Important Questions On Physical Chemistry

Important Questions on Physical Chemistry

1. Which of the following is true regarding HMO theory?
i) HMO is an absolute method.
ii) HMO treats pi electrons separately from sigma electrons.
iii) Pi electrons determine the properties of the conjugated molecules.
iv) HMO uses only the variation principle.
A. Only iv
B. iii and iv
C. ii and iii
D. only ii
2. The rate constant of a unimolecular reaction was 2.56×10^{-3} and 2.3×10^{-1} at $\mathrm{T}=110 \mathrm{~K}$ and 330 K respectively. The rate constant (in s ${ }^{-1}$ units) at 220 K would be:
A. 2.43×10^{-2}
B. 2.43×10^{-1}
C. 4.81×10^{-2}
D. 1.81×10^{-1}
3. A system is expanded Reversibly adiabatically from 1 L to 10 L . If initial temp. is 750 K , what would be the final temperature? $C_{p}=29.23 \mathrm{~J} / \mathrm{K} \mathrm{mol}$.
A. 500 K
B. 200 K
C. 100 K
D. 300 K
4. Which among the following will show maximum flocculation value for $\mathrm{Fe}(\mathrm{OH})_{3}$ Solution?
A. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
B. $\mathrm{Na}_{2} \mathrm{~S}$
C. $\mathrm{NH}_{4} \mathrm{Cl}$
D. NaCl
5. Consider the reaction
$\mathrm{Cu}^{2+}{ }_{\text {(aq) }}+2 \mathrm{e} \rightarrow \mathrm{Cu}_{(\mathrm{s})}$
What will be the half-cell potential at 298 K where $\left[\mathrm{Cu}^{2+}=5.0 \mathrm{M}\right.$ and $\left.\mathrm{E}=+0.34 \mathrm{~V}\right]$.
A. 4.6 mV
B. 0.466 V
C. 3.6 V
D. 0.36 V
6. The extent of dissociation of PCl_{5} at a certain temperature is 20% at one atm pressure. Calculate the pressure at which this substance is half-dissociated at the same temperature.
A. 0.123
B. 0.329
C. 0.420
D. 0.789
7. Improper Axis of symmetry refers to which of the following operations?
A. Rotation
B. Reflection
C. Rotation followed by perpendicular reflection
D. None of the above
8. Calculate the maximum rotational level which can be occupied at 300 K when rotational constant is $24 \mathrm{~cm}^{-1}$.
A. 1
B. 2
C. 4
D. 10
9. The ratio of HCP closed packed atoms to voids in HCP closed packing is:
A. 1:4
B. 2:3
C. 1:6
D. 1:3
10. Two miscible liquids A and B form a solution. Assume that the solution is non-ideal but the vapor above it behaves ideally. For pure A and B, the vapor pressures are 550 torr and 700 torr respectively at $35^{\circ} \mathrm{C}$. If the total pressure above a solution that is 48 mole percent A , is 500 torr and the mole fraction of A in the vapor is 0.45 , determine the activity coefficients of A and B in the solution.
A. $0.854,0.756$
B. $0.765,0.324$
C. $0.854,0.765$
D. $0.845,0.765$

Answer Key

| 1. C | 2.A | 3.D | 4. D | 5. | 7. C |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

8. B
9. D
10. A

Solutions

Solution 1. HMO calculates the energy and shape of the pi molecular orbitals of the planar conjugated molecules. The calculations are based on the variation principle along with LCAO for pi electrons. It differentiates pi electrons from sigma electrons as pi electrons take part in conjugation. This theory is approximate since it ignores electron-electron repulsions.

Solution 2. By applying Arrhenius equation:
$\mathrm{T}_{1}=110 \mathrm{~K}$ and $\mathrm{T}_{2}=360 \mathrm{~K}$
$\ln \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{\mathrm{Ea}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]$
$\ln \frac{2.2 \times 10^{-1}}{2.66 \times 10^{-3}}=\frac{\mathrm{Ea}}{8.314 \mathrm{~J} / \mathrm{Kmol}}\left[\frac{1}{120}-\frac{1}{360}\right]$
$\mathrm{E}_{\mathrm{a}}=1.64 \times 10^{-2} ; \mathrm{T}_{1}=110 \mathrm{~K}$ and $\mathrm{T}_{2}=220 \mathrm{~K}$
$\ln \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{\mathrm{Ea}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]=\ln \frac{\mathrm{k}_{2}}{2.66 \times 10^{-3}}=\frac{1.64 \times 10^{-2}}{\mathrm{R}}\left[\frac{1}{110}-\frac{1}{220}\right]$
$\mathrm{K}=2.43 \times 10^{-2} \mathrm{~s}^{-1}$

Solution 3. As system is reversibly adiabatically expanded, so,

$$
\begin{equation*}
\mathrm{PV}^{\gamma}=\mathrm{Comtt} \tag{i}
\end{equation*}
$$

$P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}$
From ideal equation:
$P V=n R T$
$P=n R T / V$
Put the volume of P in eq (i):
$\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1}$
Given $C_{p}=29.23 \mathrm{~J} / \mathrm{K}$ mole
$C_{P}-C_{V}=R$
$C_{V}=C_{p}-R$
$=29.23-8.314$
$C_{V}=20.9$
$\gamma=\frac{C_{P}}{C_{V}}=\frac{29.2}{20.9}=1.4$
From eq. (ii):
$\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1}$
$750(1)^{1.4-1}=\mathrm{T}_{2}(10)^{1.4-1}$
$750=\mathrm{T}_{2}(10)^{0.4}$
$\mathrm{T}_{2}=300 \mathrm{~K}$

Solution 4. Flocculation value or precipitation value is the minimum amount of an electrolyte in millimoles that must be added to one litre of colloidal sols to bring about complete coagulation or precipitation. Coagulation power is inversely proportional to coagulation value, i.e., smaller the coagulation value of an electrolyte ion, greater is the coagulating power.

Solution 5. According to Nernst equation:
$\mathrm{ECu}^{2+} / \mathrm{Cu}^{2}=\mathrm{E}^{\mathrm{O}} \mathrm{Cu}^{2+} / \mathrm{Cu}^{-0} 0.059 / \mathrm{n} \log 1 /\left[\mathrm{Cu}^{2+}\right]$
$=0.34-0.059 / 2 \log (1 / 5)$
$=0.36 \mathrm{~V}$

Solution 6. $K_{p}=\alpha^{2} P /\left(1-\alpha^{2}\right)$
$P=1 \mathrm{~atm}, \alpha=0.2$
$\therefore K_{p}=(0.2)^{2}(1 \mathrm{~atm}) /(1-0.04)=0.041 \mathrm{~atm}$
Let P^{\prime} be the pressure at which $\alpha=0.5$, then
$K_{p}=\alpha^{2} P^{\prime} /\left(1-\alpha^{2}\right)$
0.041 atm $=(0.5)^{2} \mathrm{P}^{\prime} /(1-0.25)$
$\mathrm{P}=0.123 \mathrm{~atm}$

Solution 7. A molecule is said to have an improper Axis of rotation of order n if rotation of $2 \pi / n$ about an axis followed by the reflection in a plane perpendicular to that axis.
Solution 8. Maximum rotational level that can be occupied is:
$\mathrm{J}_{\max }=\left(\frac{\mathrm{k} T}{2 \mathrm{~B}}\right)^{1 / 2}-\frac{1}{2}$
Here, $\mathrm{B}=24 \mathrm{~cm}^{-1}, \mathrm{~T}=300 \mathrm{~K}, \mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
$\mathrm{k}\left(\right.$ in cm $\left.{ }^{-1}\right)=\left(1.38 \times 10^{-23}\right) /\left(6.626 \times 10^{-34} \times 3 \times 10^{10}\right)=0.694 \mathrm{~cm}^{-1} \mathrm{~K}^{-1}$
$\mathrm{J}_{\max }=\left(\frac{0.694 \times 300}{(2 \times 24)}\right)^{1 / 2}-1 / 2=1.583$
$J_{\text {max }}=2$

Solution 9. No. of Atoms present in HCP = 6
Total no. voids present in HCP $=$ Td voids + Oh voids

$=12+6$		
$=$	18	
Atom	$:$	
6	$:$	Voids
1	$:$	3

Solution 10. $\mathrm{x}_{\mathrm{A}, \text { vap }}=0.45$
Since, the vapor behaves ideally, hence,
$p_{A}=x_{A, ~ v a p} \times P=0.45 \times 500$ torr $=225$ torr
$\mathrm{p}_{\mathrm{B}}=\mathrm{P}-\mathrm{p}_{\mathrm{A}}=500$ torr -225 torr $=275$ torr
Since the solution behaves non-ideally, Raoult's law becomes:
$p_{i}=a_{i} p_{i}^{\circ}$
$\mathrm{a}_{\mathrm{A}}=225$ torr/550 torr=0.41
Hence,
$\gamma_{\mathrm{A}}=\mathrm{a}_{\mathrm{A}} / \mathrm{x}_{\mathrm{A}}=0.41 / 0.48=0.854$
$\mathrm{a}_{\mathrm{B}}=275$ torr/700 torr=0.393
$\gamma_{B}=a_{B} / x_{B}=0.393 / 0.52=0.756$

CSIR NET Chemical Science 2022 A Foundation Course

Complete Prep of Chemical Science for June 2022 Aspirants

Why take this course?

> 450+ Hrs Live Classes \& Doubt Sessions for complete conceptual clarity
> 3000+ Practice Questions covering all levels of difficulty
> 20+ Unit Wise Study Modules \& Mind Maps
, 50+ Full Mock Tests, Chapter Wise Mock Tests, PYQs Mock Tests

