrm{~cm}^{3}$
Neat input is given $=800 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
Consider $C_{v}=0.718 \frac{\mathrm{~kJ}}{\mathrm{kgK}}, \gamma=1.4$
$\mathrm{T}_{1}=25^{\circ} \mathrm{C} \mathrm{P}_{1}=100 \mathrm{kPa}$
Find the maximum pressure (in kPa )
[NAT: 2 Marks]
Ans. 4829.03 kPa
7. Find polytropic work:

$$
\begin{aligned}
& \mathrm{P}_{1}=110 \mathrm{kPa}, \\
& \mathrm{~V}_{1}=5 \mathrm{~m}^{3}, \\
& \mathrm{~V}_{2}=2.5 \mathrm{~m}^{3}, \\
& \mathrm{n}=1.2
\end{aligned}
$$

[NAT: 1 Mark]
Ans. 408.92 kPa
8. Clausius inequality holds good for which
$\qquad$
[MCQ: 1 Mark]
A. Any process
B. Any cycle
C. Reversible process
D. Reversible cycle

## Ans. B

9. Wall slab of thickness 0.1 m $\qquad$ Higher temp of left surface $=80^{\circ} \mathrm{C} \ldots \ldots$. thermal cond $=$ $15 \mathrm{~W} / \mathrm{mk} \ldots . .$. heat transfer through wall $=$ $4500 \mathrm{~W} / \mathrm{m}^{2} \ldots \ldots$. Find rate of entropy generation
[NAT: 2 Marks]
Ans. $1.1884 \mathrm{w} / \mathrm{m}^{2} \mathrm{~K}$
10. Find the ratio of friction force at $Q$ to $P$ at $\theta=$ $90^{\circ} . \frac{\mu_{\mathrm{Q}}}{\mu_{\mathrm{p}}}$ ?
[NAT: 2 Marks]


Ans. 5.76
11. Rolling without slipping, $\omega=5 \mathrm{rad} / \mathrm{s}, \mathrm{r}=0.15$ m . Find $\mathrm{V}_{\text {centre }}$ ?
[NAT: 1 Mark]


Ans. 0.75
12. The plane of the figure represents a horizontal plane. A thin rigid rod at rest is pivoted without friction about a fixed vertical axis passing through O . Its mass moment of inertia is $=0.1 \mathrm{~kg} \mathrm{~cm}^{2}$ about 0 . A point mass of 0.001 kg hits it normally at $200 \mathrm{~cm} / \mathrm{s}$ at the location shown, sticks to it immediately after the impact, the angular velocity of rod is
$\qquad$ rad/s
[NAT: 1 Mark]


Ans. 20
13. In a unit square, rhombus formed by joining mid points of the square, and circle inscribed in the rhombus find diameter of the circle.
A. $\sqrt{2}$
B. $2 \sqrt{2}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{2}{2 \sqrt{2}}$
[MCQ: 2 Marks]

Ans. C
14. Area of equilateral triangle, square and circle is same. Find ratio of circumference
[MCQ: 2 Marks]
Ans. $\frac{6}{\sqrt{3}}: 4: 2 \sqrt{2}$
15. A distance of 80 km is covered in 6 hours some distance is covered @10 kmph \& some distance is covered @18 kmph how much \% of distance is covered @10 kmph.
A. 28.25
B. 43.75
C. 50
D. 37.75
[MCQ: 2 Marks]
Ans. B
16. The average of $M, N, S$ is 4000 the average of $N, S, P$ is 5000
$P=6000$
$M$ is $\qquad$ \% of $P$
A. $30 \%$
B. $50 \%$
C. $70 \%$
D. $25 \%$
[MCQ: 2 Marks]
Ans. B
17. If play tennis for $\qquad$ bowl, I am $\qquad$ used
[MCQ: 1 Mark]
Ans. two, too
18. Statement 1 : All teachers are professors Statement 2 : No professor are males

Statement 3 : some males are engineer Conclusion I: No engineer is a professor Conclusion II : Some engineers are professors Conclusion III : No male is a teacher
[MCQ: 1 Mark]
Ans. Only conclusion III is correct
19. 2-D momentum equation for natural convection;
$u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=g \beta\left(T-T_{\infty}\right)+v \frac{\partial 2 u}{\partial x 2}$;
the from $\mathrm{g} \beta\left(\mathrm{T}-\mathrm{T}_{\infty}\right)$ represent.
[MCQ: 1 Mark]
A. Ratio of inertia force to viscous force
B. Ratio of Buoyant force to viscous force
C. viscous force per unit mass
D. Buoyant force per unit mass

Ans. D
20. During an open heart surgery, a patient's blood is cooled down to $25^{\circ} \mathrm{C}$ from $37^{\circ} \mathrm{C}$ using a concentric tube counter-flow heat exchanger water enters the heat exchanger at $4^{\circ} \mathrm{C}$ \& leaves at $18^{\circ} \mathrm{C}$. Blood flow rate during surgery is 5 Itr.per min. using the following fluid properties
Calculate effectiveness of heat exchangers

| Fluid | Density kg/m | Specific Heat |
| :--- | :---: | :---: |
| Blood | 1050 | 3740 |
| Water | 1000 | 4200 |

[NAT: 2 Marks]
Ans. 0.42
21. Find $\omega$ of arm

[NAT: 2 Marks]
Ans. $\mathbf{- 6 0 0}$
22. Find $\omega_{n}$ for given system $\omega_{n}$


Ans.

$$
\sqrt{\frac{k}{M+\frac{m}{4}}}
$$

23. A 4 mm thick Al sheet of width(he) $=100 \mathrm{~mm}$ is rolled in a two-roll mill of roll diameter 200 mm each. The N/P is lubricated with a mineral oil, which gives a $\mu=0.1$. The flow stress ( $\sigma$ ) of the material in MPa is $\sigma=207+414 \epsilon$ where $\epsilon$ is the true strain. Assembly rolling to be a plane strain deformation process, the roll separation force (F) for maximum permissible draft (thickness reduction) is - (kN) Use :
$F=1.15 \bar{\sigma}\left(1+\frac{\mu \mathrm{I}}{2 \overline{\mathrm{~h}}}\right) \mathrm{Ib}$

Where $\bar{\sigma}$ is average flow stress and $\bar{h}$ is the average sheet thickness.
[NAT: 2 Marks]
Ans. 428.5 kN
24. A CNC work table is driven in a linear direction by a lead screw connected directly to a stepper motor. The pitch of the load screw is 5 mm . The stepper motor completes one full rotation upon running 600 pulses. If the work table speed is $5 \mathrm{~m} / \mathrm{min}$ a there is no missed pulse, then the pulse rate being received the stepper motor is
[MCQ: 2 Marks]
A. 15 kHz
B. 20 kHz
C. 3 kHz
D. 10 kHz

Ans. D
25. The type of fit between a meeting shaft of diameter $25.00_{-0.010}^{+0.010} \mathrm{~mm}$ a hole of diameter $25.00_{-0.015}^{+0.015} \mathrm{~mm}$ is
[MCQ: 1 Mark]
A. Transition
B. Linear
C. Interference
D. Clearance

Ans. A
26. Which of the following additive manufacturing(s) can use a wire as a feel stock material?
[MSQ: 1 Mark]
A. Directed energy deposition processes
B. Stereolithography
C. Fused deposition modeling
D. Selective laser sintering.

Ans. A, C \& D
27. Which of the following heat treatment processes is/are used for surface hardening of steels?
[MSQ: 1 Mark]
A. Annealing
B. Carburizing
C. Cyaniding
D. Carbonitriding

Ans. B, C \& D
28. 1 mm thick cylinder tube, 100 mm diameter is orthogonally turned such that the entire wall thickness of the tube is cut in a single pass. The axial seed of the tools is $1 \mathrm{~m} / \mathrm{min}$. Cutting energy ( $\mu$ ) of the tube material is 6 $\mathrm{J} / \mathrm{mm}^{3}$, neglect contribution of feed force towards power. The power required is
[MAT: $\mathbf{2}$ Marks]
Ans. 31.48 kW
29. $V=20 \mathrm{~V}$
$\mathrm{I}=150 \mathrm{~A}$
Welding Speed $=5 \mathrm{~mm} / \mathrm{sec}$
$\mathrm{d}=3 \mathrm{~mm}$
$\eta_{\mathrm{ht}}=0.7$
$\eta_{m}=0.6$
feed rate = ??
Unit melt energy are required $10 \mathrm{~J} / \mathrm{mm}^{3}=\mathrm{u}$

[MCQ: 1 Mark]
Ans. 10.7
30. Let a random variable $X$ follow Poisson distribution such that
Probability $(X=1)=$ Probability $(X=2)$
The value of Probability $(X=3)$ is $\qquad$ (round of to 2 decimal place).
[NAT: 1 Mark]
Ans. 0.180
31. The Fourier series expansion of $x^{3}$ in the interval $-1 \leq x<1$ with periodic continuation has
A. Only sine term
B. Both sine \& cosine terms
C. Only cosine term
D. Only sine term and a non-zero constant
[MCQ: 1 Mark]
Ans. A
32. The Solution of linear equation $\left(\begin{array}{ll}x & y\end{array}\right)\left[\begin{array}{cc}2 & 5-2 a \\ a & 1\end{array}\right]=\left(\begin{array}{ll}0 & 0\end{array}\right)$ has infinitely many non-trivial solutions for a special value of a. Which among the following options is/are non-trivial solutions of ( $x, y$ )?
A. $x=-1$
$y=4$
B. $x=1$
$y=1$
C. $x=2$
$y=-2$
D. $x=4$
$y=-2$
[MSQ: 2 Marks]
Ans. A \& C
33. $\left[\begin{array}{cc}10 & 2 k+5 \\ 3 K-3 & K+5\end{array}\right]$ is symmetric matrix then the value of $K$.
A. 8
B. 5
C. $\frac{1+\sqrt{5}}{12}$
D. 3
[MCQ: 1 Mark]
Ans. A
34. $P=\lim _{x \rightarrow \pi}\left[\frac{x^{3}+\alpha x+2 \pi^{2}}{x-\pi+2 \sin x}\right]$

Find $a \& P$
A. $п \& \pi$
B. $-3 п \& \pi$
C. $-2 \pi$ \& $2 п$
D. $2 \pi \& 3 \pi$
[MCQ: 2 Marks]
Ans. B
35. Solution $\Delta^{2} T=0$ in a square domain ( $0<x<$ $1 \& 0<y<1$ ) with boundary conditions:
$T(x, 0)=x$
$T(0, y)=y$
$T(x, 1)=1+x$
$T(1, y)=1+y$
$T(x, y)=$
A. $x-x y+y$
B. $x+y$
C. $x+x y+y$
D. $-x+y$
[MCQ: 1 Mark]
Ans. B
36. Given a function $\psi=1 / 2\left(x^{2}+y^{2}+z^{2}\right)$ in three dimensional cortisone space, the value of the surface in integral $\oiint \hat{n} \cdot \nabla \phi$ ds where $S$ is the surface of sphere of unit radius $\hat{n}$ is the out word unit normal ratio on $S$, is
A. $4 \pi / 3$
B. 4 п
C. 0
D. $3 \pi$
[MCQ: 1 Mark]
Ans. B
37. The value of integral

$$
\oint\left(\frac{6 z}{2 z^{4}-3 z^{3}+7 z^{2}-3 z+5}\right) d z
$$

Evaluated over counter-clockwise circular the pole $z=i$, where is the imaginary unit is,
A. $(2+i) \pi$
B. $(-1+i) п$
C. $2(1-i) \pi$
D. $(1+i) \pi$
[MCQ: 2 Marks]
Ans. B
38. Given $2 \mathrm{a}=100 \mathrm{~mm}$

$$
\text { Permissible }=50 \mathrm{MPa}
$$

Find the area of rivet (in $\mathrm{mm}^{2}$ )
[MCQ: 2 Marks]


Ans. $800 \mathrm{~mm}^{2}$
39. 10. A thin walled cylindrical Pr. Vessel had mean wall thickness of $t$ and nominal radius of $r$. $\mu=1 / 3$ (wall material) when it was subjected to some internal Pr., its nominal perimeter in the cylindrical portion increased by $0.1 \%$ and the corresponding wall thickness become $\overline{\mathrm{t}}$. The corresponding change in the wall thickness of the cylindrical portion.
i.e. $100 \times(\bar{t}) / t$ is $\qquad$ \%
[NAT: 2 Marks]
Ans. 0.06\%
40. An L-shaped elastic member $A B C$ with slender arm $A B$ and $B C$ of uniform cross-section is clamped at end a and connected to a pin at end $C$. The pin remain in continuous contact with and is constrained to move a smooth horizontal slot. The section modulus of the member is same in both the arms. The end C is subjected to a horizontal force $P$ and all the deformations are in the plane of the fig. Given the length $A B$ is $4 a \& B C$ is $a$, the magnitude \& direction of the normal force on the pin from the slot are


A


C
A. p/4 downward
B. $5 p / 8$ upward
C. $3 p / 4$ upward
D. $3 \mathrm{p} / 8$ downward

Ans. D


