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CHAPTER-1: BASICS OF COMMUNICATION SYSTEM 

1. Introduction 

Communication is the process of establishing a connection or link between two points for 

information exchange. 

OR 

Communication is simply the basic process of exchanging information. 

Communication system. 

Typical examples of a communication system are line telephony and line telegraphy, radio 

telephony and radio telegraphy, radio broadcasting, point to point communication and mobile 

communication, computer communication, radar communication, satellite communication 

television broadcasting, radio telemetry, radio aids to navigation, radio aids to aircraft 

landing etc. 

2. The Communication Process: Elements Of A Communication System 

The whole idea of presenting the communication model is to analyse the key concepts used in 

communication in isolated parts and combine them to form the complete picture. 

 

3. Concept Of Bandwidth & Frequency Spectrum 

3.1. Bandwidth: 

Different types of passband signals such as voice signal, music signal, TV signal, etc. Each of 

these signals will have its frequency range. This frequency range of a signal is known as its 

bandwidth. 

Thus, we write  BW = f2 – f1 

The bandwidth of different signals has been listed in table 1. 

 

 

 

IMPORTANT FORMULAS TO REMEMBER 

https://byjusexamprep.com/


byjusexamprep.com 

3 

TABLE 1 

S. No. Type of the signal Range of frequency in Hz 
Bandwidth in 

Hz 

1. 
Voice signal (speech) for 

telephony 
300 – 3400 3,100 

2. Music signal 20 – 15000 14,980 

3. TV signals (picture) 0 – 5 MHz 5 MHz 

4. Digital data 

300 – 3400 

(If it is using the telephone line for its 

transmission) 

3,100 

3.2. Frequency Spectrum 

The frequency spectrum may be defined as the presentation of a signal in the frequency 

domain. It can be obtained by using either the Fourier series or the Fourier transform. It 

consists of the amplitude and phase spectrums of the signal. 

4. Classification Of Communication System 

It shows that the electronic communication system may be categorized into three groups 

based on: 

(i) Whether the system is unidirectional or bidirectional. 

(ii) Whether it uses an analogue or digital information signal. 

(iii) Whether the system uses baseband transmission or uses some modulation. 

 

 

 

Classification of Electronic Communication Systems 
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5. Classification Based On The Nature Of Information SignaL 

 

Classification based on analogue or digital communication 

6. Analog Communication 

The modulation system or techniques in which one of the characteristics of the carrier is 

varied in proportion with the instantaneous value of modulating signal is called an analogue 

modulation system. 

6.1. Advantages Of Analogue Communication 

Some of the advantages of analogue communication are as under: 

(i) Transmitters and receivers are simple. 

(ii) Low bandwidth requirement 

(iii) All natural signals are analogue, so they don’t have to be converted into digital signals for 

modulation, so the output is free from quantization errors. 

6.2. Drawbacks Of Analogue Communication 

Some of the drawbacks are as under: 

(i) Noise affects the signal quality 

(ii) It is not possible to separate noise and signal. 

. 

7. Digital Communication: 

The modulation system or technique in which the transmitted signal is in the form of discreet 

pulses of constant amplitude, constant frequency and phase is called a digital modulation 

system. 

7.1. Advantages Of Digital Communication 

Some of the advantages of digital communication are as under: 

(i) Due to the digital nature of the transmitted signal, the interference of additive noise does 

not introduce many errors. Hence, digital communication has a better noise immunity. 

(ii) Due to the channel coding techniques used in digital communication, it is possible to 

detect and correct the errors introduced during the data transmission. 
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(iii) Repeaters can be used between transmitter and receiver to regenerate the digital signal. 

This improves the noise immunity further and increases the range at which the signal can be 

transmitted. 

(iv) Multiplexing is easier in digital communications 

7.2. Drawbacks Of Digital Communication 

Some of the important drawbacks of digital communication are as under: 

(i) The bit rates of digital systems are high. Therefore, they require a larger channel 

bandwidth as compared to analogue systems. 

(ii) Digital modulation needs synchronization between transmitter and receiver in case of 

synchronous modulation. 

(iii) System has an increased complexity. 

8. Baseband And Bandpass Signals 

8.1. Baseband Signal 

The information or the input signal to a communication system can be analogue, i.e. sound, 

picture, or digital, e.g., computer data. The electrical equivalent of this original information 

signal is known as the baseband signal. Baseband is a signal that has a near-zero frequency 

range (or a narrow frequency "bandwidth") from close to zero hertz up to a higher cut-off 

frequency 

 

 

8.2. Bandpass Signal 

It may be defined as a signal which has a non-zero lowest frequency in its spectrum. 

This means that the frequency spectrum of a bandpass signal extends from f1 to f2 Hz. 

The modulated signal is called the bandpass signal. 

9. Modulation 

In the modulation process, two signals are used, namely the modulating signal and 

the carrier signal. The modulating signal is only the baseband or information signal, 

while the carrier is a high-frequency sinusoidal signal. 
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https://en.wikipedia.org/wiki/Signal_(electrical_engineering)
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Cut-off_frequency
https://en.wikipedia.org/wiki/Cut-off_frequency


byjusexamprep.com 

6 

 

9.1 Need Of Modulation 

i. To avoid interference between signals 

ii. To decrease the length of transmitting and receiving antenna 

iii. To allow the multiplexing of signals 

10. Comparison Between Analog & Digital Communication 

S. 

No. 
Analogue modulation Digital modulation 

(i) 
The transmitted modulated signal is 

analogue. 

The transmitted signal is digital, i.e. 

train of digital pulses. 

(ii) 

Amplitude, frequency or phase 

variations in the transmitted signal 

represent the information or 

message. 

The amplitude, width or position of the 

transmitted pulses is constant. The 

message is transmitted in the form of 

code words. 

(iii) 
Noise immunity is poor for AM but 

improved for FM and PM. 
Noise immunity is excellent. 

(iv) 

It is not possible to separate noise 

and signal. Therefore, repeaters 

cannot be used. 

It is possible to separate signal from 

noise. Therefore, repeaters can be used. 

(v) Coding is not possible. 
Coding techniques can be used to detect 

and correct errors. 

(vi) 

The bandwidth required is lower 

than that for the digital modulation 

methods. 

Due to higher bit rates, a higher channel 

bandwidth is required. 

(vii) FDM is used for multiplexing. TDM is used for multiplexing. 

(viii) Less secure. More secure 

(ix) 
Analogue modulation systems are 

AM, FM, PM, PAM, PWM etc. 

Digital modulation systems are PCM, DM, 

ADM, DPCM, etc. 
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CHAPTER-2: AMPLITUDE MODULATION 

 

1. Amplitude Modulation 

Amplitude modulation is defined as a process in which the amplitude of the carrier wave c(t) 

is varied, with the message signal m(t) keeping other parameters constant. 

 

1.1 Time-Domain Description 

The standard form of an amplitude-modulated (AM) wave is defined by 

x(t) = AC [1 + kam(t)] cos(2πfct) 

Where ka is a constant called the amplitude sensitivity of the modulator, the modulated 

wave so defined is said to be a “standard” AM wave because its frequency content is fully 

representative of amplitude modulation. 

• The amplitude of the time function multiplying cos(2πfct) is called the envelope of the AM 

wave s(t). Using a(t) to denote this envelope, we may thus write 

a(t) = Ac |1 + ka m(t)| 

• Two cases arise, depending on the magnitude of ka m(t), compared to unity. 

case 1: 

|ka m(t)| ≤ 1, for all t 

Under this condition, the term 1 + ka m(t) is always non-negative. We may therefore simplify 

the expression for the envelope of the AM wave by writing 

a(t) = Ac(1 + kam(t)), for all t 

case 2: 

|kam(t)| > 1, for all t 

The maximum absolute value of kam(t) multiplied by 100 is the percentage modulation. 

Accordingly, case 1 corresponds to a percentage modulation less than or equal to 100%, 

whereas case 2 corresponds to a percentage modulation of more than 100%. 

 

AM waveform for sinusoidal modulating signal 
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1.2 Frequency Domain Description 

To develop the frequency description of the AM wave, we take the Fourier transform of both 

sides. Let S(f) denote the Fourier transform of s(t), and M(f) denote the Fourier transform of 

the message signal m(t); we refer to M(f) as the message spectrum. Accordingly, using the 

Fourier transform of the cosine function AC cos(2πtct) and the frequency-shifting property of 

the Fourier transform. we may write 

c a c
c c c c

A k A
S(t) [ (f f ) (f f )] [M(f – f ) M(f f )]

2 2
=  − +  + + + +  

 

B.W = (fc + fm) – (fc – fm) 

B.W = 2fm  Hz or kHz 

B.W = 2ωm rad/s 

 

3. Single Tone Amplitude Modulation 

Let carrier signal, 

x(t) = AC cos ωct 

And the message signal, 

m(t) = Am cos ωmt 

then after modulation, we get 

=  +  +  +  − 
AM C c a c c m a C c m

Fullcarrier Upper Side Band Lower Side Band

1 1
X (t) A cos t m A cos( )t m A cos( )t

2 2
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3.1 The Spectrum Of Sinusoidal AM Signal 

 

 

 

2Am = Vmax – Vmin 

⇒ max min
m

V V
A

2

−
=  

max min
C

V V
A

2

+
=

 

( )
max

min

(1 )

1

c a

c a

V A m

V A m

= +

= −
 

Finally, we get, 

max minm
a

C max min

V VA
m modulation index

A V V

−
= = →

+
 

 % modulation = ma × 100 
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4. Overmodulation 

When ma > 1, i.e. Am > AC, overmodulation occurs, and the signal gets distorted. Because the 

negative part of the waveform gets cut from the waveform leaving behind a “square wave-

like” signal, which generates an infinite number of harmonics, this type of distortion is known 

as “Non-linear distortion” or “Envelope distortion.” 

 

(a) Under modulated AM wave (b) Over modulated AM wave 

6.  Power Relations In AM 

6.1. The Total Power In AM Full Carrier Dual Side-Band System 

The total power in an AM wave is given by, 

Pt = [Carrier Power] + [Power in USB] + [Power in LSB] 

∴ 
2 22
USB LSB

t

E EE
P

R R R
= + +  

E, EUSB and ELSB are the RMS values of the carrier and side-band amplitudes, and R is the 

characteristic resistance of the antenna in which the total power is dissipated. 

6.2. Carrier Power (Pc) 

The carrier power is given by 

2 22
c C

c

[E / 2] EE
P

R R 2R
= = =  

6.3. Power In The Side-Bands 

The power in the two side-bands is given as 

2

SB
USB LSB

E
P P

R
= =  

As we know, the peak amplitude of each side-band is a c
m E

2
 

2 2 2

a c a c
USB LSB

[m E /2 2] m E
P P

R 8R
= = =  

2 2

a c
USB LSB

m E
P P

4 2R
= =   

2

a
USB LSB c

m
P P P

4
= =  
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6.4 Total Power 

The total power is given by 

Pt = Pc + PUSB + PLSB 

= 
2 2

a a
c c c

m m
P P P

4 4
+ +  

∴ 
2

a
t c

m
P 1 P

2

 
= + 
 

 

Or, 
2

t a

C

P m
1

P 2
= +  

7. Transmission Efficiency 

• The transmission efficiency of an AM wave is the ratio of the transmitted power which 

contains the information (i.e. the total side-band power) to the total transmitted power. 

∴ 

 
+ 

+  
 = = = =

+ 
++ 

 

2 2

a a
c 2 2

LSB USB a a

2 22
t a aa

C

m m
P

4 4P P m /2 m

P m 2 mm
11 P

22

 

• The percentage transmission efficiency is given by 

2

a

2

a

m
% 100%

2 m
 = 

+
 

8. AM power in Terms of Current 

Assume IC to be the RMS current corresponding to the unmodulated carrier and the RMS 

current AM wave. 

2 2

c c t t
P I R and P I R= =  

∴   

22

t t t

2
c cc

P I IR

P R II

 
=  =  

 
 

2

t a

c

P m
1

P 2

 
= + 
 

 

2 2

t a

c

I m
1

I 2

  
= +  

   
 

= +

2

a
t c

m
I I 1

2
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9. Multiple Single-Tone Amplitude Modulation 

Let us assume that there are two modulating signals. 

x1(t) = Em1 cosωm1t 

and x2(t) = Em2 cosωm2t 

 

m1 m2
AM c m1 m2 c

c c

E E
e E 1 cos t cos t cos t

E E

 
= +  +   

 
 

Where, m1
1

c

E
m

E
=  

and      m2
2

c

E
m

E
=  

Use the following identity to simplify the equation 

1 1
cos A cosB cos(A B) cos(A B)

2 2
= + + −  

1 c 1 c
AM c c c m1 c m1

m E m E
e E cos t cos( )t cos( )t

2 2
=  +  +  +  −   

2 c 2 c
c m2 c m2

m E m E
cos( )t cos( )t

2 2
+  +  +  − 

 

 

9.1. Total Power in AM Wave 

 

The total power is given as, 

Pt = Pc + PUSB1 + PLSB1 + PUSB2 +PLSB2 

Extending the concept to the AM wave with n number of modulating signals with modulating 

indices m1, m2…mn the total power is given by, 

2 2 2

1 2 n
t c

m m m
P P 1 ...

2 2 2

 
= + + + + 

 
 

9.2. Effective Modulation Index (mt) 

We know that 
2

t
t c

m
P P 1

2

 
= + 

 
 

1/2
2 2 2

t 1 2 n
m m m ...m = + +   
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10. GENERATION OF AM WAVES USING NON-LINEAR PROPERTY 

The circuit that generates the AM waves is called an amplitude modulator 

They are of the following type, 

i. Square law modulator 

ii. Switching modulator 

11. Disadvantages of AM (DSBFC) 

The AM signal is also called as "Double Side-band Full Carrier (DSBFC) signal. The main 

disadvantage of this technique is: 

• Power wastage occurs as the carrier does not contain any information, so it is needlessly 

transmitted. 

• AM needs larger bandwidth. 

• AM wave gets affected due to noise as the amount of noise is directly proportional to the 

bandwidth. 

12. Detection Of AM Waves 

12.1. Square-Law Detector 

A square-law detector is essentially obtained by using a square-law modulator for detection. 

Consider the characteristic transfer equation of a non-linear device, which is reproduced here 

for convenience 

v2(t) = a1v1(t) + a2v1
2(t) 

where v1(t) and v2(t) are the input and output voltages, respectively and a1 and a2 are 

constants. 

12.2. Envelope detector 

Charging time constant = 
c

1
RC

f
  

Discharging time constant = 
m

1
RC

f
  

As the varying voltage across R follows the envelope. 

So that, 
c m

1 1
RC

f f
   

If RC is very small or RC is very large, then we can’t get the envelope of the message signal 

waveform in both cases. If RC is very large, then diagonal clipping occurs. 

For getting an envelope of m(t), the exact value of RC is given as, 

2

a

m a

1 m1
RC

m

−
 


 

 

 

 

 

https://byjusexamprep.com/


byjusexamprep.com 

14 

13. Types Of Am 

 

14. Double-Sideband Suppressed-Carrier Modulation 

14.1 Time-Domain Description 

To describe a double-sideband suppressed-carrier (DSBSC) modulated wave as a function of 

time, we write 

s(t) = c(t)m(t) 

= Ac cos(2πfct) m(t) 

14.2. Frequency-Domain Description 

The suppression of the carrier from the modulated wave is well-appreciated by examining its 

spectrum. Specifically, by taking the Fourier transform 

c c c

1
S(f) A [M(f f ) M(f f )]

2
= − + +  

Where, as before, S(f) is the Fourier transform of the modulated wave s(t), and M(f) is the 

Fourier transform of the message signal m(t). 

14.3. Generation of DSBSC Waves 

A double-sideband suppressed-carrier modulated wave consists simply of the product of the 

message signal and the carrier wave. A device for achieving this requirement is called a 

product modulator. 

 

14.4. The Spectrum Of DSB-SC Signal 

 
Modulated DSBSC signal 

Transmission B.W = 2ωm 
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14.5. Balanced Modulator  

 

14.6. Ring Modulator 

 

14.7. Coherent (Synchronous) Detection of DSB-SC Waves 

Let x(t) be the DSB-SC signal at the input of the product modulator and the local oscillator 

having frequency Ac cos (2πfct + ϕ). The signal x(t) can be represented as 

c c
x(t) m(t) A cos(2 f t)=    

 

Hence the output of the product modulator is given by 

x′(t) = m(t). Ac cos(2πfct) cos(2πfct + ϕ) 

x′(t) = m(t). Ac cos(2πfct + ϕ) cos(2πfct) 

But 
1

cos A cosB [cos(A B) cos(A B)
2

= + + −  

Therefore, c c

1
x (t) m(t)A [cos(4 f t ) cos ]

2
 =  +  +   

( ) ( ) =  +  + 
c c c

1 1
x (t) A cos m(t) m(t)A cos(4 f t )

2 2
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Signal x′(t) is passed through a low pass filter. Which allows only the first term to pass 

through and will reject the second term. Hence the filter output is given by, 

c

1
m(t) A cos m(t)

2
 = 

 

If Φ=90° the cosΦ=0, so the output becomes 0 this is called the quadrature null effect
 

15. Hilbert Transform 

Hilbert transform of x(t) is represented with x̂(t)  , and it is given by 

( )

2

2

, 0

0, 0

, 0

i

i

i e for

H for

i e for







 



+

−

 
=  

 
= = 
 
 − =  

 

 

( )( )( ) ( ) ( )( )sgnF H u i F u  = −  

Where sgn() is the signum function 

16.  Single Side-Band Supressed Carrirer 

Let m(t) is modulating signal and 𝑚̂(𝑡) is Hilbert transform of m(t) then, 

SSB-SC c c

SSB-SC c c

ˆX (t) m(t)cos t m(t)sin t LSB

ˆX (t) m(t)cos t – m(t)sin t USB

=  +  

=   
 

Also, 

B.W = ωc + ωm – ωc 

B.W = ωm 

 

16.1. Power Saving  

 

DSB-SC: 

The power saved in DSBSC c

t

P
100

P
=   

save 2

a

2
P 100%

2 m
= 

+
 

SSB-SC: 

c USB LSB

t

P P or P
Power saved in SSB 100

P

+
=   

2

a
save 2

a

4 m
P 100%

4 2m

+
= 

+
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17. Vestigial Side-Band Modulation (VSB) 

VSB transmission is similar to single-sideband (SSB) transmission, in which one of the side-bands 

is completely removed. HOWEVER, in VSB transmission, the second side-band is not completely 

removed but is filtered to remove all but the desired range of frequencies. 

 

VSB Transmitter 

 

 

17.1. Transmission bandwidth 

The transmission bandwidth of the VSB modulated wave is given by, 

B = (fm + fv) Hz 

where fm = Message bandwidth 

And fv = Width of the vestigial sideband. 

 

17.2. Generation of VSB Modulated Wave 

The modulating signal x(t) is applied to a product modulator. The output of the carrier 

oscillator is also applied to the other input of the product modulator. The output of the 

product modulator is given by 
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Generation of VSB signal 

m(t) = x(t).c(t) 

= x(t).Vc cos(2πfct) 

The spectrum of the VSB modulated signal is given by, 

S(f) = c
V

2
[X(f – fc) + X(f + fc)]H(f) 

18. Noise in amplitude modulation 

( )i mN noise power f=  

Where η=white noise power density 

( )

o

o

i

i

S

N
Figure of merit FOM

S

N

=  

1DSBSCFOM =  

1SSBSCFOM =  

2

22

a
DSBFC

a

m
FOM

m
=

+
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CHAPTER-3: FREQUENCY AND PHASE MODULATION 

1. Angle Modulation 

An angle modulated wave can be expressed mathematically as 

s(t) = Ac cos [ωct + θ(t)] 

Where Ac is the peak carrier amplitude, 

ωc is the carrier frequency and 

θ(t) is the instantaneous phase deviation. 

In angle modulation, θ(t) is a function of modulating signal. 

2. Phase Modulation (PM) 

 

2.1. Mathematical Expression for PM 

 

A phase-modulated can be mathematically expressed in the time domain as follows: 

 

Kp is the phase sensitivity in radians per volt, and m(t) is the message waveform. 

 

2.2. Mathematical Expression for FM 

 

We can use θ(t) to write the expression for FM in the time domain as under: 

s(t) = Ac cos θ(t) 

FM wave: 

 

Kf is the frequency sensitivity in rad/V, and m(t) is the message signal. 

3. Single-Tone Frequency Modulation 

 

Changing the frequency of the carrier according to the-message signal is called Frequency 

Modulation. 

fi(t) = fc + Kfm(t) Hz 

Kf = Frequency sensitivity (Hz/V) 

fi(t) = fc + Kf Am cos2πfmt 
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fi, max = fc + KfAm Hz 

fi, min = fc – KfAm Hz 

Δf = KfAm Hz = frequency deviation 

 

3.1. Maximum Frequency of FM Wave: 

The maximum frequency of FM wave is given by 

fmax=fc± Δf Hz 

 

3.2. For a single tone modulation: 

m(t) = Am cos 2πfmt 

f m
c c m

m

2 K A
s(t) A cos 2 f t sin2 f t

2 f

  
=  +      

 

f m
c c m

m

K A
A cos 2 f t sin2 f t

f

  
=  +    

    

 

3.3. Modulation Index: 

The modulation index of FM wave is defined as under: 

f

Frequency deviation

Modulating frequency
 =  

f m

m m

K A f

f f


 = =  

 

3.4. Deviation Ratio: 

The modulation index corresponding to the maximum deviation and maximum modulating 

frequency is called the deviation ratio. 

=
Maximum deviation in frequency

Deviation ratio
Maximum modulating frequency  

 

3.5. Percentage Modulating of FM Wave: 

Actual frequncy deviation
% Modulation

Maximum allowable deviation
=  

 

3.6. TYPES OF FM 

The FM systems are classified into the following two types: 

i. Narrowband FM (β << 1) 

ii. Wideband FM (β >> 1) 

BW of NBFM = 2fm 
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The spectrum of AM and NBFM are identical except that the spectral component at fc – fm is 

180° out of phase. 

 

3.7. Narrow-band FM 

Narrowband FM is very similar to AM; therefore, it is rarely used 

Figure 6 shows the generation of narrowband FM using a balanced modulator. 

BWNB=2fm 

( ) ( ) ( ) ( )cos sinNBFM c f cs t A t AK m t t = −  

 

Figure 6: Generation of Narrowband FM 

3.8. Wideband FM 

Bessel function of order ‘n’ is given by 

j(x sin n )

n
J (x) (1 2 ) e d− =    

s(t) is wideband FM 

( ) ( ) ( )( )cos 2c n c m

n

s t A J f nf t 


=−

= +  

 

Wideband FM spectrum 

Generation Of WBFM Signals 

WBFM signal can be generated by two methods 

i. Direct Method or parameter variation method 

ii. Indirect Method or Armstrong Method 
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Direct Method 

 

Figure 14(a): Voltage control oscillator 

Frequency of oscillation, 
1 2 1

1
f

2 (L L )(C C )
=

 + +
 

Difficult to obtain higher-order frequency stability in carrier frequency because the 

carrier generation is directly affected by the message signal, so highly stable sources 

like crystal oscillators cannot be used. So it is rarely used. 

 

Indirect Method (Armstrong’s method) 

 

 

In WBFM, after going through a frequency multiplier with a multiplication factor of n 

m m

c c

f n f

n

f f

f nf

 

 = 

=

=

=

 

 

3.9. Power Calculation 

Total Power 

2
2C

t n
n –

A
P J ( )

2R



= 

=   

According to the property of Bessel function 
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2

C
t

A
P .1

2R
=  

2

C
A

Total power
2R

=  

Same as unmodulated carrier power 

i.e. t C
P P=  

The total power is independent of the modulation index. AM takes more power compared to 

FM for the same message and carrier. 

3.10. Calculation Of Practical B.W Of WBFM Using Carson’s Rule 

Carson has proved that β + 1 number of side-bands having significant amplitudes contain 

99% of the total power. This is called Carson’s rule 

B.W. = 2(β + 1)fm 

m

m

m

f
2 1 f

f
2 f 2f

 
= + 

 
=  +

 

 

3.11. FM Demodulation Using Frequency Discriminators And Envelop Detectors 

The FM signal is demodulated by a two-step process. Here first, the FM signal is converted 

into an AM signal using frequency discriminators and then that AM signal is demodulated 

using an envelope detector to get our message signal. 

FM discriminators can be divided into two types 

Slope Detectors 

• Single tuned or simple slope detector 

Not used because it has harmonic distortions. 

It is also sensitive to amplitude variations 

• Stagger tuned or balanced slope detector 

Limited to small frequency deviation signals 

Phase difference discriminators 

• Foster Seeley discriminator 

Widely used 

Sensitive to amplitude variations caused due to noise 

• Slope detector 

Insensitive to amplitude variations due to noise 

Requires and AGC signal 
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3.12. FM Demodulation Using Pll 

 

First-order PLL 

When the input to the PLL is of the form cos[2πft + ϕ], the output voltage of VCO is 

0

d
V [ ]

dt
  . 

When the input to the PLL is an FM signal, Ac cos[2πfct + 2πKf ∫m(t) dt], the output voltage is 

0 f

d
V 2 K m(t) dt

dt
    

0 f
V 2 K m(t)   

0 f

V

V

1
V 2 K m(t)

2 K
1

Where, =proportionality constant
2 K

=   




 

ff
0

vv

K frequency sensitivity of VCO at transmitterK
V m(t)

K frequency sensitivity of VCO at ReceiverK

−
=

−
 

For perfect sync, fVCO=fc, which is called the lock mode. 

And ΦVCO= Φc, which is called the capture mode 

fVCO=fc is achieved very quickly due to the negative feedback due to the VCO 

LPF is responsible for the capture mode (phase sync). 

Lock range > Capture range 

PLL operation is a differentiation operation 

4. PHASE MODULATION 

In phase modulation, the phase of the carrier is varied according to the message signal. 

Time-domain equation of PM modulated signal can be written as, 

=  +

 =
c c p

p

S(t) A cos[2 f t K m(t)]
multitone modulation

K m(t)
 

Where, Kp =phase sensitivity (units =rad/V) 

 =  +  c c p m m
s(t) A cos 2 f t K A cos2 f t single tone modulation  

= 
p m

where K A is called phase deviation  
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c c m
s(t) A cos[2 f t cos2 f t]=  +    

modulation index =  =  

5. Comparison Between AM and FM 

 Parameter Amplitude Modulation Frequency Modulation (Angle 

modulation) 

1 Noise performance Bad Better, but FM has a more severe 

threshold effect 

2 Common channel 

interference 

More than FM Less due to the capture effect 

3 Externally generated 

noise effect 

More affected but does not 

require exact tuning 

Less affected but requires more 

accurate tuning 

4 Channel bandwidth Low High 

5 operating carrier 

frequency 

Low operates in MF and HF 

bands 

High >30MHz 

6 Transmission efficiency Less More 

 

6.   Capture effect 

The capture effect is defined as the complete suppression of the weaker signal at, or near, the 

same frequency or channel at the receiver's limiter (if present), where the weaker signal is 

greatly attenuated. 

It is only present in FM, not in AM(amplitude modulation) 

7.   Threshold effect 

When the carrier-to-noise ratio decreases below a certain point, below this critical point, the 

signal-to-noise ratio decreases significantly. This is known as the FM threshold effect. 

It is more severe in FM than AM(amplitude modulation) 

8.   Pre-emphasis and de-emphasis 

Pre-emphasis is boosting the amplitudes of higher frequencies at the transmitter. 

De-emphasis is the attenuation of the higher frequencies by the same amount at the receiver. 

9.   Relation between PM and FM 

f m

PM

m

FM p m m

K A

f

f K A f

 =

 =  

10. Figure of merit 

2

2

3

2

1

2

FM

PM

FOM

FOM





=

=
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CHAPTER-4: RECEIVERS 

 

1. Features of a receiver 

• Selectivity 

It is the ability of the receiver to accurately distinguish between two carrier 

frequencies and select the correct frequency. Selectivity depends on the sharpness of 

the resonance curve of the tuned circuits in the circuit. 

• Sensitivity 

It is the ability of the receiver to detect the weakest possible signal. It depends on the 

gain of the amplifying stages. 

• Fidelity 

It is the ability to reproduce all frequencies faithfully in the message signal at the 

output it depends on the bandwidth of the amplifier, which amplifies the baseband 

signal 

2. TRF Receiver 

Block diagram for TRF Receiver is as follows 

 

Tuned radio frequency receiver 

Carrier frequencies allotted from FM = (88– 108) MHz 

Carrier frequencies allotted from AM =(550 – 1650) kHz 

BW allotted to each AM broadcasting station = 10kHz 

Don’t suffer from problems of image frequency rejection and tracking and alignment. 

A very high value of Q is required for higher frequencies 

Selectivity declines by a lot on higher frequencies. 

3. SUPERHETERODYNE RECEIVER 

Block diagram for TRF Receiver is as follows 

 

Superheterodyne Receiver 

The mixer will change the carrier frequency from fs to fIF. 

The intermediate frequency for MW is 455 kHz. 
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3.1. Choice Of Intermediate Frequency 

For adjacent channel selectivity and easy tracking, the fIF should be low 

For good image signal rejection, fIF should be high 

3.2. Image Frequency: 

Fsi = fs + 2 IF 

Where IF is the image frequency 

The resonant frequency of the IF tuned amplifier is constant, i.e., IF. 

fl – fs = IF 

Where fl is the local oscillator frequency 

In SHR, the local oscillator frequency is always kept higher than the signal frequency 

 

3.3. Capacitance Ratio 

MAX H IF

MIN L IF

C f f

C f f

 +
=  

+ 
 

 

3.4. Image (Frequency) Rejection Ratio: 

IRR = s

si

Gain at f

Gain at f
 

Gain at fsi ≪ 1 

 

By increasing the Intermediate frequency, IRR can be increased. By increasing the 

bandwidth, the gain at fsi can be decreased so that IRR increases. 

1
IRR

B.W
  

IRR Q  

2 2IRR 1 Q= +   

Where,                                             si s

s si

f f

f f
 = −  

Since the frequency of the local oscillator is given by 
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LO

1
f

2 LC
=


 

Where L is inductance and C is capacitance. Now, for a fixed value of L, we have 1/fLO 

2

LO

1
C

2 L
1 1

or C
2 L f

=


=


 

So, the maximum value of capacitance exists for the minimum value of fLO, i.e 

max 2

LO,min

1 1
C

2 L f
=


 

Similarly, we get 

min 2

LO, max

1 1
C

2 L f
=


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CHAPTER-5: NOISE IN ANALOG COMMUNICATION 

 

1. Classification Of Noise 

The fundamental noise sources produce different types of noise. They may be listed as 

under: 

(i) Shot noise 

(ii) Thermal noise 

(iii) Partition noise 

(iv) Low frequency or flicker noise 

(v) High frequency or transit time noise 

1.1. Shot Noise 

The mean square shot noise current for a diode is given as 

2

n
I  = 2(I + 2I0)q B A2 

Where I = direct current across the junction (in the amp.) 

I0 = reverse saturation current (in amp.) 

q = electronic charge = 1.6 × 10–19C 

B = effective noise bandwidth in Hz. 

Schottky’s formula 

( )2 2o oi qI f=   

Where io=shot noise current 

1.2. Thermal Noise or Johnson Noise 

The average thermal noise power is given by, 

Pn = kTB   Watts 

Where k = Boltzmann’s constant = 1.38 × 10–23 J/K 

B = Bandwidth of the noise spectrum (Hz) 

T = Temperature of the conductor in Kelvin 

Also Pn=2kTBR 

Noise voltage 

2nv kTBR=  

1.3 Partition Noise 

When a circuit is divided between two or more paths, the noise generated is Partition 

noise. The reason for the generation is random fluctuation during division. 

 

1.4 Flicker Noise 

This type of noise is generally observed at a frequency range below a few kHz.  The 

power spectral density of this noise increases with the decrease in frequency. That is 

why the name is given as Low- Frequency Noise. 
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1.5 Transit Time Noise 

This noise is also known as TRANSIT- TIME Noise. This is observed in semiconductor 

devices when the transit time of a charge carrier while crossing a junction is comparable 

with the time period of that signal. 

 

2. White Gaussian Noise 

White noise is the noise whose power spectral density is uniform over the entire frequency 

range of interest, as shown in figure 2. 

3.  

Figure: Power Spectral Density of White Noise 

 

The white noise contains all the frequency components in equal proportion. This is analogous to 

white light, which is a superposition of all visible spectral components. 

The white noise has a gaussian distribution. This means that the PDF of white noise has the 

shape of a Gaussian PDF Hence, it is called gaussian noise. 

As shown in figure 2, the power spectral density (PSD) of white noise is given by, 

( ) = 0
n

N
S f

2  

This equation shows that the power spectral density of white noise is independent of frequency. 

As N0 is constant, the PSD is uniform over the entire frequency range, including the positive and 

the negative frequencies. N0 is defined as under: 

N0 = kTe 

where K = Boltzmann’s constant and 

Te = Equivalent noise temperature or the system 

An example of white noise is the thermal or Johnson noise. 

3. Signal To Noise Ratio 

It is defined as the ratio of signal power to the noise power at the same point. 

Therefore,  s

n

PS

N P
=  

where Ps = Signal power 

Pn = Noise power at the same point. 

S/N (dB) = 10 log10 (Ps/Pn) 

4. SINAD 

This is another variation of signal to noise ratio. SINAD stands for signal noise and distortion, 

and it is defined as, 
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SINAD = 
S N D

N D

+ +

+
 

Where, S = Signal, N = Noise and D = Distortion 

SINAD is generally used in the specifications of the FM receiver. 

5. Noise Factor 

It is defined as, 

S N ratioat the input
F =

S N ratio at the output
 

si n0

ni s0

P P
F

P P
=   

Where Psi and Pni = Signal and noise power at the input 

and Pso and Pno = Signal and noise power at the output 

6. Noise Figure 

Sometimes, the noise factor is expressed in decibels. When noise factor is expressed in 

decibels, it is known as noise figure. 

Noise figure FdB = 10 log10 F 

Substituting the expression for the noise factor, we get 

Noise figure = 10 log10 
S N at the input

S N at the output

 
 
 

 = 10 log10 (S/N)i – 10 log10 (S/N)0 

Hence, Noise figure FdB = (S/N)i dB – (S/N)0 dB 

The ideal value of noise figure is 0 dB. 

7. Noise Temperature 

The equivalent noise temperature of a system is defined as the temperature at which the 

noise resistor has to be maintained so that by connecting this resistor to the input of a 

noiseless version of the system, it will produce the same amount of noise power at the 

system output as that produced by the actual system. 

The equivalent noise temperature of the amplifier is given by, 

Teq = (F – 1) T0 

Where F is noise factor and T0 is temperature 

 

8. The Figure of Merit: 

 

https://byjusexamprep.com/


byjusexamprep.com 

32 

(S/N)i=(Si/Ni) = 
Powerof the modulated signal

Power of noise in message bandwidth
 

(S/N)0 = (S0/N0) = 
Powerof the demodulated signal

Power of noise in message bandwidth
 

Figure of Merit = 
( )

( )
0

i

S N 1

Noise FigureS N
=  

Noise Figure = 
( )

( )
i

0

S N

S N
 

(S/N)0 depends mainly on the modulation scheme and receiver characteristics. 

9. Equivalent Noise Temperature In Cascaded States 

( )

2 2
1

1 1 2 1 2 1

e e en
e e

a a a a a a n

T T T
T T

G G G G G G
−

= + + + +

 

Where Gan=gain of the nth stage 

Ten=noise temperature of the nth stage 

 

10. Equivalent Noise Resistance In Cascaded States 

( )

2 2
1 2 2 2 2 2 2 2

1 2 1 1 2 3 1

N
eq

n

RR R
R R

A A A A A A A
−

= + + + +

 

 

11. Noise Figure In Cascaded States 

( )

32
1

1 1 2 1 2 3 1

11 N

a a a a a a a n

F FF
F F

G G G G G G G
−

−−
= + + + +

 

Where Gan=gain of the nth stage 

Fn= noise figure of the nth stage 

1
eq

a

R
F

R
= +  
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CHAPTER-6:  RANDOM VARIABLES 

 

1. Probability 

1.1. Probability Axioms 

1. (Nonnegativity) P(A) ≥ 0, for every event A. 

2. (Additivity) If A and B are two disjoint events, then the probability of their union satisfies 

P(A ∪ B) = P(A) + P(B). 

Furthermore, if the sample space has an infinite number of elements and A1, A2, ... is a 

sequence of disjoint events, then the probability of their union satisfies 

P(A1 ∪ A2 ∪….) = P(A1) + P(A2) + … P(An) 

3. (Normalization) The probability of the entire sample space =Ω is equal to 1, that is,  

P(Ω) = 1. 

4.For an event, A ( )0 1P A   

5.For an absolute certain event A P(A)=1 

6.For an impossible event, A P(A)=0 

 

1.2. Properties of Probability Laws 

Consider a probability law, and let A, B, and C be events. 

(a) If A ⊂ B, then P(A) ≤ P(B). 

(b) P(A ∪ B) = P(A) +  P(B) — P(A ∩  B). 

(c) P(A ∪ B) ≤ P(A) + P(B). 

(d) P(A ∪ B ∪ C) = P(A) + P(Ac ∩ B) + P(Ac ∩ Bc ∩ C). 

1.3. Conditional probability for event A and B: 

P(A B)
P(A |B)

P(B)


=  

2. Total Probability Theorem And Bayes' Rule 

2.1. Total Probability Theorem 

Let A1,…, An be disjoint events that form a partition of the sample space (each possible 

outcome is included in one and only one of the events A1,…, An) and assume that P(Ai) > 0, 

for all i = 1,…, n. Then, for any event B, we have 

P(B) = P(A1 ∩ B) + … +P(An ∩ B) 

= P(A1)P(B | A1) + … + P(An)P(B | An). 

2.2. Bayes' Rule 

Let A1, A2,….., An be disjoint events that form a partition of the sample space, and 

assume that P(Ai) > 0, for all i. Then, for any event B such that P(B) > 0, we have 
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( )
( ) ( )

( ) ( )
1

/
/

/

i i

i n

i i

i

P A P B A
P A B

P A P B A
=

=

  

 

3. Independent Events: 

We say that A is independent of B 

P(A | B) = P(A). 

P(A | B) =P(A ∩ B)/P(B), this is equivalent to 

P(A ∩ B) = P(A)P(B). 

4. Introduction To Random Variables 

A random variable is a real value function and defined over a sample space of a 

random experiment. 

It is also known as stochastic function, stochastic variable and random function 

The random variables can be distinguished as 

1. Discrete Random Variable 

2. Continuous Random Variable 

3 Cumulative Distribution Function 

4 Mean, Variance and Standard Deviation of a Random Variable 

5 Different types of Random Variable 

5. Discrete Random Variable 

When the random variable takes only a discrete set of values, it is called a discrete 

random variable. For example, we flip a coin, the possible outcomes are head (H) and 

tail (T), so S contains two points labelled H and T. Suppose we define a function X(S) 

such that 

1 for S H
X(S)

1 for S T

=
= 

− =
 

Thus, we have mapped the two outcomes into the two points on the real line. So, this 

type of random variable is called a discrete random variable. 

5.1. Probability Density Function of Discrete Random Variable 

Let a discrete random variable X having the possible outcomes, X = {X1,X2,…Xn} 

So, the probability density function (PDF) of the discrete random variable is defined as 

( ) ( )
( )

( )

, 1, 2,3,.......

0

1

j j

x

P X x f x j

f x

f x

= = =



=
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5.2. Probability Mass Function of Discrete Random Variable 

Suppose that the jumps in Fx(x) of a discrete random variable X occur at the points x1, 

x2, ..., where the sequence may be finite or countably infinite, and we assume x i < xj 

if i < j. 

Then Fx(xi)– Fx(xi–1,)= P(X ≤ xi) – P(X ≤ xi–1) = P(X = xi) 

Let Px(x) = P(X = x) 

The function px(x) is called the probability mass function (pmf) of the discrete random 

variable X. 

Properties of px(x): 

I. 0 ≤ px(xk) ≤ 1      k = 1, 2, ... 

2. px(x)= 0  if x # xk (k = 1, 2, ...) 

3. ( )x k
k

p x = 1 

The CDF Fx(x) of a discrete random variable X can be obtained by 

Fx(x)= P(X ≤ x) = ( )



k

x k
x x

p x  

6. Continuous Random Variable 

A  random variable that takes on an infinite number of values is known as a 

continuous random variable. As there are infinite possible values of X probability that 

it takes a single value is 
1


=0 

6.1 CONTINUOUS RANDOM VARIABLES AND PDFs 

For every subset B of the real line. In particular, the probability that the value of X 

falls within an interval is 

 =  xB
P(X B) f (x)dx,  

 

Note that to qualify as a PDF, a function fx must be non-negative, i.e., fx(x) ≥ 0 for 

every x, and must also satisfy the normalization equation 

. 

6.2 Properties of PDF of Continuous Random Variable: 

1. fx(x) ≥ 0 

2. 
x
f (x)dx 1



−
=  

3. P(X ≤ x) = Fx(x) = 
x

x
f ( )d

−
   

4. P(a < x ≤ b) = 
b

xa
f (x)dx

 

5. Excluding the endpoints of an interval has no effect on its probability: 

P(a ≤ X ≤ b) = P(a < X < b) = P(a ≤ X < b) = P(a < X ≤ b). 
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7. CUMULATIVE DISTRIBUTION FUNCTIONS 

The CDF of a random variable X is denoted by Fx and provides the probability P(X ≤ x). In 

particular, for every x we have 



−




=  = 







x
k x

xx

x

p (k) X : discrete,

F (x) P(X x)
f (t)dt X : continuous

 

7.1. Properties of a CDF 

The CDF Fx of a random variable X is defined by Fx(x) = P(X ≤ x), for all x, 

and has the following properties. 

Fx is nondecreasing 

if x  ≤  y, then Fx(x) ≤  Fx(Y). 

Fx(x) tends to 0 as x → -∞ and 1 as x → ∞. 

If X is discrete, then Fx has a piecewise constant and has a staircase-like graph. 

If X is continuous, then Fx has a continuously varying graph. 

If X is discrete, the PDF and the CDF can be obtained from each other by summing or 

differencing: 

Fx(k) = 
=−


k

x
i

P (i),  

px(k)= P(X ≤ k) – P(X ≤  k –1) = Fx(k) – Fx(k –1), 

for all integers k. 

• If X is continuous, the PDF and the CDF can be obtained from each other by 

integration or differentiation: 

−
= 

x

x x
F (x) f (t)dt,  

8. The Statistical Average Of Random Variable: 

8.1 Mean or Expected Value: 

Let a random variable X characterized by its PDF fx(x). The mean or expected value of X is 

defined as 

x
E(X) X xf (x)dx



−
= =   

Similarly, we obtain the expected value of a function g(X) as E[g(X)] = ( )g X  = 
x

g(x)f (x)dx


−  

If X is a discretely distributed random variable, then the expected value of X is given by 

n

x i x i
i 1

E[X] X x f (x )
=

= =  = 
 

Properties of expected values 

E(cX)=cE(X) 

E(X+Y)=E(X)+E(Y) 
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E(XY)=E(X)E(Y) 

 

8.2 Variance 

The variance 2

x
  of a random variable X is the second moment taken about its mean. i.e. 

 

Var [X] = 2

x
 = E [(X – μx)2] 

 

2

x x
(x ) f (x)dx



−
= −   

 

Properties of variance 

𝛔2=E((X-μ)2)=E(X2)-μ2 

Var(cX)=c2Var(X) 

Var(X+Y)=Var(X)+Var(Y) 

Var(X-Y)=Var(X)+Var(Y) 

 

8.3. Standard Deviation 

The standard deviation σx of a random variable is the square root of its variance, i.e., 

( )  = = − 
 

2

x
var[x] E X

 

9. Tchebycheff’s Inequality 

( )
2

2

E X c
P X c 



 −
  −      

10. Normalized Random Variable 

( )

( )

*

* 0

* 1

X
X

E X

Var X





−
=

=

=
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11. Central Limit Theorem 

The probability density of a sum of N independent random variables tends to approach the 

probability density of a Normal distribution as N increases. It becomes equal to that of the 

normal distribution function as N tends to infinity.
 

12. Covariance 

The covariance of the random variables X and Y is defined as: 

cov(X,Y) = σxy = E [(X - μx) (Y – μy )] x y
(X )(Y )= −  −   

where μx and μy are the mean of random variables X and Y, respectively. We may expand the 

above result as 

cov(X,Y) = σxy = E[XY] – μxμy x y
XY= −  

 

it can also be written as 

cov(X,Y)=E[XY]-E[X]E[y] 

Properties of Covariance 

If X and Y are real valued random variables and c and d are real valued constants 

cov(X,X)=var[X] 

cov(X,c)=0 

cov(X,Y)=cov(Y,X) 

cov(cX,dY)=cd cov(X,Y) 

cov(X+c,Y+d)=cov(X,Y) 

13. Correlation Coefficient 

The correlation coefficient of random variables X and Y can be defined as 

xy

x y

cov[xy]
 =

 
 

Where cov [X, Y] is the covariance of X and Y, and σx, σy are the standard deviations of 

random variables. 

NOTE: 

1. The random variables X and Y are uncorrelated if and only if their covariance is zero, i.e. 

cov[XY] = 0 

2. The random variables X and Y are orthogonal if and only if their correlation is zero, i.e. 

E[X, Y] = 0 
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14.  Different types of Random Variable distribution: 

14.1. Exponential Distribution 

 

PDF and CDF 

PDF 

− 
= 


x

x

e if x 0,
f (x)

0 otherwise,
 

CDF 

− − 
= 


x

x

1 e if x 0,
F (x)

0 otherwise,
 

 

Where λ is a positive parameter 

Mean=E[X]=
1


 

=
2

1
var(X) . 

14.2. Normal Or Gaussian Distribution 

 

PDF and CDF 
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PDF 

− 
−  

 =


2
1 x

2

x
2

1
f (x) e

2  

CDF 

( )
  − 

= +  
  

x

1 x
F x 1 erf

2 2  

 

Where μ and σ are two scalar parameters characterizing the PDF 

 

The mean and the variance are 

E[X] = μ, 

var(X) = σ2
. 

14.3. Bernoulli Random Variable 

0 1

1

p

q p

 

= −
 

PDF 

1 0
( )

1
x

q p x
f x

p x

= − =
= 

=
 

CDF 

( )

0, 0

1 , 1 1

1, 1

x

if x

F x p if x

if x

 


= −  




 

 =
x

E(X)=p 

 =2

x
Var(X)=pq 
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14.4. Binomial Distribution 

 

CDF                                                         PDF 

PDF 

( ) n x n x

x xf x C p q −=
 

CDF
 

( )
0

x

n i n i

x i

i

F x C p q
  

−

=

=  

Where p=1-q 

 =
x

E(X)=np 

 =2

x
Var(X)=npq 

In a binomial distribution, if the n is large and p is small or close to zero, then it could be 

approximated to a Poisson distribution with mean=np 

 

14.5. Poisson Distribution: 

 

PDF                                               CDF 

A random variable X is called a Poisson random variable with parameter ( 0)   

PDF 

− = =
x

x
f (x) e x 0, 1,2....

x!  
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CDF 

( )
0 !

x i

x

i

F x e
i

   
−

=

=   

x
E(X) = =   

 = = 2

x
Var(X)

 

If 
 → then Poisson distribution approaches the normal distribution 

14.6. Uniform Distribution: 

 

PDF          CDF 

A random variable X is called a uniform random variable over (a, b) if its PDF is given by 

x

1
a x b

f (x) b a

0 otherwise


 

= −



 

The corresponding CDF of X is 




−
=  

−
 

x

0 x a

x a
F (x) a x b

b a

1 x b

 

The mean and variance are: 

x

a b
E(x)

2

+
 = =  

2
2

x

(b a)
Var(X)

12

−
 = =  

14.7. Rayleigh Distribution 
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PDF                                                               CDF 

PDF 

( )

2

22
2

x

x

x
f x e 



−

=
 

CDF
 

( )

2

221

x

xF x e 
−

= −  

 =
x

E(x)=
2


  

− 
 = = 2 2

x

4
Var(X)

2  

 

15. Error Function 

 

( )
2

0

2 x
terf x e dt



−=   

16. Complementary error function 

 

erfc(x)=1-erf(x) 
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17. Q function 

 

 

( )
2

2
1

2

u

x
Q x e du



 −

=   

( ) ( )

( )

( )

( )

1

1 1

2 2 2

1

2 2

0 0.5

Q x Q x

x
Q x erf

x
Q x erfc

Q

= − −

 
= −  

 

 
=  

 

=

 

18. Multiple Random Variables 

18.1. Expectation 

If Y and X are continuous random variables, and g is some function, then Z = g(X, Y) is also 

a random variable. For now, let us note that the expected value rule is still applicable and 

x,y
E[g(X, Y)] g(x,y)f (x,y)dxdy

 

− −

=    

As an important special case, fur any scalars a, is, we have 

E(aX + by] = aE[X] + bE[Y]. 

18.2. Independence of Continuous Random Variables 

Suppose that X and Y are independent, that is, 

fx,y(x,Y)= fx(x)fy(y), for all x,y. 

18.3. Independent Random Variables: 

If X and Y are independent random variable’s, then 

pXY(xi, yj) = pX(xi) pY(yj) 
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19. Joint Probability Density Functions: 

Let (X, Y) be a continuous bivariate random variable with CDF FXY(x, y) and let 

2

xy

XY

F (x,y)
f (x,y)

x y


=

 
 

The function fXY(x, y) is called the joint probability density (joint pdf) of (X, Y). 

19.1. Properties of fXY(x,): 

1. fXY(x, y) ≥ 0 

2. 

A

XY

R

f (x, y) dx dy 1=  

3. fXY(x, y) is continuous for all values of x or concept, possible a finite set. 

4. 

A

XY

R

P[(X, Y)] A] f (x, y) dx dy =   

5. 
d b

XYc a
P(a X b, c d) f (x, y)dxdy   =    

Since P[(X = a)] = 0 = P(Y = c) 

it follows that 

P(a < X ≤ b, c < Y ≤ d) = P(a ≤ X ≤ b, c ≤ Y ≤ d) = P(a ≤ X < b, c ≤ Y < d) 

= 
d b

XYc a
P(a X b, c Y d) f (x, y)dxdy    =    

 

19.2. Properties of FXY(x, y): 

The joint CDF of two random variable’s has many properties analogous to those of the CDF of 

a single random variable 

1. 0 ≤ FXY(x, y) ≤ 1 

2. If x1 ≤ x2, and y1 ≤ y2, the 

FXY(x1, y1) ≤ FXY(x2, y1) ≤ FXY(x2, y2) 

FXT(x1, y1) ≤ FXY(y1, y2 ≤ FXY(x2, y2) 

3. XY XY
x
y

limF (x,y) F ( , ) 1
→
→

=   =  

4. XY XY
x
lim F (x,y) F (– , y) 0
→−

=  =  

5. XY XY XY
x a
lim F (x,y) F (–a , y) F (a,y)

+

+

→

= =  

6. P(X1 < X ≤ x2, Y ≤ y)= FXY(x2, y)–FXY(x1, y) 

7.  P(X ≤ x, y1 < Y ≤ y2) = FXY(x, y2)–FXY(x, y1) 

8. If x1 ≤ x2 and y1 ≤ y2, then 

FXY(x2, y2)– FXY(x1, y2) – FXY(x2, y1) + FXY(x1, y1) ≥ 0 

Properties are almost same for the discreet case just use summation instead if integration. 

 

 

https://byjusexamprep.com/


byjusexamprep.com 

46 

 

20. Marginal Probability Density Functions: 

( ) ( )

( ) ( )

,

,

X

Y

f x f x y dy

f x f x y dx



−



−

=

=




 

( ) ( )

( ) ( )

lim ,

lim ,

Y
y

Y
x

F x F x y

F y F x y

→

→

=

=
 

( )
( )

( )

( )
( )

( )

,

|

,

|

,
|

,
|

X Y

y x

x

X Y

x y

Y

f x y
f y x

f x

f x y
f x y

f y

=

=
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CHAPTER-7:  RANDOM PROCESS 

 

1. Classification of Random Process 

Random processes may be classified as continuous or discrete. 

1.1. Continuous Random Process: A continuous random process consists of a random 

process with associated continuously distributed random variables 

X(t, si). The Gaussian random process is an example of the continuous random 

process. 

1.2. Discrete Random Process: A discrete random process consists of random 

variables with discrete distributions. For example, the output of an ideal (hard) 

limiter in a binary (discrete with two levels) random process. 

2. Probability Density Function of Random Process 

A complete description of a random process {X(t, s)} is given by the N-fold joint pdf that 

probabilistically describes the possible values assumed by a typical sample function at time tN 

> tN–1 > … > t1, when N is arbitrary. 

For N = 1, we can interpret this joint pdf as 

1X 1 1 1 1 1 1 1 1
f (x , t )dx P(x dx X x at timet )= −  

 

Where X1 = X(t1, s). Similarly, for N = 2, we can interpret the joint pdf as 
1 2X X 1 1 2 2

f (x , t :x , t )

dx1dx2 = P(x1 – dx1 < X1 ≤ x1 and x2 – dx2 < X2 ≤ x2) where X2 = X(t2, s). In general, we 

denote the N-dimensional PDF of a random process as 

fX(t)(x) = fX(t)(x(t1), x(t2), …., x(tN)) 

3. Stationary Random Process 

A random process X(t) is said to be stationary to the order N if, for any t1, t2 …, tN 

X(t) 1 2 N
f (x(t ), x(t ), ... x(t ))  = X(t) 1 0

f (x(t t ),+
2 0 N 0

x(t t ), ... x(t t ))+ +  

Where t0 is an arbitrary real constant, the process is strictly stationary if it is stationary to the 

order N → ∞. 

4. Averages of Random Process: 

We may define the time average and ensemble average of a random process in the following 

ways: 

https://byjusexamprep.com/


byjusexamprep.com 

48 

 

A random process with its random variables 

4.1. Ensemble of a Random Process 

If we fix t to some value, let's say t1, then the result is a random variable X(t1, 

S)=[A1A2.....AN] then the mean of X(t1), E[X(t1)] can be calculated, which is known as an 

ensemble average. 

Ensemble average is a function of time. There is an ensemble average with respect to each 

time, and thus ensemble average with respect to each time can be found. 

4.2. Time Average of a Random Process 

We can consider a sample function, let's say x1(t) over an entire time scale the mean value of 

x1(t) is defined as 

( ) ( )1 1

1
lim

2T
x t x t dt

T



→
−

=   

Similarly, we can find the value for other functions in the variable 

The expected value E[X(t)] is known as the time average where 

( ) ( ) ( ) ( ) ( )( )1 2 3, , ....... NX t x t x t x t x t=  

Property of Ensemble average: 

The mean (ensemble average) of a stationary process is constant, i.e. 

μX(t) = μX  for all t 

5. Autocorrelation function 

The autocorrelation function of a random process X(t) is defined as the expectation of the 

product of two random variables X(t1) and X(t2), i.e. 

RX(t1, t2) = 
1 2 1 2

E[X(t ) X(t )] X(t ) X(t )=  

1 2 x(t) 1 2 1 2
x x f (x , x )dx dx

 

− −
=    
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where x1 = x(t1) and x2 = x(t2). Some important properties of the autocorrelation function of 

a stationary random process are given below. 

5.1. Properties of Auto Correlation Function: 

• The autocorrelation function of a strictly stationary random process is a function 

only of the time difference τ = t2 – t1, i.e. 

RX(τ) = E[X(t) X(t + τ)] = X(t) X(t )+   

• The mean square value of the process may be obtained from Rx(τ) simply by putting 

τ = 0 in the above equation, i.e. 

2 2

X
R (0) E[X (t)] X (t)= =  

• If the autocorrelation function of a random process has no periodic component then, 

we may define 

2

X X
X(t) R ( ) or X(t) R ( )=   =  

 

• The autocorrelation function is the even function of τ, i.e. 

RX(τ) = RX(–τ) 

• The autocorrelation has its maximum magnitude at τ = 0, i.e. 

RX(0) ≥ RX(τ) 

6. Cross-Correlation Function 

The cross-correlation function for two random processes, X(t) and Y(t), is defined as: 

XY 1, 2 1 2 1 2
R (t t ) E[X(t )Y(t )] X(t )Y(t )= =  

Where t1 and t2 denote the two values of time at which the processes are observed, the 

following are some important properties of the cross-correlation function of two jointly 

stationary random processes, X(t) and Y(t): 

6.1. Properties of Cross-Correlation Function: 

• The cross-correlation function of jointly random processes X(t) and Y(t) is a function 

only of the time difference τ = t2 – t1, i.e. 

RXY(t1, t2) = RXY(τ) 

• The cross-correlation function is the even function of τ, i.e. 

RXY(–τ) = RYX(τ) 

• The random processes X(t) and Y(t) are said to be uncorrelated if, for all t1 and t2, 

XY 1, 2 1 2
R (t t ) X(t ) Y(t )= 

 

• XY X Y
|R ( )| R (0) R (0) 

 

• 
XY X Y

1
|R ( )| [R (0) R (0)]

2
  +
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7. ERGODIC PROCESS 

A random process is ergodic if the all-time averages of any sample function are equal to the 

corresponding ensemble averages (expectations). As the ergodic process has its ensemble 

average equal to its time average, we may deduce the following properties for the ergodic 

process: 

7.1 Properties of Ergodic Process: 

• The dc value of an ergodic process can be defined in terms of ensemble average as 

dc
X X(t) E[X(t)] X(t)=   = =

 

• The dc power of an ergodic process can be defined as 

2 2 2

dc
P X(t) {E[X(t)]} {X(t)}=   = =

 

• The power in the ac (time-varying) component is given by 

2
2 2 2 2

ac x
P X (t) X(t) X (t) X(t)=  =   =   = −

 

• The RMS power (total power) of an ergodic process is defined as 

2
2 2 2 2

total
P X (t) E[X (t)] X (t) x X(t)=   = = =  +

 
• The RMS value of an ergodic process can be defined as 

2 2 2

rms
X X (t) E[X (t)] X (t)=   = =

 

2
2

x
X(t)=  +

 

8. Wide Sense Stationary Process: 

A random process is said to be wide-sense stationery (WSS) if its mean is independent of 

time and autocorrelation function depends on the time difference, i.e. 

E[X(t)] = μx where μx is a constant 

and RX(t1, t2) = RX(τ), where τ = t2 – t1 

9. Power Spectral Density 

The power spectral density of a given signal  describes the distribution of power into 

frequency components making up that signal 

Following are some important properties of the power spectral density of a stationary 

process. 

9.1. Properties of Power Spectral Density: 

• The power spectral density SX(f) is always real and non-negative, i.e. 

SX(f) ≥ 0 

• The power spectral density of a real-valued random process is an even function of 

frequency, i.e. 

SX(–f) = SX(f) 
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• The total normalized power of a random process is defined in terms of power spectral 

density as 

total X
P S (f)df



−
=   

or 

2

X
E[X (t)] S (f)df



−
=   

or 
X X

R (0) S (f)df


−
=   

• The zero-frequency value of the power spectral density of a stationary process equals 

the total area under the graph of the autocorrelation function, i.e. 

X X
S (0) R ( )d



−
=    

10. Cross Spectral Density 

Let X(t) and Y(t) be two jointly stationary processes with their cross-correlation functions 

denoted by RXY(τ) and RYX(τ). We then define the cross-spectral densities for the random 

processes as 

SXY(f) = j2 fr

XY
R ( )e d


− 

−
   

and j2 fr

YX YX
S (f) R ( )e d


− 

−
=    

Accordingly, using the formula for inverse Fourier transformation, we may also write 

j2 fr

XY XY
R ( ) S (f)e df




−
 =   

and j2 fr

YX YX
R ( ) S (f)e df




−
 =   

10.1. Properties of Cross Spectral Density: 

The cross-spectral densities SXY(f) and SYX(f) are not necessarily the real function or f. 

However, using the property of the autocorrelation function, we may deduce that 

SXY(f) = SYX(–f) = *

YX
S (f)  

11. Linear System: 

Consider a linens system shown in Figure 10. The input-output relationship for the system is 

y(t) = h(t) * x(t) 

The corresponding Fourier transform relationship is 

Y(f) = H(f) X(f) 

 

X(f)            Y(f) 

RX(τ)            RY(τ) 

SX(f)            SY(f) 
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11.1. Input-Output Relationship of a Linear System 

If x(t) is a wide-sense stationary random process, then the output autocorrelation is defined 

as 

RY(τ) = h(–τ) * h(τ) * RX(τ) 

Correspondingly, the output power spectral density is given by 

SY(f) = |H(f)|2 SX(f) 

Thus, the power transfer function of the network is 

2Y

X

S (f)
G(f) |H(f)|

S (f)
= =  
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CHAPTER-8: BASEBAND MODULATION 

 

1. Sampling Process 

Sampling is the process of measuring the instantaneous values of the continuous-time signal 

in a discrete form. The sample is a piece of data taken from the whole data, which is 

continuous in the time domain. 

The time interval between two consecutive samples is called the sampling period. 

 

Sampling frequency: The reciprocal of the sampling period is referred to as sampling 

frequency, i.e. 

fS = 1/TS 

2. Sampling Theorem 

A band-limited signal having no frequency components higher than fm Hz is completely 

described by its sample values at uniform intervals less than or equal to 1/2fm Hz 

A band-limited signal having no frequency components higher than fm Hz may be completely 

recovered from the knowledge of its samples taken at the rate of at least 2fm samples per 

second. 

3. Nyquist Rate 

Nyquist rate is defined as the minimum sampling frequency allowed to reconstruct a band-

limited waveform without error, i.e. 

fN = min {fS} = 2W 

Where W is the message signal bandwidth, and fS is the sampling frequency. 

4. Nyquist Interval 

The reciprocal of Nyquist rate is called the Nyquist interval (measured in seconds), i.e. 

N

N

1 1
T

f 2W
= =  

Where fN is the Nyquist rate, and W is the message signal bandwidth. 

5. Sampling of Bandpass Signals 

 

The bandpass signal x(t), whose maximum bandwidth is 2fm, can be completely represented 

and recovered from its samples if sampled at the minimum rate of twice the bandwidth. 

Hence if the bandwidth is 2fm, the minimum sampling rate for bandpass signal must be 4fm 

samples per second. 

This bandpass signal is first represented in terms of its in-phase and quadrature components 

Let xI(t) = Inphase component of x(t) 

And xQ(t) = Quadrature component of x(t) 

Thus, the signal x(t) in terms of inphase and quadrature components will be expressed as 

x(t) = xI(t) cos(2πfct) – XQ(t) sin(2πfct) 
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Thus, if 4fm samples per second are taken, the bandpass signal of bandwidth 2fm can be 

completely recovered from its samples. Hence, for bandpass signals of bandwidth 2fm. 

Minimum sampling rate = Twice of bandwidth 

= 4fm samples per second. 

 

6. Sampling Technique 

There are three types of sampling techniques as under: 

i. Instantaneous sampling 

ii. Natural sampling 

iii. Flat top sampling 

Out of these three, instantaneous sampling is ideal sampling, whereas natural sampling and 

flat-top sampling are practical sampling methods. 

Table 1: Performance Comparison of three Sampling Technique 

 

S. 

No 

Parameter 

of 

comparison 

Ideal or 

instantaneous 

sampling 

Natural sampling Flat top sampling 

1. 
Sampling 

principle 
It uses multiplication 

It uses the chopping 

principle 

It uses sample and hold 

circuit 

2. 
Generation 

circuit 

  
 

3. 
Waveforms 

involved 

  
 

4. Feasibility 
This is not a practically 

possible method 

This method is used 

practically 

This method is also used 

practically 

5. 
Sampling 

rate 

The sampling rate 

tends to infinity 

The sampling rate 

satisfies Nyquist criteria 

The sampling rate 

satisfies Nyquist criteria 

6. Noise Noise is maximum Noise is minimum noise noise is maximum 

7. 

Time-domain 

representatio

n 

( ) ( ) ( )s s
n

g t x nT t nT


=−

=  −  ( ) ( ) ( ) sj2 nf t

s
ns

A
g t x t sinc nf e

T




=−


=   ( ) ( ) ( )s s

n

g t x nT h t nT


=−

= −  

8. 

Frequency 

domain 

representatio

n 

( ) ( )s s
n

G f f X f nf


=−

= −  ( ) ( ) ( )s s
ns

A
G f sinc nf X f nf

T



=−


=  −  ( ) ( ) ( )s s

n

G f f X f nf H f


=−

= −
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7. Inter symbol Interference 

Intersymbol interference (ISI) is a phenomenon in which one symbol interferes with 

subsequent symbols. This is unwanted as the previous symbols have a similar effect as noise, 

thus making the communication less reliable. The spreading of the pulse beyond its allotted 

time interval causes it to interfere with neighbouring pulses. ISI is usually caused by 

multipath propagation or the inherent linear or non-linear frequency response of 

a communication channel causing successive symbols to blur together. 

8. Aliasing 

Aliasing is a phenomenon that causes different signals to become indistinguishable 

when sampled. It also often refers to the distortion that results when a signal is 

reconstructed from the samples different from the original continuous signal. 

9. Pulse Modulation 

Pulse modulation is the process of changing a binary pulse signal according to the 

information to be transmitted. Pulse modulation can be either analogue or digital. 

9.1. Analog Pulse Modulation 

Analog pulse modulation results when some pulse attribute varies continuously in one-to-one 

correspondence with a sample value. In analogue pulse modulation systems, the amplitude, 

width, or position of a pulse can vary over a continuous range in accordance with the 

message amplitude at the sampling instant. 

i. Pulse Amplitude Modulation (PAM) 

ii. Pulse Width Modulation (PWM) 

iii. Pulse Position Modulation (PPM) 
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Representation of Various Analog Pulse Modulation 

9.2. Digital Pulse Modulation 

i. Delta Modulation (DM) 

ii. Pulse Code Modulation (PCM) 

iii. Differential Pulse Code Modulation (DPCM) 

iv. Adaptive Delta Modulation (ADM) 

 

10. Pulse Code Modulation 

The PCM is done by using the following steps 

i. Sampling 

ii. Quantizing 

iii. Encoding 

 

Block Diagram Representation of PCM System 

10.1. Quantization 

Quantization is the process of mapping input values from a large set or a continuous signal to 

output values in a (countable) smaller set, with a finite number of elements 
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10.1.1 Uniform Quantizer 

A quantizer is called a uniform quantizer if the step size remains constant throughout the 

input range. 

There are two types of quantizers: 

i. midtread type 

ii. midrise type 

 

Two types of Uniform Quantization (a) Midtread, and (b) Midrise 

10.1.2. Nonuniform Quantizer 

Nonuniform quantization is a quantizer whose step size is not fixed but varies based on 

different techniques like μ law given below 

q

1n(1 |m|)
|m |

1n(1 )

+ 
=

+ 
 

Where m and mq are the normalized input and output voltages, and μ is a positive constant. 

10.2. Encoding 

An encoder translates the quantized samples into digital code words. The encoder works with 

M-ary digits and produces a codeword of n digits parallel for each sample. Since there are Mn 

possible M-ary codewords with n digits per word, unique encoding of the q different levels 

requires that 

Mn ≥ q 

The parameters M, n, and q should be chosen so that 

q = Mn or n = logM q 

10.2.1. Encoding in Binary PCM 

For binary PCM, each digit may be either of two distinct values, 0 or 1, i.e. 

M = 2 

If the code word of binary PCM consists of n digits, then the number of quantization levels is 

defined as 

q = 2n 

or n = log2q 
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10.3. Characteristics of PCM System 

• A sampled waveform is quantized into q quantization levels, where q is an integer. 

• If the message signal is defined in the range (–mp, mp), then the step size of the quantizer 

is 

p
2m

q
 =  

• For a binary PCM system with n digit codes, the number of quantization levels is defined as 

q = 2n 

• If the message signal is sampled at the sampling rate fS and encoded to n number of bits 

per sample; then the bit rate in (bits/s) of the PCM is defined as 

Rb = nfS 

 

10.4. Transmission Bandwidth In A PCM System 

PCM b s

1 1
B R nf

2 2
 =  

Rb is the bit rate, n is the number of bits in PCM word, and fS is the sampling rate. Since the 

required sampling rate for no aliasing is 

fS ≥ 2 W 

Where W is the bandwidth of the message signal (that is to be converted to the PCM signal). 

Thus, the bandwidth of the PCM signal has a lower bound given by 

BPCM ≥ nW 

When k synchronising bits are included in the signal 

BW=2(nN+k)fs Hz 

10.5. NOISE IN PCM 

In PCM (pulse code modulation), there are two sources of error: 

i. Quantization noise 

ii. Channel noise 

Quantization Noise 

For a PCM system, the kth sample of quantized message signal is represented by 

Mq(kTS) = m(kTS) + ε(kTS) 

Where m(kTS) is the sampled waveform, and ε(kTS) is the quantization error. Let the 

quantization levels having a uniform step size δ. Then, we have 

–
2 2

 
    

So, the mean-square error due to quantization is 

2
/2

2 2

– /2

1
d

12






 =   =

 
…………(i) 
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10.6. Signal to Quantization Noise Ratio 

For the PCM system, we have the message signal m(t) and quantization error of ε. So, we 

define the signal to quantization noise ratio as 

2 2

Q 22

m (t) m (t)
(SNR)

/12
= =


……………(ii) 

Where δ is the step size of the quantized signal defined as 

p
2m

q
 = …………………(iii) 

Substituting equation (iii) in equation (ii), we get the expression for the signal to quantization 

noise ratio as 

2

Q 2

p

m (t)
(SNR) 12

(2m / q)
=  

2
2

Q 2

p

m (t)
(SNR) 3q

m
= ……………(iv) 

Where mp is the peak amplitude of message signal m(t), and q is the number of quantization 

levels. 

10.7. Channel Noise 

If a PCM signal is composed of the data that are transmitted over the channel having bit 

error rate Pe, then peak signal to average quantization noise ratio is defined as 

2

peak 2

e

3q
(SNR)

1 4(q –1)P
=

+
 

Similarly, for the channel with bit error probability Pe, the average signal to average 

quantization noise ratio is defined as 

2

avg 2

e

q
(SNR)

1 4(q –1)P
=

+
 

10.8. Companding 

Companding is a non-linear technique used in PCM which compresses the data at the 

transmitter and expands the same data at the receiver. 

It is used to mitigate the effects of noise and crosstalk. 

μ law companding 

( )
1

ln 1 '0 1
ln 1 p p

m m
y

m m





 
= +    +  
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A-law companding 

1
,0

1 ln

1 1
1 ln , 1

1 ln

p p

p p

A m m

A m m A
y

Am m

A m A m

  
    +  

= 
 
+     +  

 

11. Delta Modulation 

Delta Modulation is the simplest form of differential pulse-code modulation (DPCM), where 

the difference between successive samples is encoded into n-bit data streams. In delta 

modulation, the transmitted data are reduced to a 1-bit data stream 

 

Delta modulation block diagram 

 

11.1 NOISE IN DELTA MODULATION 

The noise in delta modulation can be classified into two types: 

i. Slope Overload Noise 

ii. Granular Noise 

11.1.1. Slope Overload Noise 

This distortion arises because of a large dynamic range of the input signal 

The maximum slope that the accumulator output can generate is 

s

s

f
T


=   

condition to avoid slope overload is, 

s

dm(t)
max f

dt
   

Where m(t) is the message signal, δ is the step size of the quantized signal, and fs is the 

sampling rate. 

11.1.2. Granular Noise 

Granular or Idle noise occurs when the step size is too large compared to a small variation in 

the input signal 
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Form equation (i), we have the total quantizing noise for the PCM system, 

2 2
/2

2 2

PCM – /2

1 ( /2)
( ) d

12 3





 
 =   = =

 
 

Replacing δ/2 of PCM by δ for DM, we obtain the total granular quantizing noise as 

2
2

DM
( )

3


 =  

Thus, the power spectral density for granular noise in delta modulation system is obtained as 

2 2

N

s s

/3
S (f)

2f 6f

 
= =  

Where δ is the step size, and fS is the sampling frequency. 

11.2. Finding Minimum Step Size In Delta Modulation 

  = 
s m m

dm(t)
f max 2 f A

dt
 

12. Multilevel Signaling 

12.1. Baud Rate 

s

1
D

T
=  

Where D is the symbol rate which is called baud. 

12.2. Bits per Symbol 

we define the bits per symbol as 

K = log2M 

12.3. Relation Between Baud and Bit Rate 

For a multilevel signalling scheme, the bit rate and baud (symbols per second) are related as 

Rb = kD =Dlog2M ……………..(v) 

Rb is the bit rate, k = log2M is the bits per symbol, and D is the baud (symbols per second). 

12.4. Relation Between Bit Duration and Symbol Duration 

For a multilevel signalling scheme, the bit duration is given by 

b

b

1
T

R
=  

Where Rb is the bit rate. Also, we have the symbol duration 

s

1
T

D
=  

Where D is the symbol rate. Thus, by substituting this expression in equation (v), we get the 

relation 

TS = kTb = Tblog2M 

Where k = log2M is the bits per symbol. 
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13. Transmission Bandwidth 

The null to null transmission bandwidth of the rectangular pulse multilevel waveform is 

defined as 

BT = D symbols/sec 

The absolute transmission bandwidth for 
sinx

z
pulse multilevel waveform is defined as 

T

D
B   symbols / sec

2
=

 

14. Line Codes 

 

 

Line Code Minimum 

Bandwidth 

Average DC Clock recovery Error Detection 

UNRZ 1/2T V/2 Poor No 

BNRZ 1/2T 0 Poor No 

URZ 1/T V/2 Good No 

BRZ 1/T 0 Very good No 

Manchester 1/T 0 Best No 

BRZ-AMI 1/2T 0 Good Yes 

https://byjusexamprep.com/


byjusexamprep.com 

63 

CHAPTER-9: BANDPASS MODULATION 

 

1. Digital Bandpass Modulation 

There are three basic modulation schemes: 

• Amplitude shift keying (ASK) 

• Frequency shift keying (FSK) 

• Phase shift keying (PSK) 

1.1. Amplitude-Shift Keying (ASK): 

In ASK, the modulated signal is expressed as 

c
c

A cos t symbol 1
x (t)

0 symbol 2


= 


 

Note that the modulated signal is still an on-off signal. Thus, ASK is also known as on-off 

keying (00K). 

1.2. Frequency-Shift Keying (FSK): 

In FSK, the modulated signal can be expressed as 

1

c

2

A cos t symbol 1
x (t)

A cos t symbol 0


= 


 

1.3. Phase shift keying (PSK): 

In PSK, the modulated signal can be expressed as 

( )


= 
 + 

c

c

c

A cos t symbol 1
x (t)

A cos t symbol 0
 

2. Amplitude Shift Keying 

ASK is often referred to as on-off keying (OOK). The ASK signal is represented by 

s(t) = Ac m(t) cosωct 

where m(t) is a unipolar baseband data signal. 

 

( ) c c
c c

A cos2 t 1
s t A  cos t  

0 0

 →
=  = 

→
 

2

C
S

A
P

2
=  

s c 2
2p cos2 f t 1 0 t T

s(t)
0 0 elsewhere

 →  
=

→
 

Because of this, it is called “ON-OFF KEYING.” 

Ask is one dimensional  
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2.1. Transmission Bandwidth of ASK Signal 

For ASK signal, the transmission bandwidth is given by 

BT = 2Rb 

If raised cosine-roll off is used (to conserve bandwidth), the absolute transmission 

bandwidth (for rectangular pulse waveform) of the ASK signal is obtained as 

BT = (1+α)Rb 

Where α is the roll-off factor of the filter. 

3. Binary Phase Shift Keying 

3.1. Binary Phase-shift keying (BPSK) is a digital modulation scheme that conveys data by 

changing two different phases of a carrier wave. The constellation points chosen are 

usually positioned with uniform angular spacing around a circle. 

3.2. The bandwidth of BPSK Signal 

The null-to-null transmission bandwidth for the BPSK system is the same as that 

found for amplitude shift keying (ASK). The null-to-null transmission bandwidth for 

the BPSK system is given by 

BT = 2Rb 

Where Rb is the bit rate of the digital signal. 

 

4. FSK 

BFSK uses a pair of discrete frequencies to transmit binary (0s and 1s) information. With this 

scheme, the 1 is called the mark frequency, and the 0 is the space frequency. 

4.1. Transmission Bandwidth of Coherent Binary FSK Signal 

The transmission bandwidth for the FSK signal may be expressed as 

BT = 2(Δf + Rb) 

Where Rb is the bit rate of the modulating signal and Δf is the peak frequency deviation. 

The above expression can be more generalized for the following cases: 

Case I: Narrowband FSK 

For narrowband FSK signal, Δf ≪ Rb. So, the transmission bandwidth of narrowband FSK is 

given by 

BT = 2Rb 

Case II: Wideband FSK 

For wideband GSK signal, Δf ≫ Rb. So, the transmission bandwidth of wideband FSK given by 

BT = 2Δf 

Case III: FSK with Raised Cosine Roll-off Factor 

If a raised cosine roll-off factor α is used, equation (ii) becomes 

BT = 2Δf + (1 + α) Rb 
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5. Noncoherent Binary Systems 

The most common noncoherent bandpass modulation techniques are: 

i. Differential phase-shift keying (DPSK) 

ii. Noncoherent frequency-shift keying 

6.  Differential phase-shift keying (DPSK) 

Following are the steps involved in the differential encoding of a message sequence: 

Step 1: An arbitrary reference binary digit is assumed for the initial digit of the encoded 

sequence. In the example shown in Table 1, a 1 has been chosen. 

Step 2: For each digit of the encoded sequence, the present digit is used to reference the 

following digit in the sequence. 

Step 3: A 0 in the message sequence is encoded as a transition from the state of the 

reference digit to the opposite state in the encoded message sequence; a 1 is encoded as no 

change of state. In the example shown, the first digit in the message sequence is a 1, so no 

change in state is made in the encoded sequence, and a 1 appears as the next digit. 

Step 4: This serves as the reference for the next digit to be encoded. Since the next digit 

appearing in the message sequence is a 0, the next encoded digit is the opposite of the 

reference digit, or a 0. 

Step 5: The encoded message sequence then phase-shift keys a carrier with the phases 0 

and ϖ as shown in the table. 

Differential Encoding Example 

 Reference Digit 

Message Sequence  1 0 0 1 1 1 0 0 0 

Encoded Sequence 1 1 0 1 1 1 1 0 1 0 

Transmitted Phase 0 0 π 0 0 0 0 Π 0 π 

7. Continuous Phase Frequency Shift Keying (CPFSK) 

s(t) = b
i

b

2 E
cos t

T
  

it = ct + (t) 

Here (t) = (0)  
b

n ht

T


where h = Deviation Ratio 

1t = c t + (0) +  
b

n ht

T


 

2t = c t + (0) –  
b

n ht

T


 

Since (t) is changing with time, hence it is known as CPFSK. 

(1 – 2) t =  
b

2n ht

T


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1 2

b

nh
(f f )

T
− =  

s1(t) = b
1

b

2 E
cos(2 f t) 1

T
 → +  

s2(t) = b
2

b

2 E
cos(2 f t) 1 / 0

T
 → −  

n → integer taken as ‘1’ for smallest value. 

8. MSK (Minimum Shift Keying) 

Here, h = 
1

2
(Deviation ratio) 

Type of CPFSK in which 
1

h
2

 
= 

 
 

In the case of MSK, both S1 and S2 will be orthogonal to each other. This type of FSK is also 

known as fast FSK. 

For MSK: 

(f1 – f2) = 
b b

h 1

T 2T
= (for n =1) = 

Bit rate

2
 

9. Relation Between Bit Rate and Symbol Rate 

Since k = log2M bits per symbol are transmitted, so symbol rate for the MPSK system can be 

defined in terms of bit rate Rb as 

b b
s

2

R R
R

k log M
= =  

10. Relation Between Bit Energy and Symbol Energy 

For a multilevel Signalling scheme, assume that the signal energy per bit is Eb, and signal 

energy per symbol is Es. We express the relationship between these two quantities as 

Es = Eb(log2M) 

11. M-ary Phase Shift Keying (MPSK) 

11.1. Transmission Bandwidth 

For an M-ary PSK signal, we define the transmission bandwidth as 

BT = 2Rs 

where Rs is the symbol rate. Substituting equation (iii) in the above expression, We get the 

transmission bandwidth of the MPSK system as 

b
T

2

2R
B

log M
= ……………….(vii) 

Where Rb is the bit rate for the system. Also, we have overall absolute transmission 

bandwidth with raised cosine filtered pulses as 
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( ) s

T

2

1 R
B

log M

+ 
=  

Where α is the roll-off factor. 

12. Quadrature Phase Shift Keying (QPSK) 

12.1. Transmission Bandwidth 

Substituting M = 4 in equation (vii), we get the transmission bandwidth for the QPSK system 

as 

b
T b

2

2R
B R

log 4
= =  

13. M-ary Frequency Shift Keying (MFSK) 

13.1. Transmission Bandwidth 

The transmission bandwidth for an M-ary FSK system is defined as 

b
T

2

R M
B

2log M
=  

Where Rb is the bit rate, and M = 2k is the size of the symbol. 

 

14. Keying Techniques Block Diagrams 

14.1. ASK transmitter and receiver 

 

14.2. PSK transmitter and  receiver 
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14.3. DPSK transmitter and receiver 

 

 
14.4. FSK transmitter and receiver 
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14.5. QPSK transmitter and receiver 

 

14.6. MSK transmitter and receiver 
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15. Constellation diagrams 

 

ASK 

 

FSK 

 

PSK 

 

MSK 
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16. Overall comparison 

 

17. Matched Filter 

The matched filter is the optimal linear filter for maximizing the signal-to-noise ratio (SNR) in 

the presence of additive stochastic noise 

Impulse response of matched filter, h(t) is 

• h(t) = si (T – t)           si(t) → Real 

• h(t) = si (T – t)           si(t) → Imaginary 

• h(t) = si *(T – t)          si(t) →Complex 
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CHAPTER-10: PROBABILITY OF ERROR AND DECISION THEORY 

1. Bit Error Probability of ASK Signal 

The probability of bit error for a coherent ASK system is given by 

( ) ( )e b 0 b
P Q E / N Q= =   

Eb is the bit energy, N0 is the noise power density, and γb is the bit energy to noise density 

ratio. 

2. Calculation of probability of error of Binary Phase Shift Keying 

( )
2

max
e

r1
P min erfc

2 8
=  

bT

2 2

max 1 2

0 0

2
[s (t) s (t)] dt

N
 = −  

 

NOTE: Probability of error in terms of distance (d) 

e

0

1 d
P erfc

2 2 N

 
 =
 
  o o

d d
Q Q

2 N 2N

   
   = =
   
   

 

b
e

0

E1
P erfc

2 N

 
=  

 
 

b b

ob

2 E 2E
Q Q

N2N

   
 = =  

  
  

 

If the distance between two manage points is decreased, then the probability of error will 

increase. 

3. Probability Of error in case of Non-Synchronized BPSK: 

If   is the error between local oscillation and modulated signal, then Pe will become 

2

b
e

0

E cos1
P erfc

2 N


=  

1/2
2

b

0

2E cos
Q

N

 
=   

 
 

2

b

0

E cos
SNR

N


=  

4. Bit Error Probability of BPSK Signal 

 If we consider phase error ϕ in demodulation, then the bit error probability is expressed as 

( )2

e b
P Q 2 cos=    

5. Bit Error Probability of Coherent Binary FSK Signal 

For coherent binary FSK signal, we define the bit error probability as 

( ) ( )e b 0 b
P Q E / N Q= =   
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Eb is the bit energy, N0 is the noise power density, γb is the bit energy to noise density ratio. 

Note: 

For a larger value of z, the Q(z) function can be approximated as 

( )
2z /21

Q z e , z 1
2 z

− 


 

Q(z) function can be expressed in terms of complementary error function as 

( )
1 z

Q z erfc
2 2

 
=  

 
 

5. Probability of bit error for binary DPSK (Non-coherent PSK) 

b
e (bit error)

0

E1
P exp

2 N
−

 −
=  

 
 

The probability of bit error for binary DPSK is higher than binary BPSK. 

Pe (DPSK) > Pe (BPSK) 

6. Bit Error Probability for Noncoherent Frequency Shift Keying 

The bit error probability for noncoherent frequency shift keying is defined 

b b
e

0

E1 1
P exp exp

2 2N 2 2

   
= − = −   

  
 

Eb is the bit energy, Na is the noise power density, and γb is the bit energy to noise density 

ratio. 

 

7. Relation Between Probability Of Bit Error And Probability Of Symbol Error For 

Orthogonal Signals 

Let PE be the average probability of symbol error, and Pe be the average probability of bit 

error (bit error rate) for an M-ary orthogonal system (such as MFSK). 

k 1
e

k

E

P 2 M/2

P M 12 1

−

= =
−−

……(v) 

In the limit as k increases, we get 

e

x
E

P 1
lim

P 2→
=  

8. Relation Between Probability Of Bit Error And Probability Of Symbol Error For Multiple 

Phase Signals 

For a multiple phase system (such as MPSK), the probability of bit error (Pe) can be 

expressed in terms of probability error (PE) as 

E
e

2

P
P

log M
=  
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9. Probability of Symbol Error for MPSK 

The probability of symbol error for the MPSK system is defined as 

s
E

0

2E
P 2Q sin

N M

 
  

 
 

 

Where M = 2k is the size of the symbol set, and Es is the energy per symbol. Since the 

symbol energy, Es, is given by 

Es = Eb(log2M) = kEb 

Where k = log2M is the number of bits transmitted per symbol. So, we can express the 

probability of symbol error in terms of Eb/N0 as 

b
E

0

2kE
P 2Q sin

N M

 
=  

 
 

 

10. Probability of Bit Error for M-ary PSK 

The bit error probability in terms of symbol error probability for an M-ary PSK system as 

E E
e

2

P P
P

log M k
= =  

The probability of bit error for M-ary PSK system as 

b
e

0

2kE2
P Q sin

k N M

 
=  

 
 

 

2

b

2
Q 2k sin

k M

 
=  

 
 

 

11. Probability of Symbol Error for QPSK 

For QPSK M = 4, we get the probability of symbol error for the QPSK system as 

s
E

0

2E
P 2Q sin

N 4

 
  

 
 

 

Or s
E

0

E
P 2Q

N

 
=  

 
 

 

Since, the symbol energy Es is given by 

Es = Eb(log2M) = Eb(log24) = 2Eb 

So, we can express the probability of symbol error in terms of Eb/N0 as 

b
E

0

2E
P 2Q

N

 
=  

 
 

 

12. Probability of Symbol Error for M-ary QAM 

The probability of symbol error for an M-ary QAM system is given by 

b
E

0

E1 3k
P 1 Q

M 1 NM

  
 −     −   
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E b

1 3k
P 4 1 Q

M 1M

  
 −     −   

 

Where k = log2M is the number of bits transmitted per symbol, Eb is the bit energy, N0 is the 

noise power density, and γb is the bit energy to noise density ratio. 

13. Probability of Bit Error for M-ary QAM 

The bit error probability for an M-ary QAM system as 

E E
e

2

P P
P

log M k
= =  

b

4 1 3k
1 Q

k M 1M

  
= −     −   

 

14. Probability of Symbol Error for M- ary FSK 

The probability of symbol error for an M-ary FSK system is given by 

( ) s
E

0

E
P M 1 Q

N

 
 −  

 
 

 

( ) b 2

0

E log M
M 1 Q

N

 
= −  

 
 

 

( ) ( )E b 2
or P M 1 Q log M −   

15. Probability of Bit Error for M-ary FSK 

The bit error probability for an M-ary FSK system as 

e E

M

2P P
M 1

=
−

 

( )e b 2

M
or P Q log M

2
   

16. OVERALL CONCLUSION OF FORMULAE 

16.1. Probability of error of ASK, FSK, PSK and QPSK using constellation diagram 

( )e min

0

d d
P Q Q d d

2 2N

  
 = = =      

 

For ASK : 
2

c b
min b b

A T
d E E Bit energy

2

 
= = =  

 
 

2

b c b
e

0 0

E A T
P Q Q

2N 4N

  
 = = 

   
   

 

For PSK : 
min b

d 2 E=  

2

b c b
e

0 0

E A T
P Q 2 Q

2N N

  
 = = 

   
   
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For FSK : 
min b

d 2E=  

2

b c b
e

0 0

2E A T
P Q Q

2N 2N

  
 = = 

   
   

 

For QPSK : ( )min s b s b
d 2E 4E E 2E= = =  

2

b c b
e

0 0

4E A T
P Q Q

2N N

  
 = = 

   
   

                  (Pe= Bitt error probability) 

16.2. Probability of error for various signalling schemes: 

QPSK : 
2

b c b
e(symbol) e(bit) b

0 0

2E A TE
P 2Q ;P Q E

N N 2

    
= =        

    

 

DPSK : 0

2
Es/N c

e s

A T1
P e E

2 2

−
 

= =  
 

 

16-QAM : 

2

s s
e

0 0

E E
P 3Q 2.25 Q

N 5N

    
 = −   

        

 

MSK  : 
2

b
e

2Ed
P Q Q

2

   
= =   

      
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CHAPTER-11: INFORMATION THEORY 

 

1. Information 

The amount of the information associated with xi is defined as 

( )
( )i a

i

i a

i

1
I x log

P x
1

or I log
p

=

=

 

Units of f=information based on the value of a 

If a=2 unit is bits 

If a=e unit is nat 

If a=10 unit is decit 

However, bits is the most commonly used unit 

Entropy is also known as the measure of uncertainty.

 

  1.1. Properties of Information: 

• If we are sure of the outcome of an event, even before it occurs, there is no 

information gained, i.e. 

Ii = 0 for pi = 1 

• The occurrence of an event either provides some or no information but never brings 

about a loss of information, i.e. 

Ii> 0 for 0 < pi< 1 

• The less probable an event is, the more information we gain when it occurs. 

Ij> Ii for pj< pi 

• If two events xi and xj are statistically independent, then 

I(xixj) = I(xi) + I(xj) 

2. Entropy: 

If each symbol xi occurs with probability pi and conveys the information Ii, then the average 

information per symbol is obtained as entropy, and it is given by 

( ) ( )
n

i i i
i 1

H X E I x pI
=

 = =    

( )
n

i 2
i 1 i

1
H X p log

p=

=   
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2.1.  Properties of Entropy: 

These are some important properties of entropy. 

• In a set of symbol X, if the probability pi = 1 for some i and the remaining probabilities in 

the set are all zero; then the entropy of the source is zero, i.e 

H(X) = 0 

• If all the n symbols emitted from a source are equiprobable, then the entropy of the 

source is 

H(X) = log2n 

• From the above two results, we can easily conclude that the source entropy is bounded as 

0 < H(X) < log2n 

 

3. Information Rate: 

Information rate for a source with entropy H is given by 

H
R bits / sec

T
=  

Where T is the time required to send a message. 

 

If the message source generates messages at the rate of r messages per second, then we 

have 

1
T

r
=  

The information rate of the source as 

R = rH bits / sec 

3.1. Methodology to evaluate source Information Rate: 

For a given set of source symbols, we evaluate the information rate in the following steps: 

Step 1: Obtain the probability pi of each symbol emitted by a source. 

Step 2: Deduce the amount of information conveyed in each symbol using the expression, 

i 2

i

1
I log bits

p
=  

Step 3: Obtain the source entropy by substituting the above results in the expression 
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n n

i i i 2
i 1 i 1 i

1
H pI p log

p= =

 
= =  

 
   

Step 4: Obtain the average message transmission rate using the expression 

1
r

T
=  

where T is the time required to send a message 

Step 5: Evaluate the information rate of the source by substituting the above results in the 

expression 

R = rH bits / s 

4. Discrete Memoryless Channels 

 

The matrix of transition probabilities [P(Y|X)], given by: 

[P(Y|X)] = 

1 1 2 1 n 1

1 2 2 2 n 2

1 m 2 m n m

P(y x ) P(y x ) ... P(y x )

P(y x ) P(y x ) ... P(y x )

... ... ... ...

P(y x ) P(y x ) ... P(y x )

 
 
 
 
 
 
 

 

if the input probabilities P(X) are represented by the row matrix 

[P(X)] = [P(x1)   P(x2)   …   P(Xm)] 

and the output probabilities P(Y) arc represented by the row matrix 

[P(X)] = [P(y1)   P(y2)   …   P(ym)] 

then [P(Y)] = [P(X)][P(Y|X)] 

If P(X) is represented as a diagonal matrix 

1

2

d

m

P(x ) 0 ... 0

0 P(x ) ... 0
[P(X)]

... ... ... ...

0 0 ... P(x )

 
 
 =
 
 
 

 

then [P(X, Y)] = [P(X)d[P(Y|X)] 
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5. Entropy functions for Discrete Memoryless Channel 

If the channel has n inputs and m outputs, then we can define several entropy functions for 

input and output as 

( ) ( ) ( )

( ) ( ) ( )

n

1 2 i
i 1
m

j 2 j
j 1

H X P x log P x

H Y P y log P y

=

=

= −

= −




 

6. Joint Entropy 

The joint entropy is given as 

( ) ( ) ( )
n m

i j 2 i j
i 1 j 1

H X,Y P x ,y log P x ,x
= =

= −  

7. Conditional Entropy 

The several conditional entropy functions for the discrete memoryless channel are defined as 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

m

i j i 2 j i
j 1
n

j i j 2 i j
i 1
n m

i j 2 j i
i 1 j 1
n m

i j 2 i j
i 1 j 1

H Y | x p y | x log P y | x

H X | y P x | y log x | y

H Y | X P x ,y log P y | x

H X | Y P x ,y log P x | y

=

=

= =

= =

= −

= −

= −

= −









 

8. Mutual Information 

The mutual information I(X; Y) of a channel is defined by 

I(X; Y) = H(X) – H(X|Y) b/symbol 

Also, we can define the mutual information as 

I (X; Y) = H(Y) – H(Y | X) 

I (X; Y) = H(X) – H(X | Y) 

For a noise-free channel 

I (X; Y) = H(X,Y) 

9. Channel Capacity 

The channel capacity is defined as the maximum mutual information, i.e. 

C = max {I(X;Y)} 

Substituting above equation, we get the channel capacity as 

C = max {H(X) – H(X |Y)} 

This result can be more generalized for the Gaussian channel. The information capacity of a 

continuous channel of bandwidth B hertz is defined as 

C = Blog2 (1 + S/N) 

where S/N is the signal to noise ratio. This relationship is known as the Hartley – Shannon 

law that sets an upper limit on the performance of a communication system. 
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10.  Channel Efficiency 

The channel efficiency is defined as the ratio of actual transformation to the maximum 

transformation, i.e. 

( )

( )

 =

 =

I X;Y

max{I(X;Y)}
I X;Y

C  

Redundancy in the channel is defined as R=1-η 

11. Capacities of Special Channels: 

11.1. Lossless Channel: 

For a lossless channel, H(X|Y) = 0 and 

I(X; Y)= H(X) 

Thus, the mutual information (information transfer) is equal to the input (source) entropy, 

and no source information is lost in transmission. Consequently, the channel capacity per 

symbol is 

Cs = 
i{P(x )}

max H(X) = log2m 

where m is the number of symbols in X. 

11.2. Deterministic Channel: 

For a deterministic channel, H(Y|X) = 0 for all input distributions P(xi), and 

I(X; Y) = H(Y) 

Thus, the information transfer is equal to the output entropy. The channel capacity per 

symbol is 

Cs = 
i{P(x )}

max H(Y) = log2n 

where n is the number of symbols in Y. 

11.3. Noiseless Channel: 

Since a noiseless channel is both lossless and deterministic, we have 

I(X; Y) = H(X) = H(Y) 

and the channel capacity per symbol is 

Cs = log2m = log2n 

12.  Binary Symmetric Channel: 

For the BSC of Figure below, the mutual information is: 

I(X; Y) = H(Y) + plog2p + (1 – p)log2(1 – p) 

Where p is the probability of error 

and the channel capacity per symbol is 

Cs = 1 + plog2p + (1 – p)log2(1 – p) 
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Binary Symmetric Channel 

13. Differential Entropy: 

The average amount of information per sample value of x(t) is measured by 

H(X) = – 
X 2 X
f (x)log f (x) dx



−  b/sample 

The entropy H(X) defined above is known as the differential entropy of X. 

H(Y) = – 
Y 2 Y
f (y)log f (y) dy



−  

H(X|Y) = – 
XY 2 X
f (x,y)log f (x | y) dxdy

 

− −   

H(X|Y) = – 
XY 2 Y
f (x,y)log f (y | x) dxdy

 

− − 
 

14. Shannon’s theorem 

It says that for any given degree of noise contamination of a communication channel, it is 

possible to communicate discrete data (digital information) nearly error-free up to a 

computable maximum rate through the channel 

 

15. Bandwidth and S/N tradeoff 

A noiseless channel can have an infinite capacity 

However, if the bandwidth approaches infinity, the channel capacity does not become infinite 

because the noise power increases with the increase in bandwidth. Thus for fixed signal 

power and white Gaussian noise, the channel approaches an upper limit for capacity known 

as Shannon’s limit 

lim log 1.44
S S

C e
  →

= = =RMAX 
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CHAPTER-12: CODING TECHNIQUE 

1. Average codeword length: 

Average codeword length is given by 

( )
1

N

i i

i

L n p n
=

=  letters/message 

Where ni=number of symbols in the ith message 

p(ni)=probability of the ith message 

2. Source Coding theorem 

Source encoding theorem states that the minimum average codeword length for any 

distortion less source encoding scheme is defined as 

( )
min

2

H X
L

log k
=  

Where H(X) is the source's entropy, and k is the number of symbols in the encoding alphabet. 

Thus, for the binary alphabet (k = 2), we get the minimum average codeword length as 

( )min
L H X=  

3. Coding Efficiency 

min
L

L
 =  

( )

2

H X

L log k
 =  

4. Shannon-Fano Coding: 

Methodology: Shannon – Fano encoding algorithm: 

Step 1: The source symbols are first arranged in order of decreasing probability. 

Step 2: The set is then divided into two sets that are as equiprobable as possible 

Step 3: 0’s are assigned to the upper set, and 1’s to the lower set. 

Step 4: The above process continues, each time partitioning the sets with as nearly equal 

probabilities as possible until further partitioning is impossible. 

5. Huffman coding: 

Methodology: Huffman encoding algorithm: 

 

Step 1: The source symbols are arranged in order of decreasing probability. 

Step 2: The two source symbols of lowest probability are assigned a 0 and a 1. 
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Step 3: These two source symbols are then combined into a new source symbol with 

probability equal to the sum of the two original probabilities. (the list source symbols, 

and therefore source statistics, is thereby reduced in size by one.) 

Step 4: The probability of the new symbol is placed in the list per its value. 

Step 5: The above procedure is repeated till we have a final list of source statistics (symbols) 

of only two for which a 0 and a 1 are assigned. 

Step 6: The code for each (original) source symbol is found by working backwards and 

tracing the sequence of 0s and 1s assigned to that symbol as well as its successors. 

 

6. Linear block codes 

Linear block code is an error-correcting code in which the actual information bits are linearly 

combined with the parity check bits to generate a linear codeword transmitted through the 

channel. 

 

6.1. Error Detection and Correction Capabilities: 

A linear code C with minimum distance dmin can detect up to t errors if 

dmin ≥ t + 1.” 

A linear code C of minimum distance dmin can correct up to t errors if 

dmin ≥ 2t + 1." 

6.2. Parity-Check Matrix: 

A parity-check matrix in a linear block code is a matrix that describes the linear relationships 

that the components of a codeword must satisfy. It is used to decide whether a particular 

vector is a codeword or not and is also used in decoding algorithms. 

H is an m x n matrix defined by 

H = [P   Im] 

where m = n – k and Im is the mth-order identity matrix. Then 

HT = 
T

m

P

I

 
 
 

 

Matrix H is called the parity-check matrix of C. Note that the rank of H is m = n – k, and 

the rows of H are linearly independent. The minimum distance dmin of a linear block code C is 

closely related to the structure of the parity-check matrix H of C. 
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7. SYNDROME DECODING 

With syndrome decoding, an (n, k) linear block code can correct up to t errors per codeword 

if n and k satisfy the following Hamming bound. 

t
n k

i 0

n
2

i

−

=

 
  

 
  

Where 
( )

n n!

n 1 !i!i

 
= 

− 
 

A block code for which equality holds is known as the perfect code. Single error-correcting 

perfect codes are called Hamming codes. 

 

**** 
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