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CHAPTER 1: VECTOR CALCULUS  

1.  Vector Quantity  

A physical quantity which has both magnitude and definite direction is called a vector 

quantity. The various examples of vector quantity are force, velocity, displacement, electric 

field intensity, magnetic field intensity, acceleration etc.  

1. 1. Representation of a Vector  

To distinguish between a scalar and a vector it is customary to represent a vector by a letter 

with an arrow on top of it, such as  a and b , or by a letter in boldface type such as  A and  B . 

1.2. Unit Vector  

A unit vector consists both magnitude and direction. Its direction is same as that of the main 

vector however, its magnitude is unity. It can be written in various as I A, i A, ŬA or u A. A unit 

vector is defined as the ratio of the main vector itself to its magnitude. For example, the unit 

vector of A is given as 
| |

A

A

A
a =  

Where |A| is the magnitude of the vector and ŬA is the unit vector of A.  

2.  Basic Vector Operations  

2. 1.  Scaling of a Vector  

When a vector is multiplied by a scalar it results in a vector quantity.  

Consider a vector A and a scalar k. The product R  of the two quantities is given as  

R  = k A  

Following are some important properties of scaling operation:  

Properties of scaling operation  

1. Consider the scaling operation R  = k A . The direction of R  is same as that of A  if k is 

positive, and opposite to that of A if k is negative.  

2.  In rectangul ar coordinates, assume that the scaling operation is given by  

Rx xa  + R y ya  + R Z Za  = k (A x xa   + A y ya  + A z Za )  

The above equality is satisfied if each component of the LHS is equal to the corresponding 

component of RHS, i.e.  

Rx = kA x, R y= kA y, Rz = kA z 

The magnitude of R is  

 
2 2 2| | x y zR k A A A kA= + + = 

3.  Let k 1, k 2 be the scalars, and A, B be the vectors then,  

(k 1+k 2) A  = k 1 A +k 2 A   

IMPORTANT FORMULAS TO REMEMBER 
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2.2. Addition of Vectors  

Consider the two vectors,  

A  = A x xa  + A y ya +A z Za  and  

B  = B x xa +B y ya  + B z Za  

The addition of these two vectors is given by  

A  + B  = (A x+B x)  
xa   + (A y+B y)  

ya  + (A Z+B Z)  
Za  

Properties of Vector Addition  

1.  Vector addition follows the commutative law, i.e.  

A  + B  = B  + A  

2.  Vector addition follows the associative law, i.e.  

A  +( B + C ) = ( A  + B ) + C  

3.  Similar to the vector addition, the subtraction of the vectors is defined as  

A  -  B  = (A x -  Bx)  
xa   + (A y -  By)

ya   + (A z-BZ)
Za   

k1( A + B ) = k 1 A + k 1 B  

2.3. Multiplication of vectors  

When two vectors A and B are multiplied, the result is either a scalar or a vector depending 

on how they are multiplied. There are two types of vector multiplication:  

1. Scalar (or dot) product: A ¶B  

2. Vector (or cross) product: A  × B  

2 .3.1  Scalar Product  

The dot product of the vectors A and B is defined as  

A ¶B  = |A||B| cosȅ 

Following are some important properties of dot product of two vectors.  

Properties of Dot product  

1.  The dot product of two orthogonal vectors is always zero, i.e.  

 A ¶B  = 0, if ȅ = 900 

2.  The dot product of two parallel vectors in equal to the product of their magnitudes, i.e.  

 A ¶B  = AB,  if ȅ = 00 

3.  In rectangular coordinate systems, the dot products of the unit vectors are given as  

 Ŭx ¶ Ŭy = Ŭy¶ Ŭz = Ŭz¶ Ŭx=0  

Ŭx ¶ Ŭx = Ŭy ¶ Ŭy = Ŭz¶ Ŭz =1  

4.  if the two vectors are defined in rectangular coordinates as  

 A  = A xŬx + A yŬy + A zŬz 

 B  = B xŬx+ B yŬy + B zŬz 

Then, their dot product is evaluated as  
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A ¶B  = A xBx + A yBy + A zBz 

5 .  The dot product follows the commutative law, i.e.  

 A ¶B  = B¶A  

6.  The dot product also follows the distributive law, i.e.  

 A ¶ ( B + C ) = A ¶B  + A ¶C  

2.3.2 Vector of Cross Product  

The cross product of two vectors A and B is Defined as  

A  × B  = (AB sin ȅ) Ŭn 

Where Ŭn is the unit vector normal to the plane containing A and B, ȅ is the angle between 

the vector A and B as shown in Figure 1.4 As there are the normal unit vector Ŭn we use the 

right -  hand rule.  

Right hand rule  

Let your fingers point in the direction of the first vector and curl around (via the smaller 

angle) toward second; then your thumb indicates the direction of Ŭn.  the cross -product A× B 

points upward.  

Properties of cross product  

1.  The cross product of two orthogonal vectors is equal to the product of t heir magnitudes 

with the direction perpendicular to the plane, i.e.  

 A  × B  = ABŬn,  if, ȅ = 900 

2.  The cross product of two parallel vectors is always zero, i.e.  

 A  × B  = 0,   if ȅ = 00 

3.  In rectangular coordinate system, the cross product of the unit vectors are given as  

 ŬxĬ Ŭx = ŬyĬ Ŭy = ŬzĬ Ŭz = 0  

 ŬxĬ Ŭy = Ŭz 

 Ŭy Ĭ Ŭz = Ŭx 

 Ŭz Ĭ Ŭx = Ŭy 

4.  If the two vectors are defined in rectangular coordinates as  

 A  = A xŬx+ A yŬy+A zŬz 

 B  = B xŬx+B yŬy + B zŬz 

Then, their cross product is evaluated as  

 A B
x y z

x y z

x y z

a a a

A A A

B B B

é ù
é ù

³ =é ù
é ù
ê ú

 

5.  The cross product is anti - commutative, i.e.  

 A  × B  = ï B  × A  

6.  The cross product follows the distributive law, i.e.  
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A  × ( B  + C ) = A  × B  + A  × C  

3.  COORDINATE SYSTEMS  

The following three most useful coordinate systems:  

1. Cartesian or rectangular coordinates,  

2. Circular or cylindrical coordinates, and  

3. Spherical coordinates.  

3. 1 . Rectangular or Cartesian  Coordinate System  

The three coordinate axes are designated as x, y and z which are mutually perpendicular to 

each other . The variables x, y and  z can have any values in the range  

-Ð < x < Ð, -Ð, < y < Ð, -Ð < z < Ð 

Vector Representation in Rectangular Coordinate System  

A vector A in rectangular coordinate system is represented as  

A = A x Ŭx + A y Ŭy+ A z Ŭz 

Where Ŭx,Ŭy,  Ŭz are the unit vectors along the x , y and z directions . 

The magnitude of A is given by  

2 2 2| A | x y zA A A= + +  

 

Figure: Representation of cartesian coordinates  

 

3.2. Cylindrical Coordinates  

The cylindrical coordinate system is very convenient whenever we are dealing with problems 

having cylindrical symmetry.  

 A Point P in cylindrical coordinates is represented as (ȍ, f, z) and is as shown in figure 

below.  

The ranges of the variables are:  

0 ¢ r¢ ¤  

0 2¢ f ¢ p 

z-¤ ¢ ¢ +¤ 
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A vector A  in cylindrical coordinates can be written as  

( )z z zĔ Ĕ ĔA , A , A or A a A a A ar f r r f f+ +  

 

Figure: Representation of cylindrical coordinates  

Notice that the unit vectors Ĕ Ĕa ,ar fand zĔa  are mutually perpendicular because our coordinates 

system is orthogonal.  

z zĔ Ĕ Ĕ Ĕ Ĕ Ĕa a a a a a 0r f f r³ = ³ = ³ = 

z zĔ Ĕ Ĕ Ĕ Ĕ Ĕa a a a a a 1r r f f³ = ³ = ³ = 

zĔ Ĕ Ĕa a ar f³ =     

zĔ Ĕ Ĕa a af r³ =     

zĔ Ĕ Ĕa a ar f³ =  

 

Conversion of cartesian coordinate to cylindrical coordinate and vice - versa  

Point transformation,  

-

r = +

f =

=

2 2

1

x y

y
tan

x

z z

 

or  

= r f

= r f

=

x cos

y sin

z z

  

The relationship between x y z zĔ Ĕ Ĕ Ĕ Ĕ Ĕa ,a ,a and a ,a ,ar f are vector transformation,  

xĔ Ĕ Ĕa cos a sin ar f= f - f    

yĔ Ĕ Ĕa sin a cos ar f= f + f    

z zĔ Ĕa a=     
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or x yĔ Ĕ Ĕa cos a sin ar= f + f   

x yĔ Ĕ Ĕa sin a cos af= - f + f    

z zĔ Ĕa a=     

Finally, the relationship between (A x, A y, A z) and ( )zA , A , Ar f  are  

x

y

zz

A Acos sin 0

A sin cos 0 A

0 0 1 AA

r

f

f f

= - f f   

x

y

z z

AA cos sin 0

A sin cos 0 A

0 0 1A A

r

f

f - f

= f f  

3.3. Spherical Coordinates  

A point P can be represented as ( ( )r, ,q f) and s illustrated in figure below. From figure, we 

notice that r is defined as the distance from the origi n to point P or the radius of a sphere 

centered at the origin and passing through P; ȅ (called the colatitudes) is the angle between 

the z -axis and the position vector of P; and fis measured from the x -axis (the same 

azimuthal angle in cylindrical coordinates). According to these definitions, the ranges of the 

variables are  

0 r¢ ¢ ¤    

0 ¢ q¢ p 

0 2¢ f ¢ p 

Note:  the unit vectors rĔ Ĕ Ĕa ,a and aq fare mutually perpendicular because our coordinate 

system is orthogonal.  

r rĔ Ĕ Ĕ Ĕ Ĕ Ĕa a a a a a 0q q f f³ = ³ = ³ = 

r rĔ Ĕ Ĕ Ĕ Ĕ Ĕa a a a a a 1q q f f³ = ³ = ³ =  

rĔ Ĕ Ĕa a aq f³ =     

rĔ Ĕ Ĕa a afq³ =    

rĔ Ĕ Ĕa a af q³ =     
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Conversion of cartesian coordinate to spherical coordinate and vice - versa  

Point transformation,  

-

-

= + +

+ +
q =

f =

2 2 2

2 2 2
1

1

r x y z

x y z
tan

z

y
tan

x

 

Or  

= q f

= q f

= q

x r sin cos

y r sin sin

z r cos

 

The relationship between x y z rĔ Ĕ Ĕ Ĕ Ĕ Ĕa ,a a and a ,a ,aq fare  

x rĔ Ĕ Ĕ Ĕa sin cos a cos cos a sin aq f= q f + q f - f    

y rĔ Ĕ Ĕ Ĕa sin sin a cos sin a cos aq f= q f + q f + f    

z rĔ Ĕ Ĕa cos a sin a f= f - f        

r x y zĔ Ĕ Ĕ Ĕa sin cos a sin sin a cos a= q f + q f + f     

x y zĔ Ĕ Ĕ Ĕa cos cos a cos sin a sin aq= q f + q f - f    

x yĔ Ĕ Ĕa sin a cos af= - f + f 

Finally, the relationship between (A x, A y, A z) and ( )rA , A , Aq f are  

Vector transformation,  

r x

y

z

A Asin cos sin sin cos

A cos cos cos sin sin A

sin cos 0A A

q

q f q f q

= q f q f - q

- f ff

    

x r

y

A Asin cos cos cos sin

A sin cos cos sin cos A

cos sin 0 AAz

q

f

q f q f - f

= q f q f f

f - f
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4.  DIFFERENTIAL ELEMENTS IN COORDINATE SYSTEMS  

4. 1.  Differential Elements in Rectangular Coordinate System  

The differential elements in rectangular coordinate system are defined as follows:  

1. Differential length in rectangular coordinate system:  

 dL = dxŬx + dyŬy + dzŬz 

2. Differential area in rectangular coordinate system:  

 dS = dydza x = dxdzŬy = dxdyŬz 

3. Differential volume in rectangular coordinate system:  

 dV =dxdydz  

4.2. Differential Elements in Cylindrical Coordinate System  

The differential elements in cylindrical coordinate system are defined as follows:  

1. Differential length in cylindrical coordinate system:  

 dL = dȍŬȍ + ȍdŬ+dzŬz 

2. Differential area in cylindrical coordinate system:  

 dS = ȍddzŬȍ = dȍdzŬ = ȍddȍŬz 

3. Differential volume in cylindrical coordinate system:  

 dV = ȍdȍddz 

4.3. Differential Elements in spherical Coordinate System  

The differential elements in spherical coordinate system are defined as follows:  

1. Differential length in spherical coordinate system  

 dL = drŬr + rdȅŬȅ + rsinȅdŬ 

2. Differential area in spherical coordinate system  

 dS = r 2sinȅdȅdŬr = rsinȅdrdŬȅ = rdrd Ŭ 

3. Differential volume in spherical coordinate system  

 dV = r 2sinȅdrdȅd 

5.  DIFFERENTIAL CALCULUS  

The Del operator ( )ɳ, in the different coordinate system, is defined as  

 x y z
x y z
a a a
µ µ µ

Ð= + +
µ µ µ

  (Rectangular coordinates)  

 
1

z

z

r fa a a
r r f

µ µ µ
Ð= + +
µ µ µ

  (Cylindrical Coordinates)  

 
1 1

sin
r

r r r
q fa a a

q q f

µ µ µ
Ð= + +
µ µ µ

 (Spherical coordinates )  

6.  Gradient of a Scalar  

The gradient (or grad) is defined by the operation of the Del operator on a scalar field. For a 

scalar Field V, we define the gradient in the different coordinates as  

x y z

V V V
V

x y z
a a a

µ µ µ
Ð = + +

µ µ µ
  (Rectangular coordinates)  
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1
z

V V V
V

z
r fa a a

r r f

µ µ µ
Ð = + +

µ µ µ
  ( Cylindrical coordinates)  

1 1

sin
r

V V V
V

r r r
q fa a a

q q f

µ µ µ
Ð = + +

µ µ µ
 (Spherical coordinates)  

7.  Diverg ence of a Vector  

Divergence of a vector function is a scalar and defined as the net outwa rd flux per unit 

volume over the elementary closed surface. For a vector function A, we define the divergence 

in the different coordinates as  

 
µå õµ µ

Ð = + +æ ö
µ µ µç ÷

yx z
AA A

A
x y z

  (Rectangular)  

 
( )1 1 z

A A A
A

z

r fr

r r r f

µ µ µ
Ð = + +

µ µ µ
 (Cylindrical)  

 

2

2

(sin )( )1 1 1

sin sin

r
AAr A

A
r r r r

fqq

q q q f

µµµ
Ð = + +

µ µ µ
 (Spherical)  

8.  Curl of a Vector  

The curl of a vector plays a very important role in electromagnetic theory.  

We define the curl of vector A in different coordinate systems as  

 ( )Rectangular coordinates

è ø
é ù
µ µ µé ùÐ³ =
é ùµ µ µ
é ù
é ùê ú

x y z

x y z

a a a

A
x y z

A A A

 

 ( )
1

Cylindrical coordinates

è ø
é ù

å õµ µ µé ùÐ³ =æ öé ùµ µ µç ÷
é ù
é ùê ú

x z

z

a a a

A
z

A A A

f

r

r

r r f

r f

 

r q f

q f

q

µ µ µ
Ð³ =

µ µq µfq

q

å õ
æ ö
ç ÷2

r

a ra rsin a

1
A

rr sin

A rA rsin A

 ( Spherical coordinates)  

9.  Laplacian Operator  

The Laplacian Operator is the square of the Del operator and written as ( ᶯ2). It can operate 

both on scalar as well as vector field. The Laplacian of a scalar field is a scalar field whereas 

the Laplacian of a vector is a vector field.  

9 .1.  Laplacian of a Scalar  

The Laplacian of a scalar field V in different coordinate systems is defined as  
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2 2 2
2

2 2 2

V V V
V

x y z

µ µ µ
Ð = + +

µ µ µ
           (Rectangular coordinates)

2 2
2

2 2 2

1 1V V V
V

z
r

r r r r f

å õµ µ µ µ
Ð = + +æ ö

µ µ µ µç ÷
 (Cylindrical coordinates)  

2
2 2

2 2 2 2 2

1 1 1
. sin

sin sin

V V V
V r

r r r r r
q

q q q q f

µ µ µ µ µå õ å õ
Ð = + +æ ö æ ö

µ µ µ µ µç ÷ ç ÷
    (Spherical coordinates)  

9 .2. Laplacian of a Vector  

The Laplacian of a vector is defined as the gradient of divergence of the vector minus the curl 

of the curl of vector, i.e.  

ᶯ2 A =  ɳ( .ɳ A) -  ×ɳ ×ɳ  A 

10.  DIVERGENCE THEOREM  

According to divergence theorem, the surface integral of a vector field over a closed surface 

is equal to the volume integral of the divergence of the vector field over the volume. 

Mathematically, the divergence theorem is written as  

 ( )A dS A dV= Ðñ ñs n
 

Where A is a vector field and V is the volume bounded by the closed surface S.  

11.  STOKEôS THEOREM 

According to Stokeôs theorem, the line integral of a vector field around a closed path in equal 

to the surface integral of the curl of vector field over the open surface bounded by the closed 

path. Mathematically, the Stokeôs theorem is written as 

( )A dL A dS= Ð³ñ ñL S
 

Where A is a vector field and S  is the open surface bounded by the closed path L.  
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CHAPTER 2 :  ELECTROSTATICS  

 

1.  Electric charge  

Electric Charge is a fundamental conserved property of some subatomic particles, which 

determines their electromagnetic interaction.  

1.1 Point Charge  

Point charges are very small charges assumed to be of infinitesimally small volume, although 

they have finite volume considered as a single charge.  

1.2.  Line Charge  

The charge per unit length along the line charge is called line charge density. It is denoted by  

r
L

 and defined as  

D ­

D
r = =

D
L

L 0

Q dQ
lim

L dL
 

where QD  is small charge, and LD  is small length.  

1.3.  Surface Charge  

The charge per unit area over the surface is called the surface charge density. It is denoted 

by 
r

S  and defined as  

D ­

D
r = =

D
S

s 0

Q dQ
lim

S dS
 

where DQ  is small charge, and DS  is small area.  

1.4.  Volume Charge  

The charge per unit volume in the region is called volume charge density. It is denoted by 
n
r  

and defined as  

n
Dn­

D
r = =

Dn n0

Q dQ
lim

d
 

where DQ  is small charge, and Dn is small volume.  

2.  Electric flux Density  

The electric flux density vector D  in a medium is defined as the product of the permittivity 

and the electric field vector  

=ÍD E  

The permittivity of the medium is defined in terms of the free space permittivity and the 

relative permittivity ᶰŹas 

Í=Í Í0'  

Electric flux density is independent of the medium properties  

For point charge  = =
pÍ p

R R2 2

Q Q
Ĕ ĔE a , D a

4 R 4 R
 

For line charge = =
pÍ p

L L
P P

P P

P P
Ĕ ĔE a , D a

2 2
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The unit of electric flux density are  

³ =
2

F F C

m m m
 

NOTE:  The units of D  are equivalent to surface density i.e. C/m 2 

3.  Gaussôs Law ï Maxwell Equations  

The total outward electric flux Ǹ through any closed surface is equal to the total charge 

enclosed by the surface.  

In equation f orm, gaussôs law is written as  

y = =ñ enclosed

s

D. dS Q  

Where n n
Ĕ ĔdS a dS and a= =  is the outward pointing unit normal to closed surface S.  

s

D. dSy = =ñ total charge enclosed  

=ñv

v

Q P dv  

or = = rñ ñv
S V

Q D.dS dv  

By applying divergence theorem to the middle term, we have  

= Ðñ ñ
S V

D.dS .Ddv  

Comparing the two volume integrals  

Ð = rv.D  

It states that the volume charge density is the same as the divergence of the electric flux 

density.  

4.  Electric field due to a point charge  

t=
p2

Q
ĔD a

4 r
 

t
=
pÍ 2

0

Q
ĔE a

4 r
 

Where, Q is the point charge and r is the distance between point where electric field is 

calculated and point charge.  

5.  Electric field due to an  Infinite line charge  

ᵼ Ὀᴆ
ὖ

ς“”
ὥ 

ὥὲὨὉᴆ
ὖ

ς“ᶰ ”
ὥ 

Where, PL is linear charge density , ” is distance of the point P  (P is the point where electric 

field is calculated)  from line charge and ὥ is position vector of point P.  

6.  Electric Field due to an infinite sheet of charge  

Ὀᴆ
”

ς
ὥ 
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Or, Ὁᴆ
ᴆ

ᶰ ᶰ
ὥ 

Where , ” is surface charge density and zaĔ  is the unit normal vector from sheet to the 

point where electric field is calculated.  

7.  Field due to a uniformly chargedsphere  

Ὀᴆ
”ὥȠπ ὶ ὥ

”ὥȠ ὶ ὥ
 Where, ”is volume charge density.  

 

Figure : Gaussian surface for a uniformly charged when (a)r Ó a and (b) r Ò a 

 

Figure:  Sketch of |D| against r for a uniformly charged sphere.  

8.  Electric field due to multiple point charger  

The electric field due to multiple points chargers can be determined using the principle of 

superposition. for  N point charges Q 1,Q2,éé..QN located at 1 2 3 Nr , r , r ......r  the electric fields 

intensity at point r  is obtained by equations.  

1 1 2 2 N N

3 3 3

0 1 0 1 0 N

Q (r r ) Q (r r ) Q (r r )
E ...

4 r r 4 r r 4 r r

- - -
= + +
pÍ - pÍ - pÍ -

 

=

-
=
pÍ -
ä
N

K k

3
K 10 1 k

Q (r r )1
E

4 r r
 

9.  Electric field due to charge distributions  

L L

L

dQ dl Q dl(line charge)= r Ý = rñ  

S S

S

dQ dS Q dS (surface charge)= r Ý = rñ  

= r Ý = rñv v

v

dQ dV Q dV (volume charge)  
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10.  Electric field on the axis of a charged ring  

Consider a circular ring of radius a with uniform line charge density ȍL(C/m) and a point P on 

the axis of ring as shown in figure  

 

Figure:  electric field to circular ring  

The total electric field is therefore  

z2 2 3/2

0

Qz
ĔE a

4 (z a )
=
pe +

 

Note: 2

0

Q
As z , E tends to

4 z
­¤

pe
 

11.  Electric field of a Charged Circular Disk  

The electric field due to a uniformly charged circular disk at a point on its axis can be 

calculated using the result for a ring. Consider a disk of radius a, surface charge density 

ȍs*(C/m 2) and point P as shown in the figure  

 

Figure:  Electric field due to charged circular  
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s

z
2 2

0

z
ĔE 1 a

2 z a

r
= -
e +

å õ
æ ö
ç ÷

 

Note: If z ḻ a then 
z2

0

Q
ĔE a

4 z
=
pÍ

 

12.  Potential difference in the electric field of a point charge  

The potential difference between two points A and B in the electric fields of the point charge 

is 

AB

B

A

B

A

AB VVdVld.EV -==-= ññ  

13.  Energy Density in Electrostatic Field    

WE = = Íñ ñ
2

0

vol. vol.

1 1
(D.E) dv E dv (J)

2 2
 

Where, D is electric flux density and E is electric field intensity.  

We defined energy density in (J/m 3)  

14.  Boundary Conditions  

Electric field intensity E  into two orthogonal components  

 E  = +t nE E  

where tE  and nE  are tangential and normal components of E  respectively.  

14.1. Dielectric - Dielectric Boundary Conditions  

Consider the E  field existing in a region that consist of two different dielectrics characterized 

by 1 = 0 n and 2 = 0 a as shown in figure.  

 

Figure: Dielectric - dielectric boundary: (a) determining E 1t  = E 2t  

(b) determining D 1ů = D 2ů.  

The fields and 1E and 2E  can be decomposed as  

 = +1 1t 1nE E E  

 = +2 2t 2nE E E  

then ,   E1t  = E 2t  
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14.2.  Conductor - Dielectric Boundary Conditions  

 

Figure: Conductor - dielectric boundary.  

 
D
= = r
D

n S

Q
D

S
 

or,   Dn = ȍS 

14.3.  Conductor - Free Space Boundary Conditions  

The boundary conditions at the interface of conductor and free space can be obtained from 

conductor -dielectric boundary conditions with r =1.  

 Thus the boundary condition are  

 Et = 0. D t = 0Et  = 0  

 Dn  = 
r

Í

S

0

 

 

Figure: Conductor - free space boundary  

15.  Poissonôs and Laplaceôs Equations 

r
Ð = -

Í

2 vV , Where V is electrostatic potential and ȍv is volume charge density . 

This is known as Poissonôs equation. 

As special case of this equation occurs when ȍv = 0 (i.e., for a charge free region  

 Ð =2V 0  

Which is known as Laplaceôs equation. 
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16.  Coaxial Capacitor  

 

Figure :  A coaxial capacitor  

The capacitance of a coaxial cylinder is given by  

 C = 
pÍ

=
Q 2

bV
ln

a

 

17.  Spherical Capacitor  

 

Figure:  A spherical capacitor  

The capacitance of the spherical capacitor is  

C = 
pÍ

=

-

Q 4

1 1V

a b
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CHAPTER 3 :  MAGNETOSTATICS  

1.  MAGNETIC FLUX DENSITY  

Magnetic flux density is the amount of magnetic flux per unit area of a section, perpendicular 

to the direction of magnetic  flux.  

It is denoted by B. Mathematically,  

F
=

n

d
B a

dS
 

Where d F is a small amount of magnetic flux through small area dS of the section 

perpendicular to magnetic flux a n is the unit vector normal to the surface area.  

also expressed as  

F = ¶ñS B dS  

2.  Relation between Magnetic field Intensity (H) and Magneti c Flux Density (B):  

The magnetic field intensity is related to the magnetic flux density as  

= m = m m
0

B H ,H  

Where, m is the permeability of the medium, m0=4  p ×10 -7 H/m is the permeability of free 

space, and m, is the relative permeability of the medium.  

3.  Biot -Savartôs Law 

 

Figure: Magnetic field due to small length at P  

 

Line current   
R

2L

Idl a
H

4 R

³
=

p
ñ   

Surface current  
R

2L

KdS a
H

4 R

³
=

p
ñ   

Volume current  
R

2V

Jdv a
H

4 R

³
=

p
ñ        

(H direction = I direction × Radial vector)    
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4.  Ampereôs Circuital Law 

According to Ampereôs circuital law the line integral of magnetic field intensity H around the 

closed loop L is  equal to I, i.e.  

ὌẗὨὒ Ὅ 

Differential Form of Ampereôs Circuital Law 

In differential form Ampereôs circuital law is defined as 

H JÐ³ = 

i.e. the curl of the magnetic field intensity (H) is equal to the current density (J) at the point 

in space . 

5.  H- field for finite length of current I carrying wire:  

 

Figure: Field at P due to line conductor  

( )1 2

I
H sin sin a

4
f= a + a

pr
 

Note: Notice from the above equation that H  is always along the unit vector Ĕaf (i.e., along 

concentric circular paths) irrespective of the length of the wire or the point of interest P.  

6.  H- field for in finite length of current I carrying wire:  

I
ĔH a

2
f=

pr
  

The unit vector Ĕaf must be found carefully. A simple approach is to determine Ĕaf form  

l p
Ĕ Ĕ Ĕa a a
f
= ³    

Where l
Ĕa  is a unit vector along the line current and 

p
Ĕa  is a unit vector along the 

perpendicular line from the line current to the filed point.  

 

 Electric force (F e  = QE)  Magnetic Force (F m  = Qu ×B)  

1.  It is in the same direction as the field E.  It is perpendicular to both u and B.  

2.  It can perform work.  It cannot perform work.  
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3.  It is independent of the velocity of charge.  It depends upon the velocity of charge.  

4.  It can produce change in kinetic energy.  It cannot produce change in kinetic energy.  

Table: Comparison between Electric Force and Magnetic Force  

7.  Force on a Differential Current Element in Magnetic Field  

The differential magnetic force experienced by various differential current elements are given 

below:  

= ³ñm

L

F IdL B  (Line current)  

= ³ñm

S

F K BdS  (Surface current)  

= ³ñm

V

F J Bdv  (Volume current)  

Where IdL is the line current element, KdS is surface current element, Jdv is volume current 

element, and F m  is the magnetic force exerted on the respective elements in  presence of 

magnetic field B  

8.  Magnetic Force Between Two Current Elements  

Consider the two differential current elements I 1dL1 and I 2dL2 separated by a distance r. The 

magnetic force between the two current elements is given by  

( )m

p

³ ³
= ñ ñ

1 2

2 11 2

24

r

L L

dL dL aI I
F

r
 

This equation is also called Ampereôs force law. 

9.  Magnetic Susceptibility  

In a linear material, magnetization is directly proportional to field intensity. i.e.  

m

M H

or M H

´

= c
 

where m
c  is the magnetic susceptibility of the medium. The magnetic susceptibility of a 

magnetic material is a measure of the degree of magnetization of a material in response to 

an applied magnetic field.  

10.  Relation between Magnetic Field Intensity and Magnetic  Flux Density  

In a magnetic material, magnetic flux density is expressed in terms of magnetic field 

intensity as  

0 0 m

0 r

B (H M) (1 )H

H H

= m + = m +c

= m m = m
 

where  

0 r
m = m m is called permeability of the medium, expressed in Henry per metre (H/m),  

7

0
4 10 H/m-m = p³  is the permeability of free space, known as absolute permeability,  
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r m

0

(1 )
m

m = +c =
m

 is the relative permeability of the medium, it is dimensionless.  

11.  Energy Density in a Magnetic Field  

In a magnetic field with flux density B, the stored magnetic energy density is given by  

m

1
w (B H)

2
= Ö  

where H is the magnetic field intensity in the region. The total magnetic energy stored in a 

region is obtained by taking the volume integral of the energy density, i.e.  

m m

1
W w d (B H)d

2n n
= n = Ö nñ ñ  

12.  Boundary Conditions for Magnetostatic Fields:  

B1n  = B 2n  States that Normal component of B is continuous across an interface. ȉ1H1n  = ȉ2H2n  

H1t  ï H2t  = J sn States that the Tangential component of H field is discontinuous across an 

interface where free surface current exist -amount the amount of discontinuity being equal to 

the surface current density.  

When conductivities of both media are finite, current are defined by volume current densities 

and free surface currents donôt exist on interface hence j equal to zero, and the Tangential 

component of H field is continuous across the boundary of almost all physical media; it is 

discontinuous only when an interface with an ideal conductor or a super conductor is 

assumed.  
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CHAPTER 4: MAXWELLôS EQUATION 

Maxwell Equations  

 

Differential form  integral form  Significance  

B
E

t

µ
Ð³ = -

µ
 ὉȢὨὰ

‬ὄ

‬ὸ
ȢὨί Faradayôs Law 

ᶯ Ὄ

ὐ
‬Ὀ

‬ὸ
 

ὌȢὨὰ ὐ
‬Ὀ

‬ὸ
ȢὨί Ampereôs Circuital Law 

.ɳD = ȍv ὈȢὨί ὗὩὲὧὰέίὩὨ Gauss Law  

.ɳB = 0  ὄȢὨί π No isolated magnetic charge  

 

  

https://byjusexamprep.com/


byjusexamprep.com 

24 

CHAPTER 5: EM WAVE PROPAGATION  

 

1.  General wave equation for electromagnetic waves  

The three -dimensional vector wave equation or Helmholtz equation in an absorbing medium 

or lossy dielectric medium is defined as  

ᶯὌ ‘„ ‐‘   and ɳ Ὁ ‘„ ‐‘  

2.  Wave equation for perfect dielectric medium  

In a perfect dielectric medium, the conductivity is zero, i.e. ů = 0.  

2
2

2

E
E

t

µ
Ð = me

µ
 

2
2

2

H
and H

t

µ
Ð = me

µ
 

These are the wave equations for perfect dielectric medium.  

3.  Wave equation for Time - Harmonic Fields  

The standard form of wave equati ons for time harmonic fields (in phasor form) are defined as  

2 2
s sE E 0Ð -g = 

2 2
s sand H H 0Ð -g = 

Where  ‎ is a complex constant called the propagation constant.  

4.  Propagation Constant  

For a medium with permittivity Ů, permeability ȉ, and conductivity ů, the propagation 

constant is given by  

( )j jg = wm s+ we 

Propagation constant is expressed in per meter (m ï1). It can be also defined as  

‎ = ‌ + jȁ  

where ‌ is the attenuation constant, and ȁ is the phase constant. 

5.1.  Propagation Constant in lossy dielectrics  

( )j jg = wm s+ we 

and ‎ = Ŭ + jȁ  

where Ŭ is the attenuation constant, and ȁ is the phase constant. 

2

2 2
1 1

2

è øme s
é ùa = w + -
é ùw eê ú

 

2

2 2
and 1 1

2

è øme s
é ùb = w + -
é ùw eê ú
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5.2.  Intrinsic Impedance  

Ɫ
▒ⱷⱧ

♬

▒ⱷⱧ

▒ⱷⱧⱭ ▒ⱷⱠ
 

j
or

( j )

wm
h =

s+ we
 

Thus, the intrinsic impedance is complex quantity.  

5.3.  Loss Tangent  

This ratio is defined as the loss tangent or loss angle of the medium i.e.  

s conduction

s displacement

E J
tan

E J

s¡¡e s
= = = = q
¡e wewe

 

6.  WAVE PROPAGATION IN LOSSLESS DIELECTRICS  

6.1.  Attenuation Constant  

Ŭ = 0 

6.2. Phase Constant  

b = w me 

6.3. Propagation Constant  

Propagation constant in a medium is defined by  

‎ = ‌ + jȁ  

The propagation constant in the lossless dielectric medium as  

jg = w me 

6.4. Velocity of Wave Propagation  

The velocity of wave propagation in a medium is given by  

ὠ
‫

‍

‫

‐‘‫Ѝ

σ ρπ

Ѝ‘Ȣ‐
 

 6.5. Intrinsic Impedance  

Ɫ
Ⱨ

Ⱡ
Ⱬ
Ⱨ►
Ⱡ►

 

7.  WAVE PROPAGATION IN PERFECT CONDUCTORS  

7.1.  Attenuation Constant  

2

wms
a =  

7.2. Phase Constant  

2

wms
b =  

 

7.3. Propagation Constant  

Thepropagation constant in the good conductors as  
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j
2 2

wms wms
g = +  

7.4. Velocity of wave propagation  

p

2
v

2

w w
= =

mswms
 

        7.5. Intrinsic Impedance  

The intrinsic impedance  

( )
j j

jj
1

wm wm
h = =

wes+ we å õ
s +æ ö

sç ÷

 

Since, ů ḻ ȒŮ, i.e.
we

s
Ḻ 1. So, we can write  

j
1 1

we
+ º
s

 

Hence, the intrinsic impedance in a good conductor reduce is obtained as  

Ɫ
▒ⱷⱧ

Ɑ

ⱷⱧ

Ɑ
▄▒
Ⱬ

 

7.6. Skin Depth  

1 2
d = =
a wms

 

8.  WAVE PROPAGATION IN FREE SPACE  

8.1.  Attenuation Constant  

Ŭ = 0 

8.2.  Phase Constant  

0 0b = w m e 

8.3.  Propagation Constant  

0 0jg = w m e 

8.4. Velocity of Wave Propagation 

8

p

0 0 0 0

1
v 3 10 m / s

w
= = = ³
w m e m e

 

8.5.  Intrinsic Impedance  

0
0

0

120 377
m

h = = p º W
e

 

9.  Average Power Flow in Uniform Plane Waves  

av s s

1
P Re[E H *]

2
= ³  

Pav  is time -average power density vector in a uniform plane wave which is expressed in Watt 

per squared meter (W/m 2).   
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CHAPTER 6:REFLECTION & REFRACTION OF WAVES  

 

1.  Reflection and Transmission Coefficients  

The ratio E r0 /E i0 is called reflection coefficient denoted by G and given by  

r0 2 1

i0 2 1

E

E

h -h
G = =

h +h
 

The ratio E t0 /E i0 is called transmission coefficient denoted by t and given by  

t0 2

i0 2 1

E 2

E

h
t = =

h +h
 

2.  Standing Wave  Ratio  

The ratio of the maximum amplitude to the minimum of the total electric field |E t| is called 

standing wave ratio, i.e.  

Ὓ
ȿὉȿ

ȿὉȿ

ρ ȿῲȿ

ρ ȿῲȿ
 

Important Point  

¶ Both G and t are dimensionless and may be complex.  

1+G = t 

0 | | 1¢ G ¢
  

¶ Since 
| | 1,G ¢

 standing wave ratio (S) is always positive and greater than or equal 

to unity, i.e. Ὓ ρ 

3.  Reflection and Transmission Coefficients  for Parallel Polarization  

The reflection and transmission coefficients for the parallel polarised wave are defined as  

ῲ   and  

 †  

4.  Brewster Angle for Parallel Polarized Wave  

The incident angle at which there is no reflection (i.e. E r0  = 0) is called Brewster angle. For 

the parallel polarized wave propagating through lossless mediums, the Brewster angle B
q

 is 

expressed as  

2 2 1 1 2
B 2

1 2

1 /
sin

1 ( / )

-m e m e
q =

- e e
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Figure: Oblique Incidence of Parallel Polarized Wave at the Int erface between Two 

Lossless Dielectrics  

5.  Reflection and Transmission Coefficients for Perpendicular Polarization  

The reflection and transmission coefficients for perpendicular polarized wave are given by  

r0 2 i 1 t

i0 2 i 1 t

t0 2 i

i0 2 i 1 t

E cos cos

E cos cos

E 2 cos
and

E cos cos

^

^

h q -h q
G = =

h q +h q

h q
t = =

h q +h q
 

6.  Brewster Angle for Perpendicular Polarized Wave  

For the perpendicular polarized wave propagating through lossless mediums, the Brewster 

angle, B^
q

 is expressed as  

2 1 2 2 1
B 2

1 2

1 /
sin

1 ( / )
^

-m e m e
q =

- m m
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CHAPTER 7:TRANSMISSION LINES  

 

1.  Transmission Line:  

For a transmission line with primary constants R, L, C and G, the propagation constant is given 

by  

series impedance × shunt admittanceg =  

(R j L)(G j C)= + w + w 

Or  ‎= ‌ + jȁ  

2.   For a transmission line with primary constants R, L, C and G,  the characteristic impedance is 

defined as  

0

series impedance
Z

shunt admittance
=

R j L

G j C

+ w
=

+ w
 

3.  The input impedance can be expressed as:  

L 0
in 0

0 L

Z Z tanh l
Z Z

Z Z tanh l

è ø+ g
= é ù

+ gê ú
 

Points to Remember  

1. For a short circuited transmission line, Z L = 0, the input impedance is  

( )in 0sc
Z Z tanh l= g 

2. For open circuited line, L
Z ,= ¤ the input impedance is given by  

( )in 0oc
Z Z coth l= g 

3.From the above two results, we have  

ὤ  ὤ ὤ   and   ὤ ὤ ὤ  

4. For matched line, Z L = Z 0, the input impedance is  

Z in = Z 0 

4.  Reflection Coefficient:  

π ῲ ρ ὥὲὨ L 0
L

L 0

Z Z

Z Z

-
G =

+
 

5.  The propagation constant of a lossless transmission line is obtained as  

(R j L)(G j C)g = + w + w 

(0 j L)(0 j C)= + w + w 

j LC= w  

or j j LCg = b = w 

thus, the attenuation and phase constants of transmission line is given by  

 0, LCa = b = w 
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6.  The characteristic impedance of a lossless transmission line is o btained as  

 
0

R j L 0 j L
Z

G j C 0 j C

+ w + w
= =

+ w + w

L

C
=  

7.   The velocity of propagation in a lossless transmission line is given by  

 p

1
v

LC

w
= =
b

 

8.  The input impedance for a lossless line is obtained as  

 
L 0

in 0
0 L

Z Z tanh l
Z Z

Z Z tanh l

è ø+ g
= é ù

+ gê ú
ὤ  

9.   The propagation constant of a distortion less transmission line is obtained as  

(R j L)(G j C)g = + w + w 

j L j C
RG 1 1

R G

w wå õå õ
= + +æ öæ ö

ç ÷ç ÷
 

 ЍὙὋ ρ ρ ‌ Ὦ‍ 

Thus, we obtain the attenuation and phase constants as  

RGa =  

LCb = w  

10.  The characteristic impedance of a distortion less line is obtained as  

0

R j L
Z

G j C

+ w
=

+ w
 

 
R(1 j L / R)

G(1 j C / G)

+ w
=

+ w
 

R L

G C
= =  

11.   Standing wave ratio is defined as the ratio of the maximum voltage (or current) to the 

minimum voltage (or current) of a line having standing waves.  

 
Lmax max

min min L

1V I
S

V I 1

+ G
= = =

- G
 

1 1 .1. Impedance Matching Techniques  

Most load impedances are typically large and line impedances are small so  

we have to use additional elements for matching  

¶Series ïȈ/4ï Quarter wave transformer  

The Z 0 line has a termination = Z in of the Ȉ/4 line of ZL load

, 2
0

L

Z

Z
=  

Therefore,  0 0 L
.Z' Z Z=  
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¶ With the use of the quarter wave transformer the line is completely matched but the load is not 

completely matched but the miss match is reduced as compare without the Ȉ/4 

transformer.  

12.2. Shunt ïStub Matching  

A stub is a short circuit line of l t length placed at l s distance from the load such that the 

function impedance is Z 0 and the line is matched, from that point towards the source.    

Design of a stub  

Å Identity a posit ion on the line from the load where Z(x) = Z 0 Ñ jx then x value is ó/sô 

is position of stub  

    1 L
s

0

Z
l tan

2 Z

-
å õl

= æ ö
æ öp ç ÷

 

Å At this stub position an equal and opposite reactance is placed in shunt that cancels 

existing reactance so that the junction impedance . 

Å This junction impedance is Z 0 as the cancelling reactance is designed form a short ï

circuit line of óltô length  

1 L 0
t

L 0

Z Z
l tan

2 Z Z

-
å õl

= æ ö
æ öp -ç ÷

 

Å For the miss ïmatched region to be small ólsô should be as close to the load as 

possible   

 

Figure: Matching with a single stub tuner  
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CHAPTER 8: RECTANGULAR WAVEGUIDE  

 

1.  Transverse Electromagnetic (TEM) Modes  

In TEM mode, the electric and magnetic fields are transverse to the direction of wave 

propagation with no longitudinal components, i.e.  

Ez = H z = 0  

2.  Transverse Electric (TE) Modes  

In TE mode, the electric field is transverse to the direction of propagation (no longitudinal 

electric field component), while the magnetic field has both transvers and longitudinal 

components, i.e.  

Ez = 0, H z Í 0  

3.  Transverse Magnetic (TM) Modes  

In TM mode, the magnetic field is transverse to the direction of propagation (no longitudinal 

magnetic field component), while the electric field has both transverse and longitudinal 

components, i.e. H z = 0, E z Í 0  

4.  For TM mn  mode in a rectangular waveguide, the propagation constant is defined as  

2 2
2m n

k
a b

p pè ø è ø
g = + -é ù é ù

ê ú ê ú
 

Where k = w me. Following are the three -special case of different values of k, m, and n.  

Case 1: cut - off  

If  
p pè ø è ø

= w me = +é ù é ù
ê ú ê ú

2 2

2 2 m n
k

a b
 

Then,  0or 0g = a = =b 

The value of w that causes this called the cut off angular frequency c
w ; that is,  

 

No propagation takes place at this frequency.  

Case 2: Evanescent  

If  

2 2

2 2 m n
k

a b

p pè ø è ø
= w me < +é ù é ù

ê ú ê ú
 

Then,  0g = a b = 

In this case, we have no wave propagation at all. These non propagating modes are said to 

be evanescent.  

Case 3: Propagation  

If  

2 2

2 2 m n
k

a b

p pè ø è ø
= w me > +é ù é ù

ê ú ê ú
 

Then,  j , 0g = b a = 
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So, the phase constant b becomes  

2 2

2 m n
k

a b

p pè ø è ø
b = - -é ù é ù

ê ú ê ú
  

This is the only case in which propagation takes place because all field components will have 

the factor 
z j ze e-g - b= .  

5.  The cut -off frequency for TE mn  and TM mn  mode in rectangular waveguide is given by:  

2 2
c

c

1 m n
f

2 a b2

w p pè ø è ø
= = +é ù é ù
p p meê ú ê ú

 

2 2
1 m n

a b2

è ø è ø
= +é ù é ù

meê ú ê ú
 

6.  The cut -off wavelength of TE mn and TM mn  mode in rectangular waveguide is given by  

p
c

2 2 2 2
c

1

v 2

f
1 m n m n

a b a b2

me
l = = =

å õ å õ è ø è ø
+ +æ ö æ öé ù é ù

meç ÷ ç ÷ ê ú ê ú

 

7.  The phase constant ȁ for TEmn  and TM mn mode is also given by  

2

c
f

1
f

è ø
b = w me -é ù

ê ú
 

 

2
cf1
f

è ø
¡b = b -é ù

ê ú
 

8.  The intrinsic wave impedance for TE mn  mode is given by   

TE
2

cf1
f

¡h
h =

å õ
-æ ö
ç ÷

 

The intrinsic wave impedance of TM mn  mode is obtained as  

2

c
TM

f
' 1

f

è ø
h = h -é ù

ê ú
 

9.  Guided Wavelength:  

g
2

cf1
f

¡l
l =

å õ
-æ ö
ç ÷ 

10.   Phase velocity:  

p
2

c

v

f
1

f

¡
l =

å õ
-æ ö
ç ÷
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11.  Group velocity:  

g

1
v =

µb

µw

 

2
cfv 1
f

å õ
¡= -æ ö

ç ÷
 

12.  vpvg = vŹ2 

13.  The resonant frequency for TM mnp  mode in a waveguide resonator is given by  

2 2 2

r

1 m n p
f

a b c2

p p på õ å õ å õ
= + +æ ö æ ö æ ö
p meç ÷ ç ÷ ç ÷

 

2 2 2
1 m n p

a b c2

å õ å õ å õ
= + +æ ö æ ö æ ö

meç ÷ ç ÷ ç ÷
 

14.   The resonant frequency for TE mnp  mode in a waveguide resonator is given by  

 

2 2 2
1 m n p

f
a b c2

å õ å õ å õ
= + +æ ö æ ö æ ö

meç ÷ ç ÷ ç ÷
 

15.   The resonant wavelength for TE mnp  mode in a waveguide resonator is given by  

 r
2 2 2

2

m n p

a b c

l =

å õ å õ å õ
+ +æ ö æ ö æ ö

ç ÷ ç ÷ ç ÷
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CHAPTER 9 : CIRCULAR WAVEGUIDE  

1.  Circular Waveguide: A circular waveguide is a t ubular circular conductor. Figure shows 

circular waveguide of radius a and length z, placed in cylindrical coordinate systems.  

¶ A plane wave propagating through a circular waveguide results in TE and TM modes.  

¶ The vector Helmholtz wave equation for a TE and TM wave travelling in a z -direction in a 

circular waveguide i s given as,  

ᶯ2Hz = 0 and ᶯ2Ez = 0  

 

2.  TE Modes in Circular Waveguide: Helmholtz equation of H z in circular guide is given as  

ᶯ2Hz = Ȃ2 Ā Hz 

TEmn  modes in circular waveguide  
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= = -  = represent characteristic wave impedance in the guide,  

when n = 0, 1, 2, 3 and m = 1, 2, 3, 4,é.. 

The first subscript n represents, number of full c ycles of field variation in one revolution 

through 2ɸ radian of ű, while second subscript m indicates the number of zeros of Eű i.e., 
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