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IMPORTANT FORMULAS TO REMEMBER

CHAPTER 1: VECTOR CALCULUS

1. Vector Quantity
A physical quantity which has both magnitude and definite direction is called a vector
quantity. The various examples of vector quantity are force, velocity, displacement, electric
field intensity, magnetic field intensity, acceleration etc.
1.1. Representation of a Vector
To distinguish between a scalar and a vector it is customary to represent a vector by a letter
with an arrow on top of it, such as a and 5, or by a letter in boldface type such as Aand B.
1.2. Unit Vector
A unit vector consists both magnitude and direction. Its direction is same as that of the main
vector however, its magnitude is unity. It can be written in various as Ia, ia, aa or ua. A unit

vector is defined as the ratio of the main vector itself to its magnitude. For example, the unit

B

vector of A is given as o, =

>

Where |A] is the magnitude of the vector and aa is the unit vector of A.
2. Basic Vector Operations
2.1. Scaling of a Vector

When a vector is multiplied by a scalar it results in a vector quantity.

Consider a vector A and a scalar k. The product R of the two quantities is given as

R = kA

Following are some important properties of scaling operation:

Properties of scaling operation

1. Consider the scaling operation R = kA. The direction of R is same as that of A if k is
positive, and opposite to that of A if k is negative.

2. In rectangular coordinates, assume that the scaling operation is given by

R«@, + Rya, + Rza; =k (Axa, + Aya, + A:3;)

The above equality is satisfied if each component of the LHS is equal to the corresponding
component of RHS, i.e.

Rx = kAx, Ry= kAy, Rz = kA:

The magnitude of R is

|R|=k1/A§+Af+Af =KkA

3. Let ki, k2 be the scalars, and A, B be the vectors then,

(ki+ka2) A = ki A +ko A
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2.2. Addition of Vectors

Consider the two vectors,

A = Axgx + Aygy +Az§z and

B = B«a,+Bya, + B:7q,
The addition of these two vectors is given by
A +B = (A+Bx) @, + (Ay+B,) @, + (Az+B2) &,

Properties of Vector Addition

1. Vector addition follows the commutative law, i.e.

A+B=B+A

2. Vector addition follows the associative law, i.e.

A +(B+ E)=(ﬂ +B)+ C

3. Similar to the vector addition, the subtraction of the vectors is defined as

A - B = (Ax-Bx) & + (Ay-By)a, + (A-B2)8,

k1(K+ E) = kiA+ kiB
2.3. Multiplication of vectors
When two vectors A and B are multiplied, the result is either a scalar or a vector depending

on how they are multiplied. There are two types of vector multiplication:
1. Scalar (or dot) product: A«B

2. Vector (or cross) product: A x B
2.3.1 Scalar Product

The dot product of the vectors A and B is defined as

AeB = |A||B| cosP

Following are some important properties of dot product of two vectors.

Properties of Dot product

1. The dot product of two orthogonal vectors is always zero, i.e.

A+B =0,if8 = 90°

2. The dot product of two parallel vectors in equal to the product of their magnitudes, i.e.
A+B = AB, if6=0°

3. In rectangular coordinate systems, the dot products of the unit vectors are given as
dxe Oy = Qye Az = Aze Ax=0

Oxe Ox = Ay e Ay = (ze Az =1

4. if the two vectors are defined in rectangular coordinates as

A

B = Bxax+ Byay + B:a:

Axax + Ayay + A:Q:

Then, their dot product is evaluated as
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AsB = ABx+ ABy + AB;

5. The dot product follows the commutative law, i.e.
AsB = B+A

6. The dot product also follows the distributive law, i.e.
Ae(B+ C)= AeB + AsC

2.3.2 Vector of Cross Product

The cross product of two vectors A and B is Defined as

A x B = (AB sin 8) an

Where an is the unit vector normal to the plane containing A and B, 8 is the angle between
the vector A and B as shown in Figure 1.4 As there are the normal unit vector an we use the
right- hand rule.

Right hand rule

Let your fingers point in the direction of the first vector and curl around (via the smaller
angle) toward second; then your thumb indicates the direction of an. the cross-product Ax B
points upward.

Properties of cross product

1. The cross product of two orthogonal vectors is equal to the product of their magnitudes

with the direction perpendicular to the plane, i.e.

A x B = ABan, if, 8 = 90°

2. The cross product of two parallel vectors is always zero, i.e.

A x B =0, if§ = 00

3. In rectangular coordinate system, the cross product of the unit vectors are given as
OxX Qx = AyX Ay = AzXx Az =0

axX Gy = 0z

Qy X Az = Ox

az X Gx = Qy

4. If the two vectors are defined in rectangular coordinates as

K = Axax+ Ayay+A:zQ:

B = BxGx+By0y + B:q:

Then, their cross product is evaluated as

a, a, a,
AxB=|A, A, A,
B, B, B,

5. The cross product is anti-commutative, i.e.

AxB=-BxA

6. The cross product follows the distributive law, i.e.
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Kx(§+6)=z\x§+zx6
3. COORDINATE SYSTEMS
The following three most useful coordinate systems:
1. Cartesian or rectangular coordinates,
2. Circular or cylindrical coordinates, and
3. Spherical coordinates.
3.1. Rectangular or Cartesian Coordinate System
The three coordinate axes are designated as x, y and z which are mutually perpendicular to
each other. The variables x, y and z can have any values in the range
-0 < X< 00,-00,<y<O00,-00<Z<O00
Vector Representation in Rectangular Coordinate System
A vector A in rectangular coordinate system is represented as
A =Axax + Ay ay+ Az a:
Where ax,ay, a; are the unit vectors along the x, y and z directions.

The magnitude of A is given by

|Al= A2+ A+ A

»
>

N Y

1 P(X,Y,1

Nt

2

/

Figure: Representation of cartesian coordinates

3.2. Cylindrical Coordinates

The cylindrical coordinate system is very convenient whenever we are dealing with problems
having cylindrical symmetry.

A Point P in cylindrical coordinates is represented as (p, ¢, z) and is as shown in figure
below.

The ranges of the variables are:

O0<p<w

0<¢<2n

—0 < Z < 40
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A vector A in cylindrical coordinates can be written as

(A Ag A, ) or A, + A8 +A,S,

r4
4 "

a, (pn b1r zl)

A
NS i
peos ¢ e <l
E = NG
z ép
Yy

¢ A

Figure: Representation of cylindrical coordinates

Notice that the unit vectors ép,é¢and a, are mutually perpendicular because our coordinates

system is orthogonal.

épxé¢=é¢xéz=ézxép=o
épxép=é¢xé¢:ézxéz=1
5, x4, =4,
8, x5, =4,
3, x4, = &

Conversion of cartesian coordinate to cylindrical coordinate and vice-versa

Point transformation,

p =X +y?

p=tant¥
X

z=z2

or

X = pCcoso

y =psin¢

z=12

The relationship between ay,ay, 9, and a,,a,,a,are vector transformation,

a, =Cos¢ a, —sin¢ a,

n

a, =sin¢ a, +cos¢ a,

Y

a, =a,
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or g, = cos¢a, +singa,
a, = —sin¢a, + cos¢a,
a, =a,

Finally, the relationship between (Ax, Ay, Az) and (AP,A¢,AZ) are

Aol |cosd sing O||A,
Ay|=|-sing cos¢ O](A,
A, 0 0 1 A,

A;l lcosd -sing O||A,
Ayl =1|sing cos¢ OfA,
A 0 0 1A

3.3. Spherical Coordinates

A point P can be represented as ((r,e,d))) and s illustrated in figure below. From figure, we

notice that r is defined as the distance from the origin to point P or the radius of a sphere
centered at the origin and passing through P; 6 (called the colatitudes) is the angle between
the z-axis and the position vector of P; and ¢is measured from the x-axis (the same
azimuthal angle in cylindrical coordinates). According to these definitions, the ranges of the
variables are

O<r<w

0<0<nm

0<¢p<2n
Note: the unit vectors &3, anda,are mutually perpendicular because our coordinate

system is orthogonal.

érxée=éexé¢=é¢xér=0
érxér:éexée:éd)xéd):l
a x 8y =g,
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p =rsind

P(x, v, 2) = P(p, 6, ¢) = P(p, ¢ 2)

Z = r cos| r

Xy

Conversion of cartesian coordinate to spherical coordinate and vice-versa
Point transformation,

r=yx%+y% +2°

o= tan_l X2 + y2 + Z2
- z
¢=tantY
X
Or

X =rsin®cos ¢
y =rsinosin¢
Z=rcoso

The relationship between a,,48,3, and a.,3,,3,are

a, =sinBcos ¢ & +coscos ¢ g, ~Sinoa,

a, =sin@sing & +cos0sing g, + cos ¢a,

a, = Cos ¢a, —sin¢a,

g = sin@cos ¢a, +sin@sin¢a, + cos ¢a,

3, = Cos 6 cos ¢a, + cosOsinga, - sinoa,

a, = —sin¢a, +cos ¢a,

Finally, the relationship between (Ax, Ay, Az) and (Ar,Ae,A¢) are

Vector transformation,

A.| |sinbcos¢y sinOsing cosO||A,
Ag|=|cosBcos¢ cosBsing —sinb||A,
Ad -sin¢ coso 0 A,
Ayl |[sin6cos¢ cosBcosd —sing||A,
Ay|=|sinbcos¢ cosBsing cos¢|lA,
Az cos¢ —-sing 0 ||A

¢
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4. DIFFERENTIAL ELEMENTS IN COORDINATE SYSTEMS

4.1. Differential Elements in Rectangular Coordinate System

The differential elements in rectangular coordinate system are defined as follows:
1. Differential length in rectangular coordinate system:
dL = dxax + dyay + dza:
2. Differential area in rectangular coordinate system:
dS = dydzax = dxdzay = dxdya:
3. Differential volume in rectangular coordinate system:
dV =dxdydz
4.2, Differential Elements in Cylindrical Coordinate System
The differential elements in cylindrical coordinate system are defined as follows:
1. Differential length in cylindrical coordinate system:
dL = dpap + pdeas+dza;
2. Differential area in cylindrical coordinate system:
dS = pdedzap = dpdza, = pdedpaz
3. Differential volume in cylindrical coordinate system:
dV = pdpdedz
4.3. Differential Elements in spherical Coordinate System
The differential elements in spherical coordinate system are defined as follows:
1. Differential length in spherical coordinate system
dL = drar + rdBae + rsinBdea
2. Differential area in spherical coordinate system
dS = r?sin8dBdear = rsinBdrdeas = rdrdeas,
3. Differential volume in spherical coordinate system
dV = r?sin8drdBde
5. DIFFERENTIAL CALCULUS
The Del operator (V), in the different coordinate system, is defined as

V= agax +iay +gaz (Rectangular coordinates)
X Z
:iap +£a¢ +205Z (Cylindrical Coordinates)
op " pop "’ 0,
1 1
V= iar +—ia9 t————0 (Spherical coordinates)
or roe rsiné og¢

6. Gradient of a Scalar

The gradient (or grad) is defined by the operation of the Del operator on a scalar field. For a

scalar Field V, we define the gradient in the different coordinates as

\AY :%0{ +&ay +ﬂaz (Rectangular coordinates)

oy oz
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oV 1oV oV
= —a+t—a

—a, +
op © pog " "
oV 1oV 1 oV

VW=—a¢a, + AQyt———0,
or roé rsiné o¢

\AY (Cylindrical coordinates)

(Spherical coordinates)

Divergence of a Vector
Divergence of a vector function is a scalar and defined as the net outward flux per unit

volume over the elementary closed surface. For a vector function A, we define the divergence

in the different coordinates as

0
VA= %+i+% (Rectangular)
oXx oy oz
o(pA oA
VoA=L (P ”)+1 v, A (Cylindrical)
p Op p o0y 01
2 i oA
V-A:iza(r Ar)+ l 8(Sln¢9A5,)+ l ?  (Spherical)
r or rsind o6 rsiné o¢

Curl of a Vector
The curl of a vector plays a very important role in electromagnetic theory.

We define the curl of vector A in different coordinate systems as

a, a, a,
vxA=| 2L 2 9 (Rectangular coordinates)
oxX 0y 0z
A A A
a, pa, a,
2%V N | A (Cylindrical coordinates)
pJ)lop 0O¢ Oz
A, pAp A
a, rag rsin6a¢
( 1 j o 0 d _ _
VxA= —_ — — (Spherical coordinates)
r’sing /|or 00 o
A, TA, rsin6A¢

Laplacian Operator

The Laplacian Operator is the square of the Del operator and written as (V2). It can operate
both on scalar as well as vector field. The Laplacian of a scalar field is a scalar field whereas
the Laplacian of a vector is a vector field.

9.1. Laplacian of a Scalar

The Laplacian of a scalar field V in different coordinate systems is defined as

10
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10.

11.

pop\"op ) PP og ez

V&V = az\g + 62\2 + az\g (Rectangular coordinates)
ox~ oy- oz
VA = 1 i[ 8Vj LoV oV (Cylindrical coordinates)

VZ.V:%Q[F&)+ 2% i(sinﬂﬁ)+%ﬂ (Spherical coordinates)
r-or or r<sind oe 060 ) r°sin“@ o¢

9.2, Laplacian of a Vector

The Laplacian of a vector is defined as the gradient of divergence of the vector minus the curl
of the curl of vector, i.e.

VZA =V (V.A) - VXVx A

DIVERGENCE THEOREM

According to divergence theorem, the surface integral of a vector field over a closed surface
is equal to the volume integral of the divergence of the vector field over the volume.

Mathematically, the divergence theorem is written as
$ Ads=] (V-A)dv

Where A is a vector field and V is the volume bounded by the closed surface S.
STOKE’'S THEOREM

According to Stoke’s theorem, the line integral of a vector field around a closed path in equal
to the surface integral of the curl of vector field over the open surface bounded by the closed

path. Mathematically, the Stoke’s theorem is written as
 AcdL=[ (VxA)-dS

Where A is a vector field and S is the open surface bounded by the closed path L.

11
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CHAPTER 2: ELECTROSTATICS

1. Electric charge
Electric Charge is a fundamental conserved property of some subatomic particles, which
determines their electromagnetic interaction.
1.1 Point Charge
Point charges are very small charges assumed to be of infinitesimally small volume, although
they have finite volume considered as a single charge.
1.2. Line Charge
The charge per unit length along the line charge is called line charge density. It is denoted by
p. and defined as

AL-0 AL dL

where AQ is small charge, and AL is small length.
1.3. Surface Charge

The charge per unit area over the surface is called the surface charge density. It is denoted

by Ps and defined as

S As50 AS  dS

where AQ is small charge, and AS is small area.
1.4. Volume Charge

The charge per unit volume in the region is called volume charge density. It is denoted by p,

and defined as

where AQ is small charge, and Av is small volume.

2. Electric flux Density

The electric flux density vector D in a medium is defined as the product of the permittivity

and the electric field vector

D=cE
The permittivity of the medium is defined in terms of the free space permittivity and the
relative permittivity (e Has

1
€E=€ &

Electric flux density is independent of the medium properties

. e Q 2 3_._Q 4
For point charge E=———a,,D = a
P ’ 4neR? T 4nR? N
. P . - P
For line charge E= —-—-3,,D=--4&,
21 & 2,

12
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The unit of electric flux density are
F F C
—_ X — = ——
m m m?
NOTE: The units of D are equivalent to surface density i.e. C/m?
3. Gauss’s Law - Maxwell Equations

The total outward electric flux W through any closed surface is equal to the total charge
enclosed by the surface.
In equation form, gauss’s law is written as

V= @D dg = Qenclosed
s

Where = dS = a,dS and &, is the outward pointing unit normal to closed surface S.

Y= CJS[B. dS = total charge enclosed
S
Q=¢Pdv

or Q= Sﬁﬁ.dé = Ipvdv
S v

By applying divergence theorem to the middle term, we have
$DdS = [v.Ddv
S v

Comparing the two volume integrals
vD = Py

It states that the volume charge density is the same as the divergence of the electric flux
density.
4, Electric field due to a point charge

- Q5
4nr

Q

__Q 4
4 €, 2"

Q!

m

Where, Q is the point charge and r is the distance between point where electric field is

calculated and point charge.

5. Electric field due to an Infinite line charge
- P
> D=-—a
2mp @
and E = ap
2w €y p

Where, P. is linear charge density, p is distance of the point P (P is the point where electric

field is calculated) from line charge and d,is position vector of point P.

6. Electric Field due to an infinite sheet of charge
B:%@

13
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Where, ps is surface charge density and éz is the unit normal vector from sheet to the

pointwhere electric field is calculated.

7. Field due to a uniformly chargedsphere
. gpvdr; 0<r<a
D =1{"5s Where, p,is volume charge density.
Pl r=a
3r

Guassian surface

Figure: Gaussian surface for a uniformly charged when (a)r 2 aand (b) r < a
A|D|

a
3P :

0 a
Figure: Sketch of |D| against r for a uniformly charged sphere.

8. Electric field due to multiple point charger
The electric field due to multiple points chargers can be determined using the principle of
superposition. for N point charges Q1,Qa,........ Qn located at F, 0, ..., fy the electric fields
intensity at point r is obtained by equations.

o QR L QF-B) L QuF-n)

4r e, |F—F1| 4n €, |F—F1| 4r e, |F—FN|
E_ 1 &SQ(f-r)
4n &, (A f - Fk|3

9. Electric field due to charge distributions

dQ = pdl = Q = [pdi(ine charge)

L

dQ=pdS=Q-= jdeS (surface charge)

S

dQ =p,dV = Q = [p,dV (volume charge)

14
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10. Electric field on the axis of a charged ring
Consider a circular ring of radius a with uniform line charge density p.(C/m) and a point P on

the axis of ring as shown in figure

<v

Figure: electric field to circular ring
The total electric field is therefore

— Z A
E-= ? a2 %
4ne,(z° +a°)

Q

Note: As z — o, E tends to .
ne,Z

11. Electric field of a Charged Circular Disk
The electric field due to a uniformly charged circular disk at a point on its axis can be
calculated using the result for a ring. Consider a disk of radius a, surface charge density

ps*(C/m?) and point P as shown in the figure

r

< ¥

X

Figure: Electric field due to charged circular

15
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Q .

a
4rn €, z

Note: If z » a then E =

12. Potential difference in the electric field of a point charge
The potential difference between two points A and B in the electric fields of the point charge
is
B _ B
Ve =—[Edl = [dV =V, -V,
A A
13. Energy Density in Electrostatic Field
_1 _1 2
We =3 [ (DE) dv =5 [ e Edv (3)

vol. vol.
Where, D is electric flux density and E is electric field intensity.
We defined energy density in (J/m3)
14. Boundary Conditions

Electric field intensity E into two orthogonal components
E = Et + En
where Et and E, are tangential and normal components of E respectively.

14.1. Dielectric-Dielectric Boundary Conditions

Consider the E field existing in a region that consist of two different dielectrics characterized

by €1 = eoen and e2 = eoea @s shown in figure.

E
d
E,
Ve
(a

)

Figure: Dielectric-dielectric boundary: (a) determining Eit = E2t
(b) determining Dis = D2o.

The fields and Erand E: can be decomposed as

E1 = En + Eln
Ez = Ezr + EZn
then, Eit = Ext

16
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14.2. Conductor-Dielectric Boundary Conditions

Dielectric

Dielectric

D (e=gz) AS

Conductor (E = 0) Conductor (E = 0)

(a) (b)
Figure: Conductor-dielectric boundary.
p -4Q_
" AS
or, Dn = ps
14.3. Conductor-Free Space Boundary Conditions
The boundary conditions at the interface of conductor and free space can be obtained from

Ps

conductor-dielectric boundary conditions with e =1.
Thus the boundary condition are
Et =0.Dt=ekE:t =0

Dn =p—s
)

free apacer
(s = &)

Conductor (E = 0)

Figure: Conductor-free space boundary
15. Poisson’s and Laplace’s Equations

V3V = B , Where V is electrostatic potential andpv is volume charge density.
S

This is known as Poisson’s equation.
As special case of this equation occurs when pyv = 0 (i.e., for a charge free region

V3V =0

Which is known as Laplace’s equation.

17
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16. Coaxial Capacitor

Dlelectric @

Figure: A coaxial capacitor
The capacitance of a coaxial cylinder is given by

C= g _ 27
v InE
a
17. Spherical Capacitor
@ Dlelectric e
©

(i

Figure: A spherical capacitor
The capacitance of the spherical capacitor is

ng 4r e

v o1
a

O~

18
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CHAPTER 3: MAGNETOSTATICS

1. MAGNETIC FLUX DENSITY
Magnetic flux density is the amount of magnetic flux per unit area of a section, perpendicular
to the direction of magnetic flux.
It is denoted by B. Mathematically,

do
B=—a
ds ™

Where d® is a small amount of magnetic flux through small area dS of the section
perpendicular to magnetic flux an is the unit vector normal to the surface area.
also expressed as
@ = [ BedS
2. Relation between Magnetic field Intensity (H) and Magnetic Flux Density (B):
The magnetic field intensity is related to the magnetic flux density as
B=pH=puH
Where, p is the permeability of the medium, po=4r x107 H/m is the permeability of free

space, and y, is the relative permeability of the medium.

3. Biot-Savart’'s Law

dH (Inward)

Figure: Magnetic field due to small length at P

- Idix3a
Line current H= _[L 2 RzR
i
KdS x KdS x &,
Surface current —J 4 R2
i
Jdv x Jdvxag
Volume current —J 2 R2
I

(H direction = I direction x Radial vector)

19
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4.

Ampere’s Circuital Law
According to Ampere’s circuital law the line integral of magnetic field intensity H around the

closed loop L is equal to I, i.e.

waMz[
L

Differential Form of Ampere’s Circuital Law

In differential form Ampere’s circuital law is defined as

VxH=1]

i.e. the curl of the magnetic field intensity (H) is equal to the current density (J) at the point
in space.

H-field for finite length of current I carrying wire:

-
-
-
.
e
-
el
"
-
-~
S
Ia e
-
.
el
e
-
1r"‘-..
b
> P
-

ulgz
-

-

-
-
-
-
-
-
-
-
- p
-
-
-
-

Figure: Field at P due to line conductor

- I : .
H= 4—Tcp(sma1 +sina,)a,

—

Note: Notice from the above equation that H is always along the unit vector é¢ (i.e., along

concentric circular paths) irrespective of the length of the wire or the point of interest P.
H-field for infinite length of current I carrying wire:
H=-l 3,

2mp
The unit vector é¢ must be found carefully. A simple approach is to determine é¢ form
a

b = @ X3

Where él is a unit vector along the line current and ép is a unit vector along the

perpendicular line from the line current to the filed point.

Electric force (Fe = QE) Magnetic Force (Fm = Qu XB)
It is in the same direction as the field E. It is perpendicular to both u and B.
It can perform work. It cannot perform work.

20
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3.

It is independent of the velocity of charge. | It depends upon the velocity of charge.

4.

It can produce change in kinetic energy. It cannot produce change in kinetic energy.

Table: Comparison between Electric Force and Magnetic Force

Force on a Differential Current Element in Magnetic Field
The differential magnetic force experienced by various differential current elements are given
below:

F,, = | IdL x B (Line current)
L

F, = IK x BdS (Surface current)
S

F, = J'J x Bdv (Volume current)
v

Where IdL is the line current element, KdS is surface current element, Jdv is volume current
element, and Fm is the magnetic force exerted on the respective elements in presence of
magnetic field B

Magnetic Force Between Two Current Elements

Consider the two differential current elements IidL: and I.dL> separated by a distance r. The
magnetic force between the two current elements is given by

F - ﬂIlIzj J' sz X(dle Xar)
4z uL'L r

This equation is also called Ampere’s force law.

Magnetic Susceptibility

In a linear material, magnetization is directly proportional to field intensity. i.e.
Mo H

or M=y H

where Y%, is the magnetic susceptibility of the medium. The magnetic susceptibility of a

magnetic material is a measure of the degree of magnetization of a material in response to
an applied magnetic field.

Relation between Magnetic Field Intensity and Magnetic Flux Density

In a magnetic material, magnetic flux density is expressed in terms of magnetic field
intensity as

B=p,(H+M)=p,(1+y,)H
= pokt, H=pH

where

L = WM, is called permeability of the medium, expressed in Henry per metre (H/m),

Ho = 4mx 107 H/m is the permeability of free space, known as absolute permeability,
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wo=Q+y,)= s the relative permeability of the medium, it is dimensionless.
Ho

Energy Density in a Magnetic Field
In a magnetic field with flux density B, the stored magnetic energy density is given by

1
w ==—(B-H
m 2( )

where H is the magnetic field intensity in the region. The total magnetic energy stored in a
region is obtained by taking the volume integral of the energy density, i.e.

W, = [ w,dv - jV%(B-H)dV
Boundary Conditions for Magnetostatic Fields:

Bin = B2n States that Normal component of B is continuous across an interface. piHin = p2H2n
Hit — Hat = Jsn States that the Tangential component of H field is discontinuous across an
interface where free surface current exist-amount the amount of discontinuity being equal to
the surface current density.

When conductivities of both media are finite, current are defined by volume current densities
and free surface currents don’t exist on interface hence j equal to zero, and the Tangential
component of H field is continuous across the boundary of almost all physical media; it is
discontinuous only when an interface with an ideal conductor or a super conductor is

assumed.
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CHAPTER 4: MAXWELL'S EQUATION
Maxwell Equations
Differential form integral form Significance
B
VxE= _%B E.dl = — 6_B ds Faraday’s Law
VXH
oD ng.dl = _ﬂ-(/ +6_D)_ds Ampere’s Circuital Law
=/+—= ot
Jt
v.D = pv #D.ds = Qenclosed Gauss Law
V.B=0 #B.ds =0 No isolated magnetic charge
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CHAPTER 5: EM WAVE PROPAGATION

1. General wave equation for electromagnetic waves
The three-dimensional vector wave equation or Helmholtz equation in an absorbing medium

or lossy dielectric medium is defined as

OH 0%H OE 0%E
2y — - -z 2p — il il
VH—,uJat+euat2 and V°E ,uaat+£,uat2

2. Wave equation for perfect dielectric medium

In a perfect dielectric medium, the conductivity is zero, i.e. 0 = 0.

2
V2E = usa—zE
ot
2
and V2H= usg
ot

These are the wave equations for perfect dielectric medium.
3. Wave equation for Time-Harmonic Fields
The standard form of wave equations for time harmonic fields (in phasor form) are defined as
V2E, —y’E, =0
and V?H, —v’Hs =0
Where y is a complex constant called the propagation constant.

4, Propagation Constant
For a medium with permittivity g€, permeability y, and conductivity o, the propagation

constant is given by

Y = jou (0 + jws)

Propagation constant is expressed in per meter (m1). It can be also defined as
y =a+jB

where « is the attenuation constant, and B is the phase constant.

5.1. Propagation Constant in lossy dielectrics

y =, /jop (G + jo)s)

andy =a+ jB

where a is the attenuation constant, and B is the phase constant.

2
o pe c°
O(—(D\/?[ 1+0)282 1:|

2
_ pe (¢
and B=ow 3{ 1+ 22—1}

e
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5.2. Intrinsic Impedance
jor _ jou
Y  Jjou(o + jwe)

n:

" NG J+0)jp(lns)

Thus, the intrinsic impedance is complex quantity.

5.3. Loss Tangent

This ratio is defined as the loss tangent or loss angle of the medium i.e.

c _ |6Es| _ |J

at3 |0)8Es|

1

€

’

€

conduction|

=tano

|Jdisplacement|

6. WAVE PROPAGATION IN LOSSLESS DIELECTRICS
6.1. Attenuation Constant
a=0
6.2. Phase Constant

B = oyue

6.3. Propagation Constant

Propagation constant in a medium is defined by

y=a+jB

The propagation constant in the lossless dielectric medium as
Y = jope

6.4. Velocity of Wave Propagation

The velocity of wave propagation in a medium is given by

W ) 3 x 108

V —] o =
PR woviE  Virg

n=JE=120ﬂ &
& ’Sr

7. WAVE PROPAGATION IN PERFECT CONDUCTORS

7.1. Attenuation Constant

o= fa)uc
2

7.2. Phase Constant
_ |ouc
P 72

7.3. Propagation Constant
Thepropagation constant in the good conductors as

6.5. Intrinsic Impedance
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OUG . [OUC
= 4 —_—
Y w/ > J,/ >

7.4. Velocity of wave propagation

0} ,20)

Vp = = |—

a]ile no

2

7.5. Intrinsic Impedance
The intrinsic impedance

n= J € 1(9328) i \/Ic(ljf Llesj

E BYJU'S

o

. . O .
Since, 0 » we, .&.— « 1. So, we can write
(o}

Joe

1+ ~1

9

Hence, the intrinsic impedance in a good conductor reduce is obtained as

j fw T
o o

7.6. Skin Depth

8:—: —_—
a OUC

8. WAVE PROPAGATION IN FREE SPACE
8.1. Attenuation Constant
a=0
8.2. Phase Constant
P = oyhogo
8.3. Propagation Constant
Y = Joynogg
8.4. Velocity of Wave Propagation

© 1
V. = =
i OyHo8 Moo

8.5. Intrinsic Impedance

N, = \/“—70 =120n ~ 377Q
€

9. Average Power Flow in Uniform Plane Waves

=3x108m/s

P, - LRe[E, xH,*]

L ==
Pav is time-average power density vector in a uniform plane wave which is expressed in Watt
per squared meter (W/m?).
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CHAPTER 6:REFLECTION & REFRACTION OF WAVES

1. Reflection and Transmission Coefficients
The ratio Ero/Eio is called reflection coefficient denoted by I' and given by

r:E;o_nz_n1

Eo m+my

The ratio Ew/Eio is called transmission coefficient denoted by ' and given by

_Eo_ 2
Eo n, +My
2. Standing Wave Ratio

The ratio of the maximum amplitude to the minimum of the total electric field |Et| is called
standing wave ratio, i.e.
_ JEelmax _ 1+17]

|E¢lmin 1 — 1L

S

Important Point
e Both I' and T are dimensionless and may be complex.
1+T'=1

0<|T|<1

<
| T 1=1, standing wave ratio (S) is always positive and greater than or equal

e Since
to unity, i.e. S = 1
3. Reflection and Transmission Coefficients for Parallel Polarization
The reflection and transmission coefficients for the parallel polarised wave are defined as

Ero __ M2 C€0S6¢—1nqcC0SO;

Ip = = and
P Eio 715 €OS B¢+14 cos O
Eto 21, cos B¢
T, = — =
p Eio 75 €OS O¢+14 cOs O;
4, Brewster Angle for Parallel Polarized Wave

The incident angle at which there is no reflection (i.e. Ero = 0) is called Brewster angle. For

the parallel polarized wave propagating through lossless mediums, the Brewster angle O is
expressed as

e / e,

sin® 8, =
Bl 1—(81 /82)2
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Mediuml Medium2
(cuhs) J)f (e2r12)

z=0
Figure: Oblique Incidence of Parallel Polarized Wave at the Interface between Two
Lossless Dielectrics
5. Reflection and Transmission Coefficients for Perpendicular Polarization
The reflection and transmission coefficients for perpendicular polarized wave are given by
r - E, _ M, COS6, —m, COSH,
* E, m,C0S0 +m,COS6,
t0

and ¢ - o _ 2n, Cos 6,
* E, m,C0S0 +m,COS,

6. Brewster Angle for Perpendicular Polarized Wave
For the perpendicular polarized wave propagating through lossless mediums, the Brewster

0, .
angle, "Bl is expressed as

1- e, /g

sin @, =
S (VAT
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CHAPTER 7:TRANSMISSION LINES

1. Transmission Line:

For a transmission line with primary constants R, L, C and G, the propagation constant is given
by

Y = \/series impedance x shunt admittance

= JR + joL)(G + joC)
Ory=a +jp

2. For a transmission line with primary constants R, L, C and G, the characteristic impedance is
defined as

S \/series impedance  [R+ joL
0 shunt admittance  \G + joC
3. The input impedance can be expressed as:

Points to Remember
1. For a short circuited transmission line, ZL = 0, the input impedance is
(Z,).. =Z, tanhyl
2. For open circuited line, Z, =, the input impedance is given by
(Z,),. = Z, cothyl
3.From the above two results, we have
2
EZin)sc Zin)oc = Zo” and Zy = \/(Zin)sc(zin)oc
4. For matched line, ZL = Zo, the input impedance is

Zin = Zo

4. Reflection Coefficient:

Z -4
Z +Z,

0l <land T =

5. The propagation constant of a lossless transmission line is obtained as

7 = JR + joL)(G + joC)

= J(0 + joL)(0 + joC)

= jm\/E

or  y=jB=jwllC

thus, the attenuation and phase constants of transmission line is given by

(x=0,B=0)«/E
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6. The characteristic impedance of a lossless transmission line is obtained as

> _ [R+joL _ [0+joL _ L
" \G+joC \O+joC \C
7. The velocity of propagation in a lossless transmission line is given by
o 1
Vp = — = —
B WLC
8. The input impedance for a lossless line is obtained as
n =701 Z, + 2, tanhyl Zo+jZy tan Bl
9. The propagation constant of a distortion less transmission line is obtained as

7 = JR + joL)(G + joC)
_ Ra[1+39 (14 JeC
R G
_ JOC) (1 4 J9LY g 4
—\/RG\/(1+ ) (1+2) =a+jp
Thus, we obtain the attenuation and phase constants as

a = JRG
B:m\/E

10. The characteristic impedance of a distortion less line is obtained as
Z, = R + _'!Q)L
G+ joC
_ [RQ +dol /R)
~\G(1 + joC / G)
G C

11. Standing wave ratio is defined as the ratio of the maximum voltage (or current) to the

minimum voltage (or current) of a line having standing waves.

S - Vmax _ Imax _ 1+|FL|
Vmin Imin 1 _|FL|

11.1. Impedance Matching Techniques
Most load impedances are typically large and line impedances are small so
we have to use additional elements for matching
eSeries -A/4- Quarter wave transformer
7 2

0
Z

The Zo line has a termination = Zin of the A/4 line of Z. load =

Therefore, Z'y = \ZyZ,
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e With the use of the quarter wave transformer the line is completely matched but the load is not
completely matched but the miss match is reduced as compare without the A/4
transformer.

12.2. Shunt-Stub Matching

A stub is a short circuit line of It length placed at Is distance from the load such that the

function impedance is Zo and the line is matched, from that point towards the source.

Design of a stub

e Identity a position on the line from the load where Z(x) = Zo £ jx then x value is ‘/s’
is position of stub

lg = 2 tant| |4
271: ZO
e At this stub position an equal and opposite reactance is placed in shunt that cancels
existing reactance so that the junction impedance.

e This junction impedance is Zo as the cancelling reactance is designed form a short-
circuit line of 'It" length

= 2 tant| |4
e For the miss-matched region to be small ‘Is" should be as close to the load as
possible
1 —
ZI:I zll zI

Short circuit

Figure: Matching with a single stub tuner
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CHAPTER 8: RECTANGULAR WAVEGUIDE

1. Transverse Electromagnetic (TEM) Modes
In TEM mode, the electric and magnetic fields are transverse to the direction of wave
propagation with no longitudinal components, i.e.
Ez=H:=0

2. Transverse Electric (TE) Modes
In TE mode, the electric field is transverse to the direction of propagation (no longitudinal
electric field component), while the magnetic field has both transvers and longitudinal
components, i.e.
Ez=0,H:#0

3. Transverse Magnetic (TM) Modes
In TM mode, the magnetic field is transverse to the direction of propagation (no longitudinal
magnetic field component), while the electric field has both transverse and longitudinal
components, i.e. Hz =0, Ez # 0

4, For TMmn mode in a rectangular waveguide, the propagation constant is defined as

SEROE

Where k = o\/uc . Following are the three-special case of different values of k, m, and n.

Case 1: cut-off

2 2
P

a b
Then, y=00ra=0=p

The value of ® that causes this called the cut off angular frequency o.; that is,

No propagation takes place at this frequency.

Case 2: Evanescent

2 2
K2 = o2 Mzl | m
If muﬁ<{a + b

Then, vy=a p=0

In this case, we have no wave propagation at all. These non propagating modes are said to
be evanescent.

Case 3: Propagation

2 2
If o pe > { 3 + b

Then, y=]jB, a=0
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10.

So, the phase constant g becomes

- [T [5]

This is the only case in which propagation takes place because all field components will have

the factor e = e ¥,

The cut-off frequency for TEmn and TMmn mode in rectangular waveguide is given by:
2 2

g9 __ 1 [mx[ fnz

¢ 2n zn\/ﬁ a b

The cut-off wavelength of TEmnand TMmn mode in rectangular waveguide is given by
1

xc=\;" - fg’z > - 22 2
ORI BRE

The phase constant B for TEmn and TMmn mode is also given by

The intrinsic wave impedance for TEmn mode is given by

T1TE=L2
f
1-| ¢
-3

The intrinsic wave impedance of TMmn mode is obtained as

e [ET
RRR

Guided Wavelength:

7\‘/
Xg—if >
1|
9

Phase velocity:

V/
1|
9
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11. Group velocity:

_1
)
om

2
=V 1_[1:_‘:]
f

12, vpvg = v'2

\

13. The resonant frequency for TMmnp mode in @ waveguide resonator is given by

1 (mnf (nnf [pnjz
f. = — |+ = +| =
ZTC\/E a b c
2 WRHRE]
= — —_— + | — + | —
2Jue \\ @ b o
14. The resonant frequency for TEmnp mode in a waveguide resonator is given by
2 2 2
1 m n p
f= —| +|=] +|=
2\ue \/( a] (bJ [cj

15. The resonant wavelength for TEmnp mode in a waveguide resonator is given by
2
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CHAPTER 9: CIRCULAR WAVEGUIDE

1. Circular Waveguide: A circular waveguide is a tubular circular conductor. Figure shows

circular waveguide of radius a and length z, placed in cylindrical coordinate systems.

¢ A plane wave propagating through a circular waveguide results in TE and TM modes.

e The vector Helmholtz wave equation for a TE and TM wave travelling in a z-direction in a

circular waveguide is given as,

VZHZ = 0 and VZEZ =

Circular Waveguide
2. TE Modes in Circular Waveguide: Helmholtz equation of H: in circular guide is given as
V2H, = Y2 + H;

TEmn modes in circular waveguide

P . i
E, = EorJn ( ”:r] sin(ng).e 7

[P -
E, = EgeJ {“TmrJ cos (n¢).e 1%

E
Zg =" = —H—d) = represent characteristic wave impedance in the guide,
r

<

whenn=20,1,2,3andm=1, 2, 3, 4,.....
The first subscript n represents, number of full cycles of field variation in one revolution

through 2n radian of ¢, while second subscript m indicates the number of zeros of Ey i.e.,
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J'n (Pr']mr/a) along the radius of a guide.
= 2 — i ’
B = |w?ue o

The phase velocity, group velocity and guide wavelength remains same as that of rectangular

P P.
nm = o uslfc — nm

h = _hm
a 2naue

waveguide.
3. TM Modes in Circular Waveguide: The TMnm modes in a circular guide are defined as H: =
0. But Ez # 0, in order to transmit energy in the guide.
Helmholtz equation in terms of E; in circular guide is
V2E; = y°E;

The field equation for TMnm modes are given as

P .
E, = E,, ( ”;“rjcos(ncb) e bz

Pl ) -
E, = EO¢Jn[ ”:rjsm(nq)) e bz

E, = Eo,J, (P”:r] cos (n¢).e P2

E ,
H =23, [—P”:'rj sin(n¢).e %

Zg
Eor i anr -jpz
H, = Z—.Jn( > cos(n¢).e
g
z = 0
an
h= 5 ,n=0,1,2,3andm=1,2,3,4
Key Points
: P
e For TE wave h = Pom and h = % for TM waves
a
° }\‘C = E = E
an

e TE11 is the dominant mode in circular waveguide for TE11, P,,, =1.841 So Ac

for TE,; = % also for TM wave A, = 2n _ 2ma

h P

nm

Note: TEM mode cannot exist in circular waveguide.

4, Power Handling Capacity: For rectangular waveguide:(in watt)
2
E f
P . =27—|[1-|=<
max [fmaxJ ( f j
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where, Eq« = Dielectric strength of material, fc = Cut off frequency for TEio mode, f =

byjusexamprep.com

Operating frequency, and fmax = Maximum frequency

e For circular waveguide:

P

max

P ax TEo; = 180522

5. Power Transmission in Circular Waveguide or Coaxial Lines

For a loss less dielectric:
1 2n a 5 5
Py = —— [|E| +|E }rdrd¢
A

Z 2na
Py = ?9 | J'[|Hr|2 +|H¢|2}r dr d¢
00

where, Z, = :—; = —Z—"’ = Wave impedance in guide, a Radius of the circular guide,

e The average power transmitted through a circular waveguide for TEnp, modes is given by
/ 2
f /f 2n a 2 2
P = H[|Er| +[Ey| }r dr do
00
e For a TMnp modes

DE | +|E¢| }r dr d¢

oﬁ
Il
N
=
[y
|
—~ ||
O_h
~
-y
SN—
N
oy
O —0
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1. Basic Antenna Elements:

Following are some basic antenna elements:

1.1.

1.2.

1.3.

1.4.

1.5.

Alternating Current Element or Hertzian Dipole:

It is a very short linear antenna in which the current along its length is approximately
constant.

Short Dipole:

It is a linear antenna whose length is less then A /10 and the approximate current
distribution is triangular.

Short Monopole:

It is a linear antenna whose length is less than A /20 and the approximate current
distribution is triangular.

Half Wave Dipole:

It is a linear antenna whose length is A /2 and the current distribution is sinusoidal.
Quarter Wave Monopole:

It is a linear antenna whose length is A /4 and the current distribution is sinusoidal.

2. Basic Antenna Elements:

2.1.

2.2,

2.3.

Effective Length or Transmitting Antenna:

1
(Leff )TX S E

Effective Length of Receiving Antenna:

[" 1(z)dz

VOC
(Leff )RX 3 E

Effective length of an antenna is always less than the actual length.

Radiation Intensity: It is defined as the power radiated in a given direction per unit
solid angle, i.e.
rZEZ

21,

uee, ¢) =r*P,,, =

Where
n, = intrinsic impedance of the medium, (Q)
r = radius of the sphere, (m)

P, = Average power

a

E = electric field strength, (V/m)
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2.4.

2.5.

2.6.

2.7.

2.8.

E BYJU'S

Directive Gain: Directive gain is defined as the ratio of radiation intensity in that

direction to the average radiation intensity, that is,

_ U6, 9) _ UG,¢) _ 4rn
G4(6, ) = U. P /4n P u(o, ¢)

av rad

Directivity: It is defined as the ratio of the maximum radiation intensity to the average
radiation intensity, i.e.

5 max {U(6,¢)} G

— ~d,max
Uav

Power Gain: The power gain of an antenna is defined as

4n
Gp = F u(o, ¢)

t
where Pt is the total input power given by
P, =P_,+P

rad
Where Praq is the radiated power, and Pi is ohmic losses in the antenna

Antenna Efficiency: It is defined as that ratio of radiated power to the total input
power, i.e.

P G

_ldz rad :_P
"% P P G,

t rad
Effective Area: The effective area of a receiving antenna is the ratio of the time-
average power received Pr ( or delivered to the load) to the time average power density

P, of the incident wave of antenna, i.e.

ave

A=
Pave

This expression can be further generalised as

7\’2
A =2 G,
e 47_[ d( (I))

3. Power Flow from Hertzian Dipole

The time-average radiated power from a Hertzian dipole is defines as

nBr(d’
T Y

NOTE: The radiated power in free space is given by

rad

2
P, = 40n (%) I

4. Radiation Resistance of Hertzian Dipole:

The radiated power in a Hertzian dipole is equivalent to the power dissipated in an imaginary

resistance Rrad by current I =1  cosot. i.e.
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I:)rad = Ifmerad
1
= 5 I(z) Rrad

In free space, intrinsic impedance is n, =120n, so the radiation resistance in free space is

given by
2
R4 = 80n° (ﬂj
by

5. RADIATION FROM SHORT DIPOLE (d < (k / 10)) :

The radiation resistance of the short dipole antenna is given by:
1

R) = 2% (Reg)
( rad /short dipole 4 rad /current element

=207 9 2
A

= 2072 [QJZ
A

6. RADIATION FROM SHORT MONOPOLE (d < (% /20))

The radiation resistance of the short monopole antenna is given by
1

(Rrad )shortdipole = E( rad )shortdipole

=107’ ﬂ 2
A

7. Radiation Resistance of Half Wave Dipole Antenna
The Radiation resistance for the half wave dipole antenna can be given directly as
2P

rad

rad — 2
I
0

2
_ 2 x (362.5410) ~ 730
I
0
8. Radiation Resistance of Quarter Wave Monopole Antenna
The radiation resistance for the quarter wave monopole antenna can be given directly as

2P

rad

rad — 2
I
0

2
_2x(18-28L) _ 36 540

0

9. Array Factor

The array factor of the two-element array is defined as

AF = 2 cos E(Bd cos @ + 8)} e/?
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So, the normalized array factor of the two-element array is given by
[Bdcose+8] (\Pj‘
cos| ———— cos >

2
In the H-plane, 6 = /2, and the normalized array factor becomes

2
Array factor of an N-element array is defined as

[AF] =

[AF] =

9.1. Array Factor

sinN—\P

|AF]| = |—2
sinE

2

where ¥ =pBdcos¢ + a

Following are some important points about an N-element array
Important Points

Since |AF| has the maximum value of N, the normalized |AF|is obtained by dividing |AF|

by N, i.e.

sin—NT
1 2
Nl . ¥

sin —

2

AR~

The principal maximum occurs when y =0, i. e

0 =pdcos¢ + a

(04
or COS¢$ = ——

pd
When |AF| = 0, |AF| has nulls (or zeros); i.e.

NTW:ikn, k=123, ..

Where k is not a multiple of N.
A broadside array has its maximum radiation directed normal to the axis of the array,
i.e. y=0,6=90°sothat a=0.

And end-fire array has its maximum radiation directed along the axis of the array, i.e.

v=0,0=[2 |sothata =[]
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10. FRIIS EQUATION
The Friis Transmission equation relates the power received to the power transmitted between

2
two antennas separated by R > 2%, D is the largest dimension of either antenna.

2
E — A G G — GOtGOr
P 4TER ot ~or 4TCR

| (5

Above equation is known as the Friis Transmission Equation, and it relates the power P:

served to the receiver load) to the input power of the transmitting antenna Pr The term
4nR Y’
(%] is called the space loss factor, and it takes into account the losses due to the

spreading of the energy by the antenna.
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CHAPTER 11: OPTICAL FIBRE

1. Block diagram of Optical Communication system:

Information Electrical Optical Optical fiber
Source transmit source cable
|_ Optical Electrical | ald
detector receive i e

Optical fiber Communication system

The optical fibre communication system

2. Total internal reflection

The angles of incidence ¢: and refraction ¢2 are related to each other and to the

refractive indices of the dielectrics by Snell’s law of refraction which states that:
N1 sin ¢1 = N2 sin ¢2

Exit ray
Low index n, 0, /
(air)
High index n, Partial internal

(glass) ~, reflection

Incident ray

(a)

v

(b)
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¢ ¢

(<)

Figure: Light rays incident on a high to low refractive index interface (e.g. glass-air):
(a) retraction; (b) the limiting case of retraction showing the critical ray at an angle ¢«

(c) total internal reflection where ¢>¢c

Or:
sing, n,
sing, n,

From above equation, the value of the critical angle is given by:

, n
sing, = n—2
1

When the angle of refraction is 90° and the refracted ray emerges parallel to the
interface between the dielectrics, the angle of incidence must be less than 90°. This is
the limiting case of refraction and the angle of incidence is nhow known as the critical
angle ¢c.

3. Acceptance angle
For rays to be transmitted by total internal reflection within the fiber core they must
be incident on the fiber core within an acceptance cone defined by the conical half
angle Ba. Hence 6a is the maximum angle to the axis at which light may enter the fiber
in order to be propagated, and is often referred to as the acceptance angle for the
fiber.

4. Numerical aperture
the NA is defined as;

NA =n, sin®, = (n; —ng)%

Where n: is core refractive index and n:2 is cladding refractive index, 6a is the
acceptance angle.

2 2
_n1_n2

A=
2n2

-N
L 2 ForA<<l1l

n,

Hence combining above equations, we can write:

NA = n, (24)2
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5. Step index fibres
The refractive index profile may be defined as:

() = {nl r<a (core)

n, r>a (cladding)

The total number of guided modes or mode volume Ms for a step index fibre is related
to the V value for the fibre by the approximate expression:

VZ
Ak:z??

6. Single-mode fibers
Thus single-mode propagation of the LPo: mode in step index fibers is possible over
the range:
0<V <2405

Where V is normalized frequency.

7. Cut off wavelength

The cut off wavelength Ac given by:

1
A = m(zA)i
VC

where V¢ is the cut off normalized frequency. Hence Ac is the wavelength above which

a particular fiber becomes single-mode.

For step index fiber where Vc = 2.405, the cut off wavelength is given by

" = VA
¢ 2.405

% %k %k %k
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