

Study Notes On Claisen Condensation Reaction

CLAISEN CONDENSATION

In the Claisen Condensation reaction, self-condensation occurs between two molecules of an ester containing α -hydrogen or between one ester and another carbonyl compound in presence of a strong base to form β -keto ester or β -diketone.

Note:

- 1. Strong base such as sodium ethoxide is used.
- 2. The driving force in this reaction is the formation of stabilized anions of β -keto ester.
- 3. To increase the yield, strong bases are used instead of sodium ethoxide, such as sodium amide, sodium hydride, etc.
- 4. The intramolecular Claisen condensation is known as Dieckmann condensation.
- 5. This reaction is termed as condensation reaction because it eliminates a small amount of alcohol as a side product.
- 6. During this reaction, a new Carbon-Carbon double bond is formed to produce a β-keto ester.
- 7. To avoid transesterification side products, the alkoxide base possesses the same alkyl group as in the alkoxy group present in ester starting material.
- 8. This reaction is driven by Le-Chatelier's principle. Thus, a product will not form if it does not contain an α -hydrogen acidic enough to react completely with the reaction base.

Hence, the ester starting compounds must have at least two α -hydrogen for this reaction to occur; out of which one is removed to form ester enolate and the other gets removed and drives the reaction forward.

General Reaction-

R O R' + R O R'
$$\frac{1. \text{ NaOR'}}{2. \text{ H}_3\text{O}^+}$$
 R O R' + R'—OH ester beta-keto ester alcohol

Reaction Mechanism-

The b-keto ester has a very acidic proton which is removed by the base.

Therefore, an acidic workup is needed

This mechanism is similar to saponification reaction, and it could be understood step-by-step as follows-

1. Enolate formation

The alkoxide base removes an alpha-hydrogen from the ester to form a nucleophilic ester enolate ion.

2. Nucleophilic attack

The enolate nucleophile so formed adds to the carbonyl carbon of a different ester, forming a tetrahedral alkoxide intermediate.

3. Removal of leaving group

The alkoxide then reforms the carbonyl to form a beta-ketoester by eliminating the –OR as leaving group.

4. Deprotonation

$$\beta$$
-Ketoester β -Ketoester Anion (Weaker Acid: $pK_a \sim 16$) (Stronger Acid: $pK_a \sim 9$) (Stronger Base)

5. Protonation

The enolate is protonated in an acid work-up to form the neutral beta-ketoester product.

$$\beta$$
-Ketoester Anion β -Ketoester

Note: Stereochemistry = a racemic mixture of enantiomers will form.

Example-

CSIR NET Chemical Science 2022

A Foundation Course

Complete Prep of Chemical Science for June 2022 Aspirants

Why take this course?

- 450+ Hrs Live Classes & Doubt Sessions for complete conceptual clarity
- 3000+ Practice Questions covering all levels of difficulty
- 20+ Unit Wise Study Modules & Mind Maps
- 50+ Full Mock Tests, Chapter Wise Mock Tests, PYQs Mock Tests

