
byjusexamprep.com

1

https://byjusexamprep.com/
https://byjusexamprep.com/

byjusexamprep.com

2

1. Symbol: [Lowest unit] represented by Lower care or special symbols.

* Also known as Terminals.

2. Strings: Seq. of symbols. Denoted by ω.

* Stings should be finite, and Seq. matters.

3. Length of String :|ω| number of symbols involved in the String.

ω1 = abed ∴ |ω1 |= 4

4. Empty String or Null String: (ϵ) String of Length O ie |ω| = 0.

[* ϵ → String, not a symbol’

5. Concatenation of Strings (.) Concatenation of 2 Strings will always be a string.

1 2 2 1 ∈⋅ 𝑎𝑛𝑦 = 𝑎𝑛𝑦 ⋅ 𝜖 = 𝑎𝑛𝑦

non-commutative,

6. Prefix of a sting: ω1 = abcd ∴ Prefix (ω1) = ϵ,a, ab, abc, abcd.

ω2 = aaa ∴ Prefix (ω2) = ϵ, a, aa, aaa, aaaa.

→ [A String is a prefix of itself.]

→ [∈ is a prefix of every string.] (Trivial).

7. Suffix of a sting: ω1 = abed ∴ Suffix = ϵ, d, cd, bcd, abcd.

i.e., seq. of trailing symbols. → A string is a suffix of itself.

8. Substring: It is a string present in the string.

string – {abc}

Substring: {“ ”, a, b,c, ab, bc, abc}

()1

max no of Sub str 1 1
2

+
= + = +

n n
n → valid, when all symbols are unique [ie distinct].

9. Reverse of a String of (ωR): ω = abcd; ωR = dcba.

[ω. ω R, ωR ω] ⇒ palindrome. Say, ω = ϵ, then ωR = ϵ.

10. Language: Set of Strings. [May be finite or infinite]

*Empty Language is possible. L {}= =

11. Alphabet: (Σ) Non empty finite set of symbols on which the Language is defined.

[∗ 𝑤/𝑜 𝐴𝑙𝑝ℎ𝑎𝑏𝑒𝑡, 𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 . ∗ 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝐴𝑙𝑝ℎ𝑎𝑏𝑒𝑡 𝑛𝑜𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒]

* for L = { } and L = {ϵ}, any alphabet is valid

* Σ doesn’t contain ϵ.

Short Notes — THEORY OF COMPUTATION

https://byjusexamprep.com/

byjusexamprep.com

3

12. Power of String [ωn | n ϵ Z]

ω = abc ∴ 𝜔∘ = 𝜖;

ω1 = ω = abc

ω2 = ω. ω = abc.abc

ω3 = ω ω ω=abcabcabc.

13. Concatenation of Language: Just like cartesian prod, of 2 sets

L1 = {a, b} L2 = {1, 2}

∴ L1.L2 = {a1, a2, b1, b2}

* Concat of 2 languages is finite only if both of them are finite.

* If any of the Lang in the concat is ∞, then concat is ∞.

.any any= =

14. Reverse of a Language [LR]

LR contain ωR for ∀ω ϵ L.

L= {ab, ba, aa bb, a, b}

∴ LR = {ba, ab, aa, bb, a, b}

15. Power of Language [Ln |n ϵ t]

L = {a, b} L0 = {ϵ},

L1
 = L = {a, b}

L2 = L.L = {a, b} {a, b} = {aa, ab, ba, bb}

* the union and intersection of 2 languages will always be a Language.

16. Complement of a Language [Lc]:

 Universal = −cL L .
=

=

c

c

U

U

17. Set difference:

()
c

1 2 1 2L L L L− =

18. Kleene Closure (*):

() ()* * * * * = + a b a b

() ** * , , . , , ,+ a b a aa b bb

* ** (*) = a a

https://byjusexamprep.com/

byjusexamprep.com

4

19. Positive closure: (+)

• Finite Automata:

It is used to recognize patterns of specific type input. It is the most restricted type of automata

which can accept only regular languages (languages which can be expressed by regular expression

using OR (+), Concatenation (.), Kleene Closure (*) like a*b*, (a+b) etc.)

• Deterministic FA and Non-Deterministic FA:

In deterministic FA, there is only one move from every state on every input symbol but in Non-

Deterministic FA, there can be zero or more than one move from one state for an input symbol.

o Note:

- Language accepted by NDFA and DFA are the same.

- Power of NDFA and DFA is the same.

- No. of states in NDFA is less than or equal to no. of states in equivalent DFA.

- For NFA with n-states, in worst case, the maximum states possible in DFA is 2n

- Every NFA can be converted to corresponding DFA.

• Identities of Regular Expression:

Φ + R = R + Φ = R

Φ * R = R * Φ = Φ

ε * R = R * ε = R

ε* = ε

Φ* = ε

ε + RR* = R*R + ε = R*

(a+b) * = (a* + b*) * = (a* b*) * = (a* + b) * = (a + b*) * = a*(ba*) * = b*(ab*) *

• Complement of a FSM: [Mc]

Change: this is only valid for , and invalid for NFA.

* Do NOT reverse the arrows.

* The complement of a regular language is always regular.

* The concat. Of 2 languages are always regular.

https://byjusexamprep.com/

byjusexamprep.com

5

• Reverse of a Machine: [MR]

→ make the initial state as final state, and all final state as non-final. and Reverse the arrows.

* Reverse of DFA could be NFA.

* Reverse of RL is always RL.

* if more than 1 initial state, then make new initial state with ϵ transition to them.

n#states in DFA 2

* n → no of states in NFA of equivalent Language.

• Standard RL and NRL

1. n

La b R

2. , 1n m

La b n m R

3. 7, 14 n m

La b n m R∣

4. 2=n ma b n∣ or 4} LR

5. 1, 2 n m

La b n m R∣

6. 2 n m

La b n m R∣

7. 2 n m

La b n m R∣

8. 6+ =n m

La b n m R∣

9. 6+ n m

La b n m R∣

10. 6+ n m

La b n m R∣

11. 5− −n m

La b n m NR∣

12. 5= +n m

La b n m NR∣

13. 100 − =n m

La b n m R∣

14. 2=n m

La b n m NR∣

15. n m

La b n m NR∣

16. 2n m

La b n m NR∣

17. / 5=n m

La b n m NR∣

18. 2 =n m

La b n m NR∣

19. →pa P∣ Prime } LNR

https://byjusexamprep.com/

byjusexamprep.com

6

20. 7, 2 n n m

La b c n m R∣

21. 1, 2 n n m

La b c n m NR∣

22. 1, 1 n n m

La b c n m NR∣

23. =n n m

La b c n m NR∣

24. = +n m p

La b c n m p NR∣

25. = n m p

La b c n m p NR∣

26. 2= +n m p

La b c n m p NR∣

27. 1n n n

La b c n NR∣

28. pa P∣ is Prime, 30 Lp R

29. 710n n n

La b c n R∣

30. 1n n

La a n R∣

31. () Lw.w w a,b * NR∣

32. () R

Lww w a,b * NR∣

33. () () R

Lw w * w a,b * R∣

34. () R

Lw #w w a,b * NR∣

35. () Lw w a,b * R∣

36. () R

Lw w w,x a,b * R ∣

37. R

Lw w w,x (a,b) R+x ∣

38. () R

Lxww w,x a,b * R∣

39. R

Lxww w,x (a,b) NR+∣

40. () R

Lww x w,x a,b * R∣

41. , (,)+R

Lww x w x a b NR∣

42. *, (,) Lxcy x y a b R∣

43. , (,)+ Lwxw w x a b NR∣

44. () , , * Lwxw w x a b R∣

https://byjusexamprep.com/

byjusexamprep.com

7

45. () () , * , Lw w w a b x a b NR∣

46. () , , , w 3
+

 Lw w w x a b R∣

47. , 1n n m m

La b c d n m NR∣

48. , , ,1 1n m p q

La b c d n m p R∣

49. , 3, 10 n m p q

La b c d n m pq R∣

50. Lcb n 1 NRn na ∣

51. 2 3 , 1n m

La cb n m R∣

52. {awa *(,) Lw a b R∣

53. { waw () Lw a,b *}NR∣

54. () , *R

Lwww w a b NR∣

55. 1n

Labb n R∣

56. () (){w w a,b *, w even, d w = =∣ , odd
L}R

57. 1, n n

La b n n aa NR∣

58. 2 n m n

La b n m NR∣

59. 10 n n

La b n m NR∣

60. 10 n m

La b n m R∣

61. 2 3 4, 1 n m

La b m n R∣

62. 10+ + =m n p

La b c m n p R∣

63. () *

1 2 1 2 2, , , = Lw w w w a b w w R∣

64. () , * 2 aw w a b w ∣ for every prefix of w of LR
.

• Regular Expression: Mathematical formula used to rep. RL only.

* If RE for a language exists, then its RL.

* RE for a given Language, will generate only the strings in the given language.

https://byjusexamprep.com/

byjusexamprep.com

8

• Priority: (), a*, a+, *, + {order of evaluation.

• Arden's Theorem (only for ϵ free FSM)

R, Q, P are R.E., where Q ≠ ∈.

* it has unique solution ⇒ R = QP*

• Algebraic Laws of RE :

Commutative Law Associative Law

(a) r1 + r2 = r2 + r1 (a) r1(r2 + r3) = (r1 + r2) + r3

(b) r1 . r1 ≠ r2 . r1 (b) (r1 . r2) . r3 = r1 . (r2 . r3)

Distributive Law

(a) r1 + (r2 . r3) ≠ (r1 + r2) . (r1 + r3) [not distributive like this]

(b) r1 . (r2 + r3) = r1 . r2 + r1 . r3 [this is valid]

Identity Law Idempotent Law

(a) 1 1+ =r r
 (a) 1 1 1+ =r r r

 [valid]

(b) 1 1, =r r
 (b) 1 1 1 r r r

 [not valid]

• Standard Results for Regular Expression:

1. ()
*

* *=r r

2. * =

3.
+ =

4. * =

5. + =

6.
* *r r r r r+ = =

7.
* += +r r

8. + = + r r r

9. rr r

10.
* *rr r+ =

https://byjusexamprep.com/

byjusexamprep.com

9

11.

() () () ()

() ()()
() ()

()

* *
* * *

*
* *

* * *

 * *

 * * * * * * * *

 * * *

+ = + = + = +

= + = +

= + =

=

a b a b a b a b

ab ba a b

a b a b b a

a b

12. * , = =a r

• Important Notes:

1. Union of 2 RL is always RL and union ⇒ commutative and Associative.

2. Finite union of RL is always RL.

* Infinite union of RL may or may not be RL.

3. Finite intersection of 2 RL is always RL.

* Infinite intersection is not RL. (NRL)

4. Concatenation of 2 or more RL is always RL.

5. Subsets of RL may or may not be RL.

n n n ma b a b

6. Subset of NRL may be RL.

7. RL ∪ DCFL = DCFL RL ∩ DCFL = DCFL

RL ∪ CFL = CFL RL ∩ CFL = CFL

RL ∪ CSL = CSL RL ∩ CSL = CSL

RL ∪ REC = REC RL ∩ REC = REC

RL ∪ R.E = RE RL ∩ RE = RE

8. Kleene closure (*) and the positive closure (+) of RL is always RL.

9. Reverse of RL is always RL.

10. Every NRL has at least 1 RL superset (universal Lang.)

11. RL ∪ = RL

 need not be regular.

12. NRL ∪ NRL = may or may not be RL.

13. RL ∪ = NRL

 Always NRL

14. RL ∩ NRL = may or may not be RL

15. NRL ∩ NRL = may or may not be RL.

16. NRL ∩ = RL may or may not be RL.

https://byjusexamprep.com/

byjusexamprep.com

10

• Derivation:

To derive a string from the grammar.

→ LMD: Leftmost symbol resolved first.

→ RMD: Rightmost symbols are resolved first.

* Graphical Rep: Parse Tree, abstract syntax Tree, derivation Tree.

1. If there exists LMD for a string, then there will exist RMD for it and vice versa.

2. Parse Trees of LMD and RMD may not be the same.

3. We may have more than 1 LMD/RMD for a string.

4. If N no of LMD’s are possible, then exactly N RMD’s are also possible.

• Ambiguous grammar: [USELESS]

If there exists more than 1 LMD or RMD for any given string in the grammar, then it's ambiguous.

→ Parse Tree & LMD or RMD may be diff.

→ Grammar is ambiguous if we find string for which more than LMD/RMD exists.

→ No algorithm exists to check ambiguity. [undecidable]

→ There are some grammars from which we can remove ambiguity.]

→ There are some grammars from which we can never remove ambiguity.] Inherently

ambiguous.

o NOTE:

https://byjusexamprep.com/

byjusexamprep.com

11

• Type 3: Regular Grammar

• Moore Machine:

o Moore machines are finite state machines with output value and its output depends only on the

present state.

o Mealy Machine: Mealy machines are also finite state machines with output value and its output

depends on present state and current input symbol.

• Mathematical Model of FSM:

• NOTE

*

https://byjusexamprep.com/

byjusexamprep.com

12

• Note:

1. [Moore → Mealy] → no change in no. of states.

2. [Mealy → Moore] → no. of states increases.

* In mealy m/e if |Φ| = m, and |Δ| = n, the

No of states in Moore = (m ⋅ n) ⇒ max possible.

• Push Down Automata:

Pushdown Automata has extra memory called stack which gives more power than Finite automata.

It is used to recognize context-free languages.

• Deterministic and Non-Deterministic PDA: In deterministic PDA, there is only one move from

every state on every input symbol but in Non-Deterministic PDA, there can be more than one move

from one state for an input symbol.

o Note:

- Power of NPDA is more than DPDA.

- It is not possible to convert every NPDA to corresponding DPDA.

- Language accepted by DPDA is a subset of language accepted by NPDA.

- The languages accepted by DPDA are called DCFL (Deterministic Context Free

Languages) which are a subset of NCFL (Non-Deterministic CFL) accepted by NPDA.

https://byjusexamprep.com/

byjusexamprep.com

13

• Type 2: Context free Grammar: (CFG)

* Single variable defines anything.

* Every regular Grammar is CFG.

o NOTE

1. To check if 2 grammars are equivalent or not is undecidable.

2. To check if 2 Regular Grammar are equivalent or not is decidable.

* Turing M/e for L = {ϵ} is not possible.

* Context sensitive grammar does not produce ϵ.

• CNF: Chomsky Normal Form:

The productions are of type

* In CNF, ϵ is not allowed

• * Algorithm for converting: (CFG → CNF)

1. Remove ϵ - Production (unless inherent)

2. Remove unit Production

3. Simplify the Grammar:

(a) Remove useless variables.

(b) Remove unsearchable variables.

• GNF: Greibach Normal Form:

• Reduction of the form: ϵ - production not allowed in GNF.

* Exactly one terminal followed by any o. of variables.

* ϵ is allowed only in the start variable.

* Any Grammar (CFG) can be converted to on GNF

............... to convert: (CFG → GNF)

* If the length of the string is N, then we need N steps for derivation from GNF.

1. Remove Left recursion

2. Remove ϵ-Production

https://byjusexamprep.com/

byjusexamprep.com

14

3. Remove unit production

4. Simplify the grammar.

• Removal of Left recursion :

* Left Recursion can be removed from every CFG.

* Indirect left recursion is also possible.

• Removal of ϵ-Production:

S AB S AB B S AB S AB B A

 A aA A aA a A aA A aA a

B bB b B bB b B bB B bB b

 → → → →

→ → → →
 → → → →

∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

* If lang. of grammar contains ϵ; then can’t remove.

• Removal of unit Production:

[V → V] this is unit production.

E → E + T | T E → E + T | T * F | F E → E + T | T * F | (E)|id

T → T * F | F T → T * F | (E) | id T → T * F | (E) | id

F → (E) | id F → (E) | id F → (E) id

• Simplification of Grammar:

(a) useless variable: Variables that don’t have terminating points are useless.

(b) unreachable variable: If the variable doesn’t lie in the tree of short var.

https://byjusexamprep.com/

byjusexamprep.com

15

• Mathematical Model of PDA:

• 7 types: (Q, q0, f, Σ, δ, Γ, Z0)

7 → Stack Alphabet. F → Final Static (can be empty).

Z0 → Init. Stack Symbol.

DPDA : :Q Σ Γ Q push / pop / skip

NPDA : :Q Σ Γ 2Q push pop skip

 →

 →

• Acceptance by PDA → [(a) empty stack (b) Final static] inter convertible, exception exits.

• Instantaneous Description of PDA:

δ (q0, a, Z0) (q, push|pop|skip.)

• Push:

δ (q0, a, Z0) (q1, AZ0)

δ (q1, a, A) (q1, AA)

δ (q1, b, A) (q2, BA)

• pop:

δ (q1, b, A) (q2, ϵ)

δ (q2, b, B) (q3, ϵ)

• Skip:

δ (q3, C, B) (q3, B)

* We can push more than one element at a time, and also pop more than one element at a time.

https://byjusexamprep.com/

byjusexamprep.com

16

• Set difference Properties:

• Important Points:

* By PDA we can’t do more than 1 comparison.

* We can’t recognize non-linear power PDA.

* String matching not possible [ie L = {ww} not CFL]

• Some Important PDA’s:

1. L = {anbn | n ≥ 1}

• Linear Bound Automata:

o Linear Bound Automata has a finite amount of memory called tape which can be used to

recognize Context Sensitive Languages.

o LBA is more powerful than push down automata.

 FA < PDA < LBA < TM

TOC – REC and RE

https://byjusexamprep.com/

byjusexamprep.com

17

• Mathematical Model of T.M. :

• 7 Type: {q0, Q, Σ, B, , F, δ}

 ⇒ Tape Alphabet B Blank ⇒ Symbol

• Instantaneous descriptions:

δ(q0, a) (q1, x, L/R)

⇒ q0 state reads a, goes to state q1, and written x in place of ‘a’, and moves left or right.

Ex:

• Standard well known Problems :

1. State entry problem: [Given a T.M., a state q ϵ Q and w ϵ Σ+, decide if the state q is ever

entered?] Undecidable.

2. Halting problem: [Given description of TM and ip: w ϵ Σ+, does the m/c started w/ ‘w’ as l/P

halt?] Undecidable.

3. Blank Tape halting problem: [Given a T.M. if the m/c halts or not when started w/ Blank

Tape?] Undecidable.

https://byjusexamprep.com/

byjusexamprep.com

18

o Note:

The Language which contains encoded T.M as a string (Lv) is a recursive Language, and so we

can make halting. TM (HTM) for that.

∴ Lv is R.E.C.

• Universal Turing M/C

It’s a T.M., where provided i/p itself is a T.M.

* The set of all strings of the form <m,w> accepted by UTM is called universal Language.

• Countability:

[Finite no of interval b/w w number/item]→ Countable

N = {1, 2, ∞} Countable

Even = {2, 4 ∞} Countable

Prime = {2, 3, 5, 7 ∞} Countable

R = {- ∞ – 0.1, 0.2 ∞} Uncountable

o Note:

→ Subsets of countable sets are always countable.

→ Set of all TM’s are countable.

→ Set of all RE’s are countable.

→ Union of 2 or more countable set is always countable.

→ Power set of ∞ countable set = uncountable

 *2 uncountable =

→ Cartesian Product of 2 countable sets is always countable.

→ Complement of countable, may or may not be countable.

→ Complement of uncountable may or may not be countable.

→ Intersections may or may not be countable.

https://byjusexamprep.com/

byjusexamprep.com

19

• Computational Complexity:

* We cannot reduce an undecidable problem to a decidability in polynomial time.

1.

2.

3.

4.

• Turing Machine:

o Turing machine has infinite size tape, and it is used to accept Recursive Enumerable Languages.

o Turing Machine can move in both directions. Also, it doesn’t accept ε.

o If the string inserted is not in language, the machine will halt in non-final state.

• Deterministic and Non-Deterministic Turing Machines:

In a deterministic Turing machine, there is only one move from every state on every input

symbol but in a Non-Deterministic Turing machine, there can be more than one move from one

state for an input symbol.

o Note:

- Language accepted by NTM, multi-tape TM and DTM are the same.

- Power of NTM, Multi-Tape TM and DTM is the same.

- Every NTM can be converted to corresponding DTM.

https://byjusexamprep.com/

byjusexamprep.com

20

• Chomsky Classification of Languages:

Grammar

Type Production Rules

Language

Accepted Automata Closed Under

Type-3

(Regular

Grammar)

A→a or A→aB

where A,B ∈ N(non

terminal) and

a∈T(Terminal) Regular

Finite

Automata

Union, Intersection,

Complementation,

Concatenation,

Kleene Closure

Type-2

(Context

Free

Grammar)

A→ρ where A ∈ N

and ρ ∈ (T∪N)*

Context

Free

Push Down

Automata

Union,

Concatenation,

Kleene Closure

Type-1

(Context

Sensitive

Grammar)

α→β where

α, β∈ (T∪N)* and

len(α) <= len(β)

and α should

contain at least 1

non terminal.

Context

Sensitive

Linear

Bound

Automata

Union, Intersection,

Complementation,

Concatenation,

Kleene Closure

Type-0

(Recursive

Enumerable)

α →β where

α, β ∈ (T∪N)* and α

contains at least 1

non-terminal

Recursive

Enumerable

Turing

Machine

Union, Intersection,

Concatenation,

Kleene Closure

https://byjusexamprep.com/

byjusexamprep.com

21

• Relationship between these can be represented as:

• Decidable and Undecidable Problems:

o A language is Decidable or Recursive if a Turing machine can be constructed which accepts

the strings which are part of language and rejects others. e.g.; A number is prime or not is a

decidable problem.

o A language is Semi–Decidable or Recursive Enumerable if a Turing machine can be

constructed which accepts the strings which are part of language and it may loop forever for

strings which are not part of language.

o A problem is undecidable if we can’t construct an algorithms and Turing machine which can

give yes or no answer. e.g; Whether a CFG is ambiguous or not is undecidable.

Decidability Table

Problem RL DCFL CFL CSL RL REL

Membership Problem D D D D D UD

Emptiness Problem D D D UD UD UD

Completeness Problem D UD UD UD UD UD

Equality Problem D D UD UD UD UD

Subset Problem D UD UD UD UD UD

L1 𝑛𝐿2 = 𝜙 D UD UD UD UD UD

Finiteness D D D UD UD UD

Complement is of same type D D UD D D UD

Intersection is of same type D UD UD UD UD UD

Is L regular D D UD UD UD UD

https://byjusexamprep.com/

byjusexamprep.com

22

• Closure Properties:

Operation REG DCFL CFL CSL RC RE

Union Y N Y Y Y Y

Intersection Y N N Y Y Y

Set difference Y N N Y Y N

Complementation Y Y N Y Y N

Intersection with a regular language Y Y Y Y Y Y

Union with a regular language Y Y Y Y Y Y

Left Difference with a regular language
(L-regular)

Y Y Y Y Y Y

Right Difference with a regular language
(Regular-L)

Y Y N Y Y N

Concatenation Y N Y Y Y Y

Kleene star Y N Y Y Y Y

Kleene plus Y N Y Y Y Y

Reversal Y Y Y Y Y Y

Epsilon-free homomorphism Y N Y Y Y Y

Homomorphism Y N Y N N Y

Inverse homomorphism Y Y Y Y Y Y

Epsilon-free substitution Y N Y Y Y Y

Substitution Y N Y N N Y

Right quotient with a regular language Y Y Y N Y Y

Left quotient with a regular language Y Y Y N Y Y

Subset N N N N N N

• Countability :

o All strings over any finite alphabet are countable.

o Every subset of a countable set is either finite or countable.

o Set of all Turing Machines are countable.

o The set of all languages that are not recursive enumerable is Uncountable.

https://byjusexamprep.com/

