Important Questions on Physical Chemistry

Important Questions on Physical Chemistry

1. A cricket ball has a weight of 100 g is located within 1 nm . Determine the uncertainty in the velocity.
A. $5.27 \times 10^{-23} \mathrm{~m} / \mathrm{s}$
B. $5.27 \times 10^{-25} \mathrm{~m} / \mathrm{s}$
C. $5.27 \times 10^{-24} \mathrm{~m} / \mathrm{s}$
D. $5.27 \times 10^{-27} \mathrm{~m} / \mathrm{s}$
2. The extent of dissociation of PCl_{5} at a certain temperature is 20% at one atm pressure. Calculate the pressure at which this substance is half-dissociated at the same temperature.
A. 0.123
B. 0.389
C. 0.423
D. 0.789
3. KNO_{3} crystallizes in an orthorhombic system with the unit cell dimensions $a=542 \mathrm{pm}, b=917$ pm and $c=645 \mathrm{pm}$. Calculate the diffraction angles for first order X-ray reflections from 100 planes using radiation with wavelength $=154.1 \mathrm{pm}$.
A. $8^{0} 10^{\prime}$
B. $9^{0} 20^{\prime}$
C. $4^{\circ} 40^{\prime}$
D. $3^{0} 30^{\prime}$
4. Determine the temperature at which the average velocity of oxygen equals that of hydrogen at 20 K .
A. 420 K
B. 300 K
C. 320 K
D. 500 K
5. Acetaldehyde $\left(\mathrm{CH}_{3} \mathrm{CHO}\right)$ decomposes by second-order kinetics with a rate constant of 0.334 $\mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $500^{\circ} \mathrm{C}$. The time it would take for 80% of the acetaldehyde to decompose in a sample that has an initial concentration of 0.00750 M is
A. ~ 1600 sec
B. ~ 1850 sec
C. $\sim 1000 \mathrm{sec}$
D. ~ 5100 sec
6. The time for which the oxygen atom remains adsorbed on a tungsten surface is 0.36 s at 2550 K and 3.49 s at 2360 K . Determine the activation of desorption of oxygen atom.
A. $432.42 \mathrm{~kJ} / \mathrm{mol}$
B. $532.30 \mathrm{~kJ} / \mathrm{mol}$
C. $326.43 \mathrm{~kJ} / \mathrm{mol}$
D. $598.29 \mathrm{~kJ} / \mathrm{mol}$
7. For a homogeneous gaseous reaction,
$\mathrm{SO}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{SO}_{2}+\mathrm{Cl}_{2}$
that obeys first order reaction, the half-life is 8.0 minutes. How long will it take for the concentration of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ to be reduced to 1% of the initial value?
A. 46.92 min
B. 52.93 min
C. 32.61 min
D. 23.43 min
8. At what wavelength in Å would the anti-stokes line appear in the Raman spectrum of the sample excited by the 4358 Å line of mercury. A Raman line was observed at $4447 \AA$.
A. 6238
B. 4272
C. 5678
D. 3456
9. Determine the molar solubility of $\mathrm{Zn}(\mathrm{OH})_{2}$ in 1 M ammonia solution at room temperature. $\mathrm{K}_{\mathrm{sp}}\left(\mathrm{Zn}(\mathrm{OH})_{2}\right)=1.8 \times 10^{-17} ; \mathrm{K}_{\text {stab }}$ of $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}=1.64 \times 10^{10}$.
A. 4.19×10^{-4}
B. 4.19×10^{-5}
C. 4.19×10^{-6}
D. 4.19×10^{-3}
10. Point group which is both polar and optically active is:
A. C_{i}
B. C_{s}
C. C_{1}
D. $\mathrm{C}_{2 \mathrm{v}}$

Answer Key

1. B	2. A	3. A	4. C	5. A	6. D	7. B
8. B	9. D	10. C				

Solutions

Solution 1:

According to uncertainty principle
$\Delta x . m \Delta v=\frac{h}{4 \pi}$ or $\Delta v=\frac{h}{4 \pi \times m \times \Delta x}$
$\mathrm{h}=6.626 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}, \mathrm{~m}=100 \mathrm{~g}=0.1 \mathrm{~kg}, \Delta \mathrm{x}=1 \mathrm{~nm}=10^{-9} \mathrm{~m}, \pi=3.143$
$\Delta v=\left[\frac{\left(6.626 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right.}{4 \times 3.143 \times \times(0.1 \mathrm{~kg})\left(10^{-9} \mathrm{~m}\right)}\right]=5.27 \times 10^{-25} \mathrm{~ms}^{-1}$

Solution 2:

$K_{p}=\alpha^{2} P /\left(1-\alpha^{2}\right)$
$P=1 \mathrm{~atm}, \alpha=0.2$
$\therefore K_{p}=(0.2)^{2}(1 \mathrm{~atm}) /(1-0.04)=0.041 \mathrm{~atm}$
Let P^{\prime} be the pressure at which $\alpha=0.5$, then
$K_{p}=\alpha^{2} P^{\prime} /\left(1-\alpha^{2}\right)$
0.041 atm $=(0.5)^{2} P^{\prime} /(1-0.25)$
$P=0.123 \mathrm{~atm}$

Solution 3:

Bragg's equation is:
$2 d_{h k l} \sin \theta=n \lambda$
For an orthorhombic system,
$1 /\left(d_{h k l}\right)^{2}=\left(h^{2} / a^{2}\right)+\left(k^{2} / b^{2}\right)+\left(l^{2} / c^{2}\right)$
$\therefore 1 /\left(d_{100}\right)^{2}=(1 / 542 \mathrm{pm})^{2}+(0 / 917 \mathrm{pm})^{2}+(0 / 645 \mathrm{pm})^{2}=(1 / 542 \mathrm{pm})^{2}$
$\therefore d_{100}=a=542 \mathrm{pm}$
For first order reflection, $n=1$.
Also,
$\lambda=154.1 \mathrm{pm}$
$\therefore \sin \theta_{100}=\frac{\lambda}{2 d_{100}}=\frac{154.1 \mathrm{pm}}{2 \times 542 \mathrm{pm}}=0.142$ where $\theta_{100}=8^{\circ} 10^{\prime}$
Solution 4. The expression to calculate average velocity is:
$<c>=(8 R T / \pi M)^{1 / 2}$, i.e., $\left\langle c>\propto(T / M)^{1 / 2}\right.$
Let $\langle\mathrm{c}\rangle_{1}$ and $\langle\mathrm{c}\rangle_{2}$ be the average velocities of O_{2} and H_{2}, respectively.
$\frac{\langle c\rangle_{1}}{\langle c\rangle_{2}}=\left(\frac{T_{1} / M_{1}}{T_{2} / M_{2}}\right)^{1 / 2}=1$ so that $T_{1} / M_{1}=T_{2} / M_{2}$
$\mathrm{T}_{1} / 32 \mathrm{~g} \mathrm{~mol}^{-1}=\mathrm{T}_{2} / 2 \mathrm{~g} \mathrm{~mol}^{-1}$
$\therefore \mathrm{T}_{1}=(32 / 2) \mathrm{T}_{2}=16 \times 20 \mathrm{~K}=320 \mathrm{~K}$

Solution 5:

$\mathrm{k}=0.334 \mathrm{~m}^{-1} \mathrm{~s}^{-1}$
$k t=\frac{1}{(a-x)}-\frac{1}{a}$
$\mathrm{t}=\frac{1}{\mathrm{k}}\left[\frac{1}{\mathrm{a}-0.8 \mathrm{a}}-\frac{1}{\mathrm{a}}\right]=\frac{1}{\mathrm{ka}}\left[\frac{1}{2}-1\right]$
$\mathrm{t}=\frac{4}{\mathrm{ka}}=\frac{4}{0.034 \times 0.0075}=1596.8 \approx 1600 \mathrm{sec}$

Solution 6:

The expression to calculate desorption of oxygen atom is:
$E_{a}=\frac{R \ln \left(\tau_{2} / \tau_{1}\right)\left(T_{1} T_{2}\right)}{T_{1}-T_{2}}$
$=\frac{\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \ln (3.49 \mathrm{~s} / 0.36 \mathrm{~s})(2550 \mathrm{~K})(2360 \mathrm{~K})}{(2550-2360) \mathrm{K}}$
$=598.29 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Solution 7:

For first order kinetics, half-life is given by:
$k_{1}=-\frac{0.693}{t_{1 / 2}}=\frac{0.693}{8.0 \text { min min }^{1}}$
For a first-order reaction,
$k_{1}=\frac{1}{t} \ln \frac{a}{a-x}$
Or,
$t=\frac{1}{k_{1}} \ln \frac{a}{a-x}=\frac{1}{0.087 \mathrm{~min}^{-1}} \ln \left(\frac{100}{1}\right)=52.93 \mathrm{~min}$
Solution 8: The anti-Stokes line will appear at a frequency $460 \mathrm{~cm}^{-1}$ higher than the frequency (in cm^{-1}) associated with the 4358 Å Hg line used as a source of excitation. Now,
$\bar{v}_{\text {exc }}\left(\mathrm{cm}^{-1}\right)=\frac{10^{8}}{\lambda_{\text {exc }}(\AA)}=\frac{10^{8}}{4.358 \times 10^{3}}=2.295 \times 10^{4} \mathrm{~cm}^{-1}$
Hence, $\bar{v}_{\text {anti-stokes }}=\left(2.295 \times 10^{4} \mathrm{~cm}^{-1}\right)+\left(460 \mathrm{~cm}^{-1}\right)=2.341 \times 104 \mathrm{~cm}^{-1}$
$\therefore \lambda($ in $\AA)=\frac{10^{8}}{\bar{v}\left(\mathrm{~cm}^{-1}\right)}=\frac{10^{8}}{2.341 \times 10^{4}}=4272 \AA$

Solution 9:

The solubility equilibrium in this case is represented as:
$\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s}): \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{sp}}=\left[7 \mathrm{nn}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=1.18 \times 10^{-17}$
(ii). $7 \mathrm{n}^{2+}+4 \mathrm{NH}_{3}(\mathrm{aq}):\left[7 \mathrm{n}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
$\mathrm{K}_{\text {sab }}=\frac{\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}}{\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{4}}$
The overall reaction is obtained by adding reactions (i) and (ii) as:
$\left.\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+\underset{1-4 \mathrm{x}}{4 \mathrm{NH}_{3}(\mathrm{aq})} \leftleftarrows \underset{\mathrm{x}}{\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right.}\right]^{2+}+\underset{2 \mathrm{x}}{2 \mathrm{OH}^{-}(\mathrm{aq})}$
$\mathrm{K}_{\text {eq }}=\frac{\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}\left[\mathrm{OH}^{-}\right]^{2}}{\left[\mathrm{NH}_{3}\right]^{4}}=\frac{\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}}{\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{4}}=\mathrm{K}_{\text {sp }} \mathrm{K}_{\text {stab }}$
If x is the molar solubility of $\mathrm{Zn}(\mathrm{OH})_{2}$ in $1 \mathrm{M} \mathrm{NH} \mathrm{N}_{2}$ solution, then at equilibrium,
$\left[\mathrm{NH}_{3}\right]=1-4 \mathrm{x}$; $\left[\mathrm{OH}^{-}\right]=2 \operatorname{xand}\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}=\mathrm{x}$
$\mathrm{K}_{\text {eq }}=\frac{\mathrm{x}(2 x)^{2}}{(1-4 \times)^{4}}=4 \mathrm{x}^{3} \quad$ (since $4 \mathrm{x} \ll 1$)
$4 \mathrm{x}^{3}=\mathrm{K}_{\text {eq }}=\mathrm{K}_{\text {sp }} \mathrm{K}_{\text {stab }}=\left(1.8 \times 10^{-17}\right)\left(1.64 \times 10^{10}\right)$
$\mathrm{x}=4.19 \times 10{ }^{3} \mathrm{moldm}^{3}$

Solution 10:

For a point group which is to be both optically active and polar, it should not have any inversion centre. Ci cannot be the answer. The molecule should not have any sigma plane, otherwise the molecule will be asymmetric and asymmetric molecules are optically inactive, but they are polar molecules so, $\mathrm{C}_{\text {s }}$ and $\mathrm{C}_{2 v}$ cannot be the answer because we need a point group which is not polar and optically inactive. So, according to this, c is the correct option.

CSIR NET Chemical Science 2022 A Foundation Course

Complete Prep of Chemical Science for June 2022 Aspirants

Why take this course?

> 450+ Hrs Live Classes \& Doubt Sessions for complete conceptual clarity
> 3000+ Practice Questions covering all levels of difficulty
> 20+ Unit Wise Study Modules \& Mind Maps
, 50+ Full Mock Tests, Chapter Wise Mock Tests, PYQs Mock Tests

