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IMPORTANT FORMULAS TO REMEMBI

CHAPTER 1: VECTOR CALCULUS

1. Vector Quantity
A physical quantity which has both magnitude and definite direction is called a vector
guantity. The various examples of vector quantity are force, velocity, displacement, electric
field intensity, magnetic field intensity, acceleration etc.
1. 1. Representation of a Vector

To distinguish between a scalar and a vector it is customary to represent a vector by a letter

with an arrow on top of it, such as aandb , or by a letter in boldface type such as Aand B.
1.2. Unit Vector

A unit vector consists both magnitude and direction. Its direction is same as that of the main
vector however, its magnitude is unity. It can be written in various as | A 1A, Alr ua. A unit

vector is defined as the ratio of the main vector itself to its magnitude. For example, the unit

A
vector of Aisgivenas @, =——
| Al
Where | A|] is the magnit uddésthednitietteeofect or and U

2. Basic Vector Operations
2.1. Scaling of a Vector

When a vector is multiplied by a scalar it results in a vector quantity.

Consider avector A and a scalar k. The product R of the two guantities is given as

R =k A

Following are some important properties of scaling operation:

Properties of scaling operation

1. Consider the scaling operation R =k A. The direction of R is same as that of A ifkis
positive, and opposite to that of A if k is negative.

2. Inrectangul ar coordinates, assume that the scaling operation is given by

RX§X+Ryay +RZ§Z =k(A XEX "‘/Aya‘y +Azaz)

The above equality is satisfied if each component of the LHS is equal to the corresponding
component of RHS, i.e.

Rx:kAx,Ry:kAy, Rz:kAz

The magnitude of R is

IREK/A +8 £ K

3. Letk 1, k2 be the scalars, and A, B be the vectors then,

(kitk2) A =k 1A +k 2 A
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2.2. Addition of Vectors

Consider the two vectors,

A :AxaX +Ayay+AzaZ and

B :Bng‘FByay +Bzaz

The addition of these two vectors is given by

A +B =(A+By) 8 +(A,+B,) &, +(Az+B7) &,

Properties of Vector Addition

1. Vector addition follows the commutative law, i.e.

Vector addition follows the associative law, i.e.

A +( B+ 6):( A +B)+ C
3

Similar to the vector addition, the subtraction of the vectors is defined as

A-B :(Ax-Bx) é)( +(Ay- By)g.y +(Az-BZ)§Z

k1(K+ E):k 1K+k 1§
2.3. Multiplication of vectors
When two vectors A and B are multiplied, the result is either a scalar or a vector depending

on how they are multiplied. There are two types of vector multiplication:

1. Scalar (or dot) product: A ﬂ§

2. Vector (or cross) product: A x B

2.3.1 Scalar Product

The dot product of the vectors A and B is defined as

AfB= | A||B| cos&

Following are some important properties of dot product of two vectors.

Properties of Dot product

1. The dot product of two orthogonal vectors is always zero, i.e.

AIJB= 0, ifo%& = 90

2. The dot product of two parallel vectors in equal to the product of their magnitudes, i.e.
AIB =AB, if &° = 0

3. Inrectangular coordinate systems, the dot products of the unit vectors are given as
510, = U= HU=0

Gflc= WGy = HAG-=1

4. if the two vectors are defined in rectangular coordinates as

A=A +A,0+A U,

B =B U+ B U, +B .U,

Then, their dot product is evaluated as
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ATB =A.B+AyBy+A:B;

5. The dot product follows the commutative law, i.e.
A1B = BYA

6. The dot product also follows the distributive law, i.e.
Aq(B+ C)= AMB + AqC

2.3.2 Vector of Cross Product

The cross product of two vectors A and B is Defined as

AxB= (AB sihn &) U
Wherei® the unit vector nor mal to the plane contain
the vector A and B as shown in Figure 1. 4nwessethber e ¢
right - hand rule.

Right hand rule

Let your fingers point in the direction of the first vector and curl around (via the smaller

angle) toward second; then your t hunhecross épioduetdeB t he
points upward.

Properties of cross product

1. The cross product of two orthogonal vectors is equal to the product of t heir magnitudes

with the direction perpendicular to the plane, i.e.

AxB= ABU if, &%= 90

2. The cross product of two parallel vectors is always zero, i.e.

A x B =0, if 8°= 0

3. In rectangular coordinate system, the cross product of the unit vectors are given as
i = W = O =0

&I W= O

1 = U

BT = W

4. If the two vectors are defined in rectangular coordinates as

A. :AXUX"'AyUy'i'AzUZ

B =B x+ByU, +B .U,

Then, their cross product is evaluated as

5. The cross product is anti  -commutative, i.e.
K X § =i B x K

6. The cross product follows the distributive law, i.e.
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Kx(§+6): Ax B+ AxC
3. COORDINATE SYSTEMS

The following three most useful coordinate systems:

1. Cartesian or rectangular coordinates,

2. Circular or cylindrical coordinates, and

3. Spherical coordinates.

3.1. Rectangular  or Cartesian Coordinate System

The three coordinate axes are designated as x, y and z which are mutually perpendicular to
each other . The variables x, yand  z can have any values in the range
-b < x <bp,< y H B,z < D

Vector Representation in Rectangular Coordinate System

A vector A in rectangular coordinate system is represented as
A=AxU+Ay+A. U

Wh e r @, {0U; are the unit vectors along the x .y and z directions

The magnitude of A is given by

NENEE LS

»
>

1 P(X,Y,1

Nt

2

e

Figure: Representation of cartesian coordinates

3.2. Cylindrical Coordinates

The cylindrical coordinate system is very convenient whenever we are dealing with problems

having cylindrical symmetry.

A Point P in cylindrical c o or dfi, m)aanceis asistownrirefiguree s ent e c
below.

The ranges of the variables are:

0o¢cr ¢
o¢c f 2
-o ¢ ¢
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Avector A in cylindrical coordinates can be written as

(A A oA Jora & ay aa £

z
A )
a, (pyr b1r 24)
A
pcos ¢ I
P1 7’7_,,/ P
f——T
z
< Yy
& A

Figure: Representation of cylindrical coordinates

Notice that the unit vectors & ,aEand B, are mutually perpendicular because our coordinates

system is orthogonal.

B 3 =k d,Eazb 3B

6o 2k d Barfa, B

6 o af

B 2 af

B, *d af

Conversion of cartesian coordinate to cylindrical coordinate and vice -versa

Point transformation,

ro=x® @
f tan-tYL
z=z2

or

X = I1COS

y = Bin
z=12

The relationship between B, ,ak,a fand a ,d&,3E, are vector transformation,
B,

cos faE sin atf

sin aE ces atf

&

Kol
I
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Finally, the relationship between (A x, Ay, Az) and (Ar,A fAz) are

B = =sin af cos afF
B, =&

A cosf sin f O[|A,
A¢|=|-sin fcos O A,
A, 0 0 1 A,
A;| lcosf sin fO|A
Ay|=|sin f cos fO A
A, 0 0 1 A,

3.3. Spherical Coordinates

A point P can be represented as ( (r, q 1)) and s illustrated in figure below. From figure, we

notice that r is defined as the distance from the origi

centered

at

n to point P or the radius of a sphere

the origin and passing through P; e

the z -axis and the position vector of P; and f is measured from the x -axis (the same

azimuthal angle in cylindrical coordinates). According to these definitions, the ranges of the

variables are

O¢r ¢

0¢ q ¢

o¢c f 2

Note:

system is orthogonal.

the unit vectors

B,a5and a fare mutually perpendicular because our coordinate

§od af afa-fa 8

3 g alF écfEa:fI?a 3 &

m

§ o =
Bq %k &t
B *d- Af

(cal
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p =rsind
P(x, ¥, 2) = P(p; 0, ¢) = P(py s 2)
Z =r cos r
z
0
>y
b P
Xy
Conversion of cartesian coordinate to spherical coordinate and vice -versa

Point transformation,

r=+x2 %2 Zz¥
2 .02 o2
q tan’?! Ty ®
z
f an-tY
X
Or

X =rsin ¢ps 1

y =rsin gn f

z=rcos q

The relationship between B, ,afa fand a, & aE g@are

>!.W'|(

=sin qos dF cos cosqa Eéin a-
=sin gin aft cos sin ga Fdos a+ ,
cos & sin af

=sin gos af sin sin @ Ecbs a+,

M@ me g
I

=cos qos ak cos sinq Fdin a-,
B = sin af cos afF
Finally, the relationship between (A x, Ay, Az) and (Ar,Aq,A f) are

Vector transformation,

A sinqcos f sin sig dos Ag
cos gos fcos sim $in -
Af - sin f cos f 0 A

>
I

y

A,| |singcos f cos cos fsin - [|A f
sin gos fcos sig cés f
Az cos f sin  f 0 A

>
I
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DIFFERENTIAL ELEMENTS IN COORDINATE SYSTEMS
4. 1. Differential Elements in Rectangular Coordinate System
The differential elements in rectangular coordinate system are
1. Differential length in rectangular coordinate system:
dL = xdkxWdyd dz U
2. Differential area in rectangular coordinate system:
dS=dydza x= dx¢gzUdxdyU
3. Differential volume in rectangular coordinate system:
dV =dxdydz

4.2. Differential Elements in Cylindrical Coordinate System

E BYJU'S

defined as follows:

The differential elements in cylindrical coordinate system are defined as follows:

1. Differential length in cylindrical coordinate system:
dL = 200 d+dz.U
2. Differential area in cylindrical coordinate system:
dS = ddd= ddodzUddoU
3. Differential volume in cylindrical coordinate system:
dv = 0dzd
4.3. Differential Elements in spherical Coordinate System
The differential elements in spherical coordinate system are
1. Differential length in spherical coordinate system
dL = drbkeaUrsibed
2. Differential area in spherical coordinate system
dS=r? i nédled rsi nbkcrddd U
3. Differential volume in spherical coordinate system
dV=r2sinédrdéed
DIFFERENTIAL CALCULUS

The Del operator ("), in the different coordinate system, is defined as

b :ﬁax 4&“@ —* HE’ (Rectangular coordinates)
X M zu
b =£a, ﬂ a, —+ H, (Cylindrical Coordinates)
W rufs L u
b :Ear i—“@ 41_—“9’ (Spherical coordinates )

r r g rsin g W

Gradient of a Scalar

defined as follows:

The gradient (or grad) is defined by the operation of the Del operator on a scalar field. For a

scalar Field V, we define the gradient in the different coordinates as

bV ﬂa 4£ g 4\415’ (Rectangular coordinates)

X

kX M zZu
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bV :&a, ﬂ a, 4\415’ ( Cylindrical coordinates)
W ruf Zu
bV ﬂa, ﬂ 41_—\414 (Spherical coordinates)

pr rg rsin g W
Diverg ence of a Vector
Divergence of a vector function is a scalar and defined as the net outwa rd flux per unit

volume over the elementary closed surface. For a vector function A, we define the divergence

in the different coordinates as

auA A pA

DA =— +— == (Rectangular)
U S VR '

b.A _LHUA) 1A (Cylindrical)

rour ryu fozy

) .
b.A Z%H(r A) + 1 u(squ,) +:_L ki (Spherical)
r’ w r sing g rsin gy

Curl of a Vector

The curl of a vector plays a very important role in electromagnetic theory.

We define the curl of vector A in different coordinate systems as

e 4]
e v %
p:p £H _H _ H (Rectangular coordinat
eux u
A 3/ 4
¢ U
eA A Ay
e I %]
" O
D3A 3 gl _H —HH (Cylindrical coordinatef
cr é“ r puf g
6A IAf A
a ra, frsimaj
o
1
b 3A %2— gl— _F _H ( Spherical coordinates)
Grosing |#r H q H
A TA, rsimA
Laplacian Operator
The Laplacian Operator is the square of the Del operator and written as ( n2). It can operate
both on scalar as well as vector field. The Laplacian of a scalar field is a scalar field whereas

the Laplacian of a vector is a vector field.
9.1. Laplacian of a Scalar

The Laplacian of a scalar field V in different coordinate systems is defined as

10
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2

P/ —“2\2 4ﬂ2 Jizl;l (Rectangular coordinates)

MX M

o ~ 2 2

P/ i—f;(;v 8%—“ 4%4 (Cylindrical coordinates)

rprg o prs fz°

_lpud, Mo, 1 Vi : .
P2V —r_ZEgEZ_TIJ Om—gﬂ% gfgSIT_ (Spherical coordinates)

9.2. Laplacian of a Vector

The Laplacian of a vector is defined as the gradient of divergence of the vector minus the curl
of the curl of vector, i.e.

nZA=n (N, A) -nxnx A

10. DIVERGENCE THEOREM

According to divergence theorem, the surface integral of a vector field over a closed surface
is equal to the volume integral of the divergence of the vector field over the volume.

Mathematically, the divergence theorem is written as

fPAds= (fpA)dv

Where A is a vector field and V is the volume bounded by the closed surface S.
11. STOKE®S THEOREM

According to Stokeods t he o raeentorfigldasunt a aiosed path inequal a | of

to the surface integral of the curl of vector field over the open surface bounded by the closed

pat h. Mat hematically, the Stokeds theorem is written
PAdL= (FPA)-dS
Where A is a vector field and S is the open surface bounded by the closed path L.

11
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CHAPTER 2: ELECTROSTATICS

1. Electric charge
Electric Charge is a fundamental conserved property of some subatomic particles, which
determines their electromagnetic interaction.
1.1 Point Charge
Point charges are very small charges assumed to be of infinitesimally small volume, although
they have finite volume considered as a single charge.
1.2. Line Charge
The charge per unit length along the line charge is called line charge density. It is denoted by

and defined as

L =lim E gg
DL-0 DL dL

i

r

where DQ is small charge, and DL is small length.
1.3. Surface Charge
The charge per unit area over the surface is called the surface charge density. It is denoted

s and defined as

s =lim E gg
Ds-0 DS dS

by

r

where DQ is small charge,and DS is small area.
1.4. Volume Charge
The charge per unit volume in the region is called volume charge density. It is denoted by r

and defined as
0Q  dQ

r, =lim —
pnoDn d |

where DQ is small charge, and D r is small volume.
2. Electric flux Density
The electric flux density vector D in a medium is defined as the product of the permittivity
and the electric field vector
D=IE
The permittivity of the medium is defined in terms of the free space permittivity and the

relative permittivity N Zas

=i

Electric flux density is independent of the medium properties

. . Q 5 _Q =
For point charge E=———8&k, D =
P J 4p IR? % 4 szag
For line charge E = i &,D = it ak
2p b 2 p


https://byjusexamprep.com/

E BYJU'S

byjusexamprep.com

The unit of electric flux density are

F,F _C
m m m?
NOTE: Theunitsof D are equivalent to surface density i.e. C/m 2
3. Gaus s 0s 1 WMaxwell Equations
The total outward electric flux N through any <c¢closed surface is eq
enclosed by the surface.
In equationf orm, gaussodéds | aw is written as

y :ﬁj d§ Qenclosed

Where =dS =EndS and aI;:_ is the outward pointing unit normal to closed surface S.

y :ﬁi dS =total charge enclosed
Q = ¢p,av
or Q= (ﬁ3d§ = fiv

S

\Y

By applying divergence theorem to the middle term, we have
FpIS = i
S \%

Comparing the two volume integrals

PD = J
It states that the volume charge density is the same as the divergence of the electric flux
density.
4. Electric field due to a point charge

5=-2&

Apr
eE-— 2 &

4p Lr

Where, Q is the point charge and r is the distance between point where electric field is

calculated and point charge.

5. Electric field due to an Infinite line charge
, 0
t 0 -
G
WeEM —/—w
c N
Where, PLis linear charge density , ” is distance of the point P (P is the point where electric

field is calculated)  from line charge and & is position vector of point P.

6. Electric Field due to an infinite sheet of charge

13
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b

Or, (€] o N—(b

Where, " is surface charge density and EZ is the unit normal vector from sheet to the

point where electric field is calculated.

7. Field due to a uniformly chargedsphere
-onm o1 ®
(¢ . . Where, " isvolume charge density.
—"oNi

Guassian surface

Figure : Gaussian surface for a uniformly charged when (a)r Oaand(b)r O a
4ID|
a
3P : ,
: ap,
: 3r’
rp, '
3.
- » I
0 a

Figure: Sketch of |D| against r for a uniformly charged sphere.

8. Electric field due to multiple point charger
The electric field due to multiple points chargers can be determined using the principle of
superposition. for N point charges Q 1,Q2, é é .n.ldQated at  I},[,l,...r | the electric fields
intensity at point  r is obtained by equations.
= Q) Qg rY QG T);
4p LI |?l|3 4 gif r1|3- 4 Or||5rl'§fS
E-_ 1 N Qe -ry
4P bia fn-nf

Electric field due to charge distributions

dQ = rd XQ f difine charge)
dQ = dS Y f J6 (surface charge)
S

dQ = dv W #.dV (volume charge)

14
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10. Electric field on the axis of a charged ring
Consider a circular ring of radius gC/m)iartdlapointPioh or m | i

the axis of ring as shown in figure

<v

X

Figure: electric field to circular ring

The total electric field is therefore

- QZ .
E=
4p ﬁZZ a_'2)3l2 EZ

Q
4p g?

11. Electric field of a Charged Circular Disk

Note: AS Z - G,Etends to

The electric field due to a uniformly charged circular disk at a point on its axis can be
calculated using the result for a ring. Consider a disk of radius a, surface charge density

0s*(C/m 2) and point P as shown in the figure

< ¥

X

Figure: Electric field due to charged circular

15
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13.

14.

EXAM PREP
-~ r_a z 0
E=—4 - B
Note:Ifz | athen E-= Q 4
4p | z°

Potential difference in the electric field of a point charge
The potential difference between two points A and B in the electric fields of the point charge

is
B_ _ B

Vs :-ﬁE.dI :r”ij =V - V,
A A

Energy Density in Electrostatic Field
_1 1 «
WEe = > A(OE) dv = > fE dv J)

vol. vol.
Where, D is electric flux density and E is electric field intensity.
We defined energy density in (J/m %)

Boundary Conditions

Electric field intensity E into two orthogonal components

E=-FE+ E]
where E: and En are tangential and normal components of E respectively.

14.1. Dielectric -Dielectric Boundary Conditions

Consider the E field existing in a region that consist of two different dielectrics characterized

by 1= onand 2= o aasshowninfigure.

E, k-...___h4w
E,. @ N T
(a)
Figure: Dielectric - dielectric boundary: (a) determining E 1w =E 2«

(b) determining D 16=D 2

The fields and E and Ez can be decomposed as

E. =B«
E» =Bx +n
then , Eit = E 2t

16
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14.2. Conductor -Dielectric Boundary Conditions

Dielectric

Dielectric

______ .D (e=g2) AS

Conductor (E = 0) Conductor (E = 0)

(a) (b)

Figure: Conductor - dielectric boundary.

14.3. Conductor -Free Space Boundary Conditions
The boundary conditions at the interface of conductor and free space can be obtained from
conductor -dielectric boundary conditions with r =1.

Thus the boundary condition are

Et=0.D 1= oE =0
Dn = r—s
IO
free apacer
(s = &)
Conductor (E = 0)
Figure: Conductor -free space boundary
15. Poi ssonbds and Laplaceds Equations
r
p*v = I—" , Where V is electrostatic potential and Ov is volume charge density
This is known as Poissonbs equation.
As speci al case of this veqe, foiacmargefeeeregios when 0
P’V =0
Which is known as Laplacebds equation.

17
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16. Coaxial Capacitor

Dlelectric @

Figure : A coaxial capacitor
The capacitance of a coaxial cylinder is given by

C= 9 = Zpbl
v In —
a
17. Spherical Capacitor
@ Dlelectric e
©

(i

Figure: A spherical capacitor
The capacitance of the spherical capacitor is
C= 9 = —4p i
V

o
o|r

18
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CHAPTER 3: MAGNETOSTATICS

1. MAGNETIC FLUX DENSITY
Magnetic flux density is the amount of magnetic flux per unit area of a section, perpendicular
to the direction of magnetic flux.

It is denoted by B. Mathematically,
5=,
ds "
Where d F is a small amount of magnetic flux through small area dS of the section
perpendicular to magnetic flux a n is the unit vector normal to the surface area.
also expressed as

F =fB @S
2. Relation between Magnetic field Intensity (H) and Magneti ¢ Flux Density (B):
The magnetic field intensity is related to the magnetic flux density as
B=H = nH
Where, mis the permeability of the medium, m=4 p x10 7 H/m is the permeability of free

space, and m is the relative permeability of the medium.

3. Biot -Savartoés Law

dH (Inward)

Figure: Magnetic field due to small length at P

L ldl a
Line current H= n—zR
L 4m
. KdS3a,
Surface current H=nN——
. Jdvs ag
Volume current H= N— o7
4pR

(H direction = | direction x Radial vector)

19
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4. Amperebs Circuital Law
Accordingto Ampereb6s circuital l aw the Iine integral of r

closed loop Lis equaltol, i.e.

otQd O
Differential Form of Ampered6s Circuital Law
In differential form Ampereds circuital |l aw is defin
b3H 3
i.e. the curl of the magnetic field intensity (H) is equal to the current density (J) at the point
in space .
5. H - field for finite length of current | carrying wire:
IA h““x‘_
ulng}p
+——— p —>»
Figure: Field at P due to line conductor
—~ I . .
H=——(sin Sin
4p r( q 2 h f
Note: Notice from the above equation that H is always along the unit vector Ef (i.e., along

concentric circular paths) irrespective of the length of the wire or the point of interest P.

6. H-field for  in finite length of current | carrying wire:
- | -
H=—
2p rEf
The unit vector Ef must be found carefully. A simple approach is to determine E, form
B = af
Where E is a unit vector along the line current and Ep is a unit vector along the

perpendicular line from the line current to the filed point.

Electric force (F e = QE) Magnetic Force (F m = Qu XB)
1. | ltis in the same direction as the field E. It is perpendicular to both u and B.
2. | Itcan perform work. It cannot perform work.

20
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3. | Itis independent of the velocity of charge. It depends upon the velocity of charge.
4. | It can produce change in kinetic energy. It cannot produce change in kinetic energy.
Table: Comparison between Electric Force and Magnetic Force
7. Force on a Differential Current Element in Magnetic Field

The differential magnetic force experienced by various differential current elements are given

below:

F. = fjldL 8 (Line current)
L

m

F, = fiK 3Bds (Surface current)
S

F, = fi)J *Bdv (Volume current)
\Y%

Where IdL is the line current element, KdS is surface current element, Jdv is volume current
element, and F n is the magnetic force exerted on the respective elements in presence of
magnetic field B

8. Magnetic Force Between Two Current Elements
Consider the two differential current elements | 1dL1 and | 2dL2 separated by a distance r. The
magnetic force between the two current elements is given by

_ i, . di, 2 (dL, ‘)

F ap N 0 7
This equation is also called Ampereds force | aw.
9. Magnetic Susceptibility
In a linear material, magnetization is directly proportional to field intensity. i.e.
M“ H
or M= ¢H

where C, is the magnetic susceptibility of the medium. The magnetic susceptibility of a

magnetic material is a measure of the degree of magnetization of a material in response to
an applied magnetic field.
10. Relation between Magnetic Field Intensity and Magnetic Flux Density

In a magnetic material, magnetic flux density is expressed in terms of magnetic field

intensity as

B=pH M #Lm H
=mmMA HmM

where

m = M is called permeability of the medium, expressed in Henry per metre (H/m),

m =4 ple “"H/m is the permeability of free space, known as absolute permeability,

21
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m 1 +)c n is the relative permeability of the medium, it is dimensionless.
m

11. Energy Density in a Magnetic Field
In a magnetic field with flux density B, the stored magnetic energy density is given by

Ll
W, =56 1

where H is the magnetic field intensity in the region. The total magnetic energy stored in a
region is obtained by taking the volume integral of the energy density, i.e.

W, = fjw,d n =éﬁB H
12. Boundary Conditions for Magnetostatic Fields:
Bn=B2nSt ates that Normal component of B i s iHao=ntdHanuous
Hit 7 Ha = Jsn States that the Tangential component of H field is discontinuous across an
interface where free surface current exist -amount the amount of discontinuity being equal to
the surface current density.
When conductivities of both media are finite, current are defined by volume current densities
and free surface currents donot exi st on interface
component of H field is continuous across the boundary of almost all physical media; it is

discontinuous only when an interface with an ideal conductor or a super conductor is

assumed.
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E BYJU'S
CHAPTER 4: MAXWELL®GS
Maxwell Equations
Differential form integral form Significance
b 3E =E o0 & T_O&ni Faradaybés La
ut T o
n O
y i~y , 1 0__, - : :
T O o0 & 0 — i Ampereods Circuli
0 — T o
T o
n.D= 0Ov oI 00 G éi Gauss Law
n.B=0 S T No isolated magnetic charge
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CHAPTER 5: EM WAVE PROPAGATION

1. General wave equation for electromagnetic waves
The three -dimensional vector wave equation or Helmholtz equation in an absorbing medium

or lossy dielectric medium is defined as

n'0 ‘*,— -‘—andn0 ' — - ‘—
2. Wave equation for perfect dielectric medium
In a perfect dielectric medium, the conductivity is
2
Pp%E = n#fe';
it
2
and PH = r'r-}bfeE
L2
These are the wave equations for perfect dielectric medium.
3. Wave equation for Time - Harmonic Fields
The standard form of wave equati ons for time harmonic fields (in phasor form) are defined as
DZES _ 2@3 o

and PH, - ¥, O=
Where [ is a complex constant called the propagation constant.

4. Propagation Constant
For a medium with permittivity U, permeability 1,

constant is given by

g i Wmis 9

Propagation constant is expressed in per meter (m 1), It can be also defined as

=1+ ja

where | i s the attenuation constant, and a is the phase
5.1. Propagation Constant in lossy dielectrics

g i vmis 4
andr = U + | a

where U he attenuation constant, and a is the ph

1 S t
S 2 !
a = m%l _+_S 1 -1
2 ¢ W é |

_ mee! 25
and b—\%vz—g 7{2—%1—
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5.2. Intrinsic Impedance

or h = __Jwm_
V(s 4 W

Thus, the intrinsic impedance is complex quantity.
5.3. Loss Tangent

This ratio is defined as the loss tangent or loss angle of the medium i.e.

L S _|SES| J‘]conduction |

Gl -
@ we |W £S| |‘]displacement |
6. WAVE PROPAGATION IN LOSSLESS DIELECTRICS

6.1. Attenuation Constant
U = 0
6.2. Phase Constant

b =W

6.3. Propagation Constant

Propagation constant in a medium is defined by

F=1+ ja

The propagation constant in the lossless dielectric medium as
g 3 W

6.4. Velocity of Wave Propagation

The velocity of wave propagation in a medium is given by

w = — —
1T - s
6.5. Intrinsic Impedance
, B H»
E 4,
7. WAVE PROPAGATION IN PERFECT CONDUCTORS

7.1. Attenuation Constant

}wm:
a = [——
2

7.2. Phase Constant
b = /w ms¢
2

7.3. Propagation Constant
Thepropagation constant in the good conductors as

25


https://byjusexamprep.com/

E BYJU'S

byjusexamprep.com

g :’wmsj/ w
2 2

7.4. Velocity of wave propagation

7.5. Intrinsic Impedance
The intrinsic impedance

e T

P

. s oo . WE _
Si ncel,RUIJ,I.e.?I, 1. So, we can write

7.6. Skin Depth

«d {2
a wm

8. WAVE PROPAGATION IN FREE SPACE
8.1. Attenuation Constant
U = 0

8.2. Phase Constant

b = \YQ of®
8.3. Propagation Constant

g 3 \ﬂom

8.4. Velocity of Wave Propagation

w 1
= = % 16°m/s
Towme Jome

8.5. Intrinsic Impedance

h, = \/E £20 @77
&

9. Average Power Flow in Uniform Plane Waves

P, = %Re[ES H_ ¥

\Y

Pav is time -average power density vector in a uniform plane wave which is expressed in Watt
per squared meter (W/m  2).
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CHAPTER 6:REFLECTION & REFRACTION OF WAVES

1. Reflection and Transmission Coefficients
The ratio E 0/Eio is called reflection coefficient denoted by G and given by
6o b o
E, h, +.h
The ratio E w/E o is called transmission coefficient denoted by t and given by
Fo 2N
E, h, +,h
2. Standing Wave Ratio
The ratio of the maximum amplitude to the minimum of the total electric field |E t| is called

standing wave ratio, i.e.

o Os P WS
P WS

SORS

Important Point

7 Both G and U are dimensionless and may be complex.
1+ G =

0¢ {1¢

1 Since LE R standing wave ratio (S) is always positive and greater than or equal
tounity,i.e. Y P
3. Reflection and Transmission Coefficients for Parallel Polarization

The reflection and transmission coefficients for the parallel polarised wave are defined as

w — and
T -
4. Brewster Angle for Parallel Polarized Wave
The incident angle at which there is no reflection (i.e. E ro = 0) is called Brewster angle. For
the parallel polarized wave propagating through lossless mediums, the Brewster angle e is

expressed as

. 1- é
w0, ATt
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Medium1l Medium2
(cuhs) J)f (e2r12)

E Ein ok,

H,

z=0
Figure: Oblique Incidence of Parallel Polarized Wave at the Int erface between Two
Lossless Dielectrics
5. Reflection and Transmission Coefficients for Perpendicular Polarization
The reflection and transmission coefficients for perpendicular polarized wave are given by
G E, hycos g - dos
E, h,cos g +% dos

_EtO — 2h2 cos g
E, h,cos g % dos

t

t
6. Brewster Angle for Perpendicular Polarized Wave

For the perpendicular polarized wave propagating through lossless mediums, the Brewster

angle, Y is expressed as

. 1- m,é m
SIanA = 2 2 1
To1-(g
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1. Transmission Line:

For a transmission line with primary constants R, L, C and G, the propagation constant is given
by

g ;/series impedance x shunt admittance

=JR 4 DG | ©
orf=| + ja

2. For a transmission line with primary constants R, L, C and G, the characteristic impedance is
defined as
7, = \/series impgdance _ \/m
shunt admittance G+jw
3. The input impedance can be expressed as:

5 =7 €7, +Zytanh | g

n =70 &7, +Z tanh Ig

Points to Remember

1. For a short circuited transmission line, Z L = 0, the input impedance is
(z,),. =Z,tanh Ig

2. For open circuited line, Z, = 8 the input impedance is given by

(,,).. =Z,coth I¢

3.From the above two results, we have
A A @ and ® O @

4. For matched line, Z L =Z o, the input impedance is

Zin=2Zo
4. Reflection Coefficient:
5. The propagation constant of a lossless transmission line is obtained as
g IR +L@ | O
=J0 + L0 | & v
=jwc
oo g F b =fow
thus, the attenuation and phase constants of transmission line is given by
a =0, b =@
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6. The characteristic impedance of a lossless transmission line is 0 btained as
, - [R¥iw _po }Fva\/E
° " Yc+je \o jcw \C
7. The velocity of propagation in a lossless transmission line is given by
v, = w 1
P b JcC
8. The input impedance for a lossless line is obtained as

7 =7 €Z, +Zytanh g o
=7 a0
n 70 Z, +Z, tanh I g

9. The propagation constant of a distortion less transmission line is obtained as

g SR j+L)@ | O

=JRGgé Ju gae
C R ¢ G
MYop — p — | O

Thus, we obtain the attenuation and phase constants as
a =JRG
b = WiC

10. The characteristic impedance of a distortion less line is obtained as
ZO = M
G+ W
_ [R@ +j W/R)
Gl +j @/G)
E oL
G C

11. Standing wave ratio is defined as the ratio of the maximum voltage (or current) to the

minimum voltage (or current) of a line having standing waves.

S = Vimax_ _max 1+| §|

Vmin Imin 1- | §|
11.1. Impedance Matching Techniques
Most load impedances are typically large and line impedances are small so

we have to use additional elements for matching

fSeries i1 / i4Quarter wave transformer

. Z
The Z o line has a termination = Z nof the |/ 4 lokd =n—fo— of Z
L

Therefore, Z'o =ZoZL
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Z, Zy' Z

— e —

1 With the use of the quarter wave transformer the line is completely matched but the load is not
compl etely matched but the miss match is reduc
transformer.

12.2. Shunt T Stub Matching

A stub is a short circuit line of | t length placed at| s distance from the load such that the

function impedance is Z o and the line is matched, from that point towards the source.

Design of a stub
A Identity a posit ion on the line from the load where Z(x) = Z oN jx then x valu

is position of stub

2p g Z,
A At this stub position an equal and opposite reactance is placed in shunt that cancels
existing reactance so that the junction impedance
A This junction impedance is Z o as the cancelling reactance is designed form a short T

circuit @ ilnenggtfh 6l

alzz
|t :I_tan'l _~L=0

A For the miss imat ched region tsd $dRrRouwintalbe 64s cl ose t
possible

Short circuit

Figure: Matching with a single stub tuner
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CHAPTER 8: RECTANGULAR WAVEGUIDE

1. Transverse Electromagnetic (TEM) Modes
In TEM mode, the electric and magnetic fields are transverse to the direction of wave
propagation with no longitudinal components, i.e.
E:=H:=0

2. Transverse Electric (TE) Modes
In TE mode, the electric field is transverse to the direction of propagation (no longitudinal
electric field component), while the magnetic field has both transvers and longitudinal
components, i.e.
E-=0,H 1 0

3. Transverse Magnetic (TM) Modes
In TM mode, the magnetic field is transverse to the direction of propagation (no longitudinal

magnetic field component), while the electric field has both transverse and longitudinal

components,i.e.H ;=0,E ;I 0
4, For TM mn mode in a rectangular waveguide, the propagation constant is defined as
_lemp e @ g
’ _\/3a B

Where k = \A/_n Following are the three  -special case of different values of k, m, and n.

Case 1: cut -off

emp @ n
If k? = W meé—=E U
ga ( be

Then, g Hor al=

The value of W that causes this called the cut off angular frequency W, ; that is,

No propagation takes place at this frequency.

Case 2: Evanescent
emp 225 né
2 = 7. ~
If k? = W meg<- | Fg)
ea u e

Then, ¢ = a )]

In this case, we have no wave propagation at all. These non propagating modes are said to
be evanescent.

Case 3: Propagation

. 2 2
amp @ n

If K2 = & meaaP ?
é u
éa u €
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10.

I:’[3YULYS

So, the phase constant b becomes
emp % n e‘p2
— 2
b =k™ &=y 2
ea u €

This is the only case in which propagation takes place because all field components will have
the factor € ®=e 7.

The cut -off frequency for TE  mn and TM mn mode in rectangular waveguide is given by:

f_W _ 1 lmps n@
¢ 2p 2p\/_m Ea U bﬁé
_ 1 [m % né
2Jmel8a § b&

The cut -off wavelength of TE mn and TM mn mode in rectangular waveguide is given by

1
| Vo \/ﬁe _ 2
. =2
fe 1 ém26+ rléz o (n72e+niyzf
2Jmél&a £ b¥ 2% % bf
The phase c¢ons twaand TMan nioderis alSoEiven by

mn Mode is given by

hi
e = &f, o
1- %% 5
c i
The intrinsic wave impedance of TM mn Mode is obtained as
2
. ef. o
hoe = ML & 0
el u
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11.  Group velocity:

Vg = —

12. VpVg = ‘3 Z

13.  The resonant frequency for TM

mnp Mode in a waveguide resonator is given by

14. The resonant frequency for TE

o o 2y
an o

2
-1 o na @
‘zﬁa%59+b§ 5

15. The resonant wavelength for TE

f

2
I, =
am B n& 6p2‘
+7 g
2 0" p2 O

mnp Mode in a waveguide resonator is given by

mnp Mode in a waveguide resonator is given by
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1. Circular Waveguide: A circular waveguide is a t  ubular circular conductor. Figure shows

circular waveguide of  radius a and length z, placed in cylindrical coordinate systems.

1 A plane wave propagating through a circular waveguide results in TE and TM modes.
1 The vector Helmholtz wave equation for a TE and TM wave travelling in a z -direction in a
circular waveguide i s given as,

r'lez =0 and rlez =0

2. TE Modes in Circular Waveguide: Helmholtz equation of H  ; in circular guide is given as
nsz = ZAA zH

TEmn modes in circular waveguide

éP' r 0 .
— nm -j b
B =Erd 8% gln(n fle

__ sapr 0 ib
Ey -Eor%éga— fos(Me

E;:=0
L8Py
Ho= g T g )i
Zy & a
¢
E, ap r
He =23, &"™— ginf fe 1P
A & a 0
(; T
éPI r o]
H, =Hg,J, %% Gos (h fe
Q —_—
, & _F& o R
0T T H_ = represent characteristic wave impedance in the guide,
f r
when n = 0, 1, 2, 3 and m = 1, 2, 3, 4, é.
The first subscript n represents, number of full ¢ ycles of field variation in one revolution
through 2¢ radian of a, whil e second subscrigite, m in

35


https://byjusexamprep.com/

