Important Questions on Inorganic Chemistry

Important Questions on Inorganic Chemistry

1. Which of the following order is correct?
A. Mg^{2+} (size) $<\mathrm{Al}^{3+}$ (size)
B. S (E.A.) < O (E.A.)
C. Hg (I.E) > Cd (I.E)
D. $S(I . E)>P(I . E)$
2. The correct order of acidic strength is
A. $\mathrm{XeF}_{6}>\mathrm{XeO}_{2} \mathrm{~F}_{4}>\mathrm{XeO}_{3} \mathrm{~F}_{2}>\mathrm{XeO}_{4}$
B. $\mathrm{XeF}_{6}>\mathrm{XeO}_{3} \mathrm{~F}_{2} \mathrm{XeO}_{2} \mathrm{~F}_{4}>\mathrm{XeO}_{4}$
C. $\mathrm{XeO}_{4}>\mathrm{XeO}_{3} \mathrm{~F}_{2}>\mathrm{XeO}_{2} \mathrm{~F}_{4}>\mathrm{XeF}_{6}$
D. $\mathrm{XeO}_{4}>\mathrm{XeO}_{3} \mathrm{~F}_{2}>\mathrm{XeF}_{6}>\mathrm{XeO}_{2} \mathrm{~F}_{4}$
3. The X formed in the given reaction is
$\mathrm{NaNH}_{4} \mathrm{HPO}_{4} \longrightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{X}$
A. NaHPO_{4}
B. $\mathrm{NaP}_{2} \mathrm{O}_{7}$
C. $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
D. NaHPO_{2}
4. Which of the following compounds will form silicone having the highest molecular weight?
A. $\mathrm{RSi}(\mathrm{OH})_{3}$
B. $\mathrm{R}_{2} \mathrm{Si}(\mathrm{OH})_{2}$
C. $\mathrm{R}_{3} \mathrm{Si}(\mathrm{OH})$
D. $\mathrm{R}_{4} \mathrm{Si}$
5. On reaction with $\mathrm{NH}_{3}, \mathrm{NH}_{4} \mathrm{NO}_{3}$ and KNH_{2} will act as
A. Acid and acid
B. acid and base
C. Base and acid
D. base and base
6. Which of the following is not correct about cytochrome P-450?
A. Facilitates the cleavage of O_{2}.
B. Absorbs at 450 nm with their CO complexes
C. It contains a histidine ligand.
D. Converts insoluble hydrocarbons to water soluble alcohols.
7. The order of stability of complexes of porphyrins with +2 metal ions is:
A. $\mathrm{Zn}^{2+}<\mathrm{Cu}^{2+}>\mathrm{Ni}^{2+}>\mathrm{Co}^{2+}>\mathrm{Fe}^{2+}$
B. $\mathrm{Cu}^{2+}<\mathrm{Zn}^{2+}>\mathrm{Ni}^{2+}>\mathrm{Co}^{2+}>\mathrm{Fe}^{2+}$
C. $\mathrm{Ni}^{2+}>\mathrm{Cu}^{2+}>\mathrm{Co}^{2+}>\mathrm{Fe}^{2+}>\mathrm{Zn}^{2+}$
D. $\mathrm{Ni}^{2+}<\mathrm{Zn}^{2+}>\mathrm{Cu}^{2+}>\mathrm{Co}^{2+}>\mathrm{Fe}^{2+}$
8. The term symbol for ground state of Ce^{3+} is
A. $F_{3 / 2}$
B. $2 \mathrm{~F}_{3 / 2}$
C. $2 F_{5 / 2}$
D. $\mathrm{F}_{5 / 2}$
9. Determine the geometry of the complex $\left[\mathrm{HOs}_{5}(\mathrm{CO})_{15}\right]^{-}$.
A. Trigonal Prism
B. Trigonal Bipyramidal
C. Square pyramidal
D. Pentagonal bipyramidal
10. The most suitable route to prepare cis isomer of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{2}\right]$
A. $\left[\mathrm{PtCl}_{4}\right]^{2-}$ with $\mathrm{C}_{2} \mathrm{H}_{4}$ followed by reaction with NH_{3}
B. $\left[\mathrm{PtCl}_{4}\right]^{2-}$ with NH_{3} followed by reaction with $\mathrm{C}_{2} \mathrm{H}_{4}$
C. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ with Cl^{-}followed by reaction with $\mathrm{C}_{2} \mathrm{H}_{4}$
D. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ with $\mathrm{C}_{2} \mathrm{H}_{4}$ followed by reaction with Cl^{-}

Answer Key						
1. C	2. A	3. C	4. A	5. B	6. C	7. C
8. C	9. B	10. B				
Solutions						

Solution 1:

A . More the positive charge on cation smaller is the size of cation. Thus, the size of $\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}$. Hence, this is incorrect.
B. O has more electronegativity than S . However, O is smaller than S , hence the charge density is more on anion of O than S. Because of more charge density, repulsion among the electrons increases in anion of O . However, charge density in anion of S is less. Hence this is incorrect.
C. Ionisation energy of Hg is more than Cd , because in Hg due to the presence of 4 f it has poor shielding effect, which brings higher effective nuclear charge on the outermost valence shell in Hg . To pull electron from outer shell of Hg , more energy needs to be supplied. Hence this is true.
D. P has three unpaired electrons in $3 p$ orbital that means it has stable half-filled electronic configuration, whereas sulphur has four electrons in 3 p orbital i.e., does not have half-filled configuration. Therefore, it is easier to remove an electron from a sulphur atom as compared to phosphorus. Hence, the ionisation energy of S is less than P. Hence, this option is incorrect.

Solution 2:

Acidic strength of xenon fluorides and xenon oxyfluorides depends on the number of F atoms directly attached to Xe . As F is highly electronegative, it reduces the electron density on the central Xe atom and makes it more acidic.
$\mathrm{XeF}_{6}>\mathrm{XeO}_{2} \mathrm{~F}_{4}>\mathrm{XeO}_{3} \mathrm{~F}_{2}>\mathrm{XeO}_{4}$
Thus, the correct answer is (A).

Solution 3:

$$
\mathrm{NaNH}_{4} \mathrm{HPO}_{4} \longrightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}
$$

Therefore, $\mathrm{X}=\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$

Solution 4:

A. $\mathrm{RSi}(\mathrm{OH})_{3}$: It will result in the formation of branched polymers with removal of water molecules. Thus, this silicone will have the highest molecular weight.
B. $\mathrm{R}_{2} \mathrm{Si}(\mathrm{OH})_{2}$: It will form a linear chain polymer.
C. $\mathrm{R}_{3} \mathrm{Si}(\mathrm{OH})$: It will only form dimeric compounds.
D. It is tetra alkyl silane and exists in monomeric form.

Solution 5:

As ammonia undergoes autoionization.

$$
2 \mathrm{NH}_{3} \rightleftarrows \mathrm{NH}_{4}^{+}+\mathrm{NH}_{2}^{-}
$$

So, the species which increases the concentration of NH_{4}^{+}(cation) acts as acid and the specie which increases the concentration of NH_{2}^{-}(anion) acts as base.

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-} \\
& \mathrm{KNH}_{2} \rightarrow \mathrm{~K}^{+}+\mathrm{NH}_{2}^{-}
\end{aligned}
$$

Therefore, the correct answer is B .

Solution 6:

Statement C is incorrect because it contains cystine ligand and not histidine.
The structure of cytochrome P-450 is given below:

Solution 7:

The order of stability of complexes is in accordance with the Irving William Series
$\mathrm{Fe}^{2+}<\mathrm{Co}^{2+}<\mathrm{Ni}^{2+}<\mathrm{Cu}^{2+}>\mathrm{Zn}^{2+}$
But here Ni^{2+} is most stable because of the formation of a square planar complex followed by the Cu^{2+}, $\mathrm{Co}^{2+} \& \mathrm{Fe}^{2+}$ and Zn is least stable because it has filled d-orbital.

Solution 8:

The term symbol is an abbreviated description of the total angular quantum numbers in a multielectron atom. Each of the arrangements obtained by combining the resultant L and S terms. Corresponds to an electronic arrangement sometimes called a spectroscopic state which is expressed by the full-term symbol.
Electronic configuration of $\mathrm{Ce}^{3+}=[\mathrm{Xe}]^{4 \mathrm{f} 1}$

f-subshell has 7orbitals have
For f-orbital; $L=3+3+2+10-1-2-3$
Spin of single electron is $S=1 / 2$
Spin multiplicity $(s)=2 S+1=2(1 / 2)+1=2 \rightarrow S=2$
$\mathrm{J}=\mathrm{L}-\mathrm{S}$ (because orbitals are not half-filled)
$\mathrm{J}=3-1 / 2=5 / 2$
Therefore, ground state term symbol for Ce^{3+} is ${ }^{(2 s+1)} \mathrm{L}_{\mathrm{J}}={ }^{2} \mathrm{~F}_{5 / 2}$

Solution 9:

Determination of structure for Geometry: -
Step I \rightarrow Calculate TVE (Total Valence e-count.)
Step II \rightarrow Add the value of the valence electron of interstitial atoms.
E.g., $\mathrm{H} \rightarrow 1$ e-
$\mathrm{H}_{2} \rightarrow 2$ e-
Carbon family $\rightarrow 4$ e-
Nitrogen family $\rightarrow 5$ e-
Step II \rightarrow Compare with table of geometries.
$\left[\mathrm{HOs}_{5}(\mathrm{CO})_{15}\right]^{-}$
Electronic configuration of $\mathrm{Os}=5 \mathrm{~d}^{6} 6 \mathrm{~s}^{2}$
Hence, electronic configuration by $\mathrm{Os}=8 \mathrm{e}^{-}$
TVE $=(8 \times 5)+1+(15 \times 2)+1$
$=40+1+30+1$
$=72$

Compare TVE with table as:

| Cluster framework | Valence
 electron count |
| :--- | :--- | :--- |
| Triangle | |
| Tetrahedron | |
| Sutterfly, or planar raft of four | |
| Stoms | |
| Square | |

It is Trigonal Bipyramidal in shape.

Solution 10:

The preparation of cis isomer of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{2}\right]$ is based on the trans directing ability of the ligand present. The order of trans-directing ability is $\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{Cl}^{-}>\mathrm{NH}_{3}$
cis - $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{2}\right]$ is formed by heating $\left[\mathrm{PtCl}_{4}\right]^{2-}$ with NH_{3} followed by $\mathrm{C}_{2} \mathrm{H}_{4}$

cis-[Pt($\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{2}\right]$

CSIR NET Chemical Science 2022 A Foundation Course

Complete Prep of Chemical Science for June 2022 Aspirants

Why take this course?

> 450+ Hrs Live Classes \& Doubt Sessions for complete conceptual clarity
> 3000+ Practice Questions covering all levels of difficulty
> 20+ Unit Wise Study Modules \& Mind Maps
, 50+ Full Mock Tests, Chapter Wise Mock Tests, PYQs Mock Tests

