B BYJU'S
 EXAM PREP

Electronics

Engineering

Analog Circuits

SHORT NOTES

Byju's Exam Prep App

https://byjusexamprep.com

IMPORTANT FORMULAS TO REMEMBER

CHAPTER 1: DIODE CIRCUITS

1.Diode models:

Figure 1: Approximate and ideal semiconductor diode models.
2. V-I Characteristics:

A diode is an active unidirectional of non-linear device.

Figure 2: V-I characteristics
Breakdown voltage of diode is the manufactures specification. So, in any type of PN-junction.
$V_{\text {Br. }} \alpha \frac{1}{\text { Doping }}$

3.Diode Resistance:

3.1.Dynamic Resistance of Diode:

$r=\frac{d V}{d l} ; r=\frac{\eta V_{T}}{I}$
$I \gg I_{0}$ for a forward current $I=26 \mathrm{~mA}$
$\mathrm{r}_{\mathrm{si}}>\mathrm{rge}$
Diode small signal conductance:
$g=\frac{I_{D}}{\eta V_{T}}$

4.Temperature Dependence of V-I Characteristics:

1.Reverse saturation current approximately doubles for every $10^{\circ} \mathrm{C}$ rise in temperature

$$
\mathrm{I}_{02}(\mathrm{~T})=\mathrm{I}_{01} \times 2^{(\mathrm{T} 2-\mathrm{T} 1) / 10}
$$

2.For either silicon or Ge at room temperature,

$$
\frac{\mathrm{dV}}{\mathrm{dT}}=-2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}
$$

5.Summary of series \& parallel clipper :

Positive	Negative
Simple series clippers (Ideal diode)	

Based series Clippers (Ideal Diodes)

Figure 3

6.CLAMPER

6.1. Negative clamper

Fig 4(a): Ideal clamper circuit

Fig 4(b): waveform
6.2. Negative clamper with voltage source:

Figure 5(a)

Figure 5(b): Waveform
6.2. Positive clamper:

Figure 6(a): Positive clamper circuit

Figure 6(b): Waveform

7.VOLTAGE MULTIPLIER:

7.1. Voltage doubler:

Figure 7(a): Voltage doubler circuit

$$
\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{m}}=2 \mathrm{~V}_{\mathrm{m}}
$$

7.2. Voltage tripler/Quadrupler:

Figure 7(b): Voltage tripler/Quadrupler circuit
8. DIODE AS RECTIFIER:

8.1. Half wave Rectifier

Figure 8(a): Half Wave Rectifier

Figure 8 (b): Input and Output waveform
a. $\quad \mathrm{V}_{\mathrm{o}}(\mathrm{DC})=\frac{\mathrm{V}_{\mathrm{m}}}{\pi}$
b. $I_{o}(D C)=\frac{V_{0}(D C)}{R}=\frac{V_{m}}{R \pi}=\frac{I_{m}}{\pi}$
c. $\mathrm{V}_{\mathrm{o}}(\mathrm{rms})=\frac{\mathrm{V}_{\mathrm{m}}}{2}$
d. $I_{o}(r m s)=\frac{I_{m}}{2}$
e. $\gamma=\sqrt{\left(\frac{\mathrm{V}_{0}(\mathrm{rms})}{\mathrm{V}_{\mathrm{o}}(\mathrm{DC})}\right)^{2}-1}=\sqrt{\left[\frac{\mathrm{I}_{\mathrm{o}}(\mathrm{rms})}{\mathrm{I}_{\mathrm{o}}(\mathrm{DC})}\right]^{2}}-1$
f. $\gamma=1.21 \rightarrow \gamma(\%)=121 \%$
g. $\quad P I V=V_{m}$
h. $\begin{array}{r}\eta=\frac{P_{0}(d c)}{P_{\text {in }}(a c)} \times 100\end{array} \eta=40.5 \%$
i. $\quad \mathrm{FF}=1.57$
j. $\quad T U F=28 \%$
k. Peak factor $=\frac{I_{m}}{I_{r m s}}=\frac{I_{m}}{I_{m} / 2} \Rightarrow 2$
I. Time period $=T=2 \pi$, Frequency $f($ out $)=f(i n)$

8.2.Disadvantage of half wave rectifier:

(i) $\mathrm{V}_{0}(\mathrm{DC})=0.318 \mathrm{Vm}$

Output DC voltage is only 31.8% of peak input voltage V_{m}
(ii) $\eta=40.5 \%$

Efficiency is only 40.5%, that is only 40.5% is converted into DC remaining will be lost.

9.Full Wave Rectifier:

9.1.Centre-Tapped Full-wave Rectifier:

Fig 9(a)

(b)

Figure 9: (b) Centre tap rectifier circuit, (c) waveform
i. $\mathrm{V}_{\mathrm{o}}(\mathrm{DC})=\frac{2 \mathrm{~V}_{\mathrm{m}}}{\pi}=0.636 \mathrm{~V}_{\mathrm{m}}$
ii. $\mathrm{I}_{\mathrm{o}}(\mathrm{DC})=\frac{2 \mathrm{I}_{\mathrm{m}}}{\pi}=0.636 \mathrm{I}_{\mathrm{m}}$
iii. $\quad \mathrm{V}_{\mathrm{o}}(\mathrm{rms})=\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{2}}$
iv. $I_{0}(r m s)=\frac{I_{m}}{\sqrt{2}}$
v. $\gamma=0.483 \rightarrow \gamma(\%)=48.3 \%$
vi. $\eta=81 \%$
vii. $\operatorname{PIV}=2 \mathrm{~V}_{\mathrm{m}}$

Figure 10
viii. TUF $=\frac{\text { TUF }_{(\text {primary })}+\text { TUF }_{(\text {secondary })}}{2}$
$(T U F)_{p}=\frac{P_{D C}}{\left(P_{a c}\right)_{p}}=69 \%$
ix. $\quad \mathrm{FF}=1.11$
x. \quad Peak factor $=\frac{I_{m}}{I_{r m s}}=\frac{I_{m}}{I_{m} / \sqrt{2}} \Rightarrow \sqrt{2}$
xi. Time period, $T=T / 2=n$, Frequency $f(o u t)=2 * f(i n)$

9.2. Bridge Rectifier

Figure 11: Bride Rectifier
10. FILTERS

A filter circuit is a device to remove the AC components of the rectified output, but allows the DC components to reach the load.

10.1 Capacitor filter:

Figure 12: Basic capacitor filter circuit

Figure 13(a): Full wave rectifier with capacitor filter

Figure 13 (b): Filtered output voltage
r.f. $=\frac{1}{4 \sqrt{3} f \mathrm{fCR}_{\mathrm{L}}}$

10.2 Inductive filter:

Figure 14: Inductive Filter circuit
Ripple factor $=\frac{\sqrt{2}}{3} \cdot \frac{\mathrm{R}_{\mathrm{L}}}{2 \omega \mathrm{~L}} \Rightarrow \frac{\mathrm{R}_{\mathrm{L}}}{3 \sqrt{2} \omega \mathrm{~L}}$

10.3 LC filter:

Figure 15: LC Filter circuit
Inductance is higher with respect to capacitance.
r.f. $=\frac{\sqrt{2}}{3} \frac{X_{C}}{X_{L}}$

10.4 п- section filter:

Figure 16: \boldsymbol{n} - section filter circuit
ripple factor. $=\frac{\sqrt{2} \mathrm{X}_{\mathrm{C}_{1}} \cdot \mathrm{X}_{\mathrm{C}_{2}}}{\mathrm{X}_{\mathrm{L}} \cdot \mathrm{R}_{\mathrm{L}}}$
Here, $X_{C 1}, X_{C 2}, X_{L}$ are reactance and R_{L} is resistive load.

10.5.RC filter :

RC filters are formed by replacing the inductor component of the π-section filter.

Figure 17: RC filter circuit

$$
\text { Ripple factor }=\frac{\sqrt{2} \mathrm{X}_{\mathrm{C}_{1}} \mathrm{X}_{\mathrm{C}_{2}}}{\mathrm{R} \cdot \mathrm{R}_{\mathrm{L}}}
$$

1.REGULATOR

i. The output resistance of the regulator should as low as possible, ideally zero.
ii. The maximum power dissipation by the Zener diode should be as low as possible.

Forward Biased Zener Diode $\left(V_{A}>V_{K}\right)$	Ideal	Practical

Fig 1. Equivalent Circuit of Zener Diode

Reverse Biased Zener Diode $\left(V_{A}<V_{K}\right)$	Ideal	Practical
	$+0 K$ $-{ }^{9} \mathbf{A}$	
Breakdown Region Zener Diode $\left(V_{K}>V_{z}\right)$	Ideal	Practical
$\begin{gathered} +\underbrace{K}_{A} \\ -\underbrace{}_{A} \end{gathered}$		

Figure 2: Equivalent Circuit of Zener Diode

CHAPTER 3 : BJT BIASING \& STABILIZATION

1. SIMPLIFIED STRUCTURE OF BJT AND MODE OF OPERATION:

Table-1

BJT Modes of operation		
Mode	EBJ	CBJ
Cut-off	Reverse	Reverse
Active	Forward	Reverse
Reverse Active	Reverse	Forward
Saturation	Forward	Forward

2.Relation between current gain :

For dc mode, common emitter current gain

$$
\beta=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}}
$$

And, common base current gain

$$
\alpha=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{E}}}
$$

$$
\alpha=\frac{\beta}{\beta+1} \& \beta=\frac{\alpha}{1-\alpha}
$$

3.Calculation of Stability (S)

$$
\begin{equation*}
\mathrm{S}=\frac{\partial \mathrm{I}_{\mathrm{C}}}{\partial \mathrm{I}_{\mathrm{co}}}=\frac{1+\beta}{1-\beta \frac{\partial \mathrm{I}_{\mathrm{B}}}{\partial \mathrm{I}_{\mathrm{C}}}} \tag{xi}
\end{equation*}
$$

- For any BJT circuit $\frac{\partial \mathrm{I}_{\mathrm{B}}}{\partial \mathrm{I}_{\mathrm{C}}}$ lies between 0 and -1 . So, S lies between 1 and $(1+\beta)$
- Since smaller stability factor is desired, so ideally Stability factor should be equal to 1.

4.BJT BIASING

4.1 Fixed Bias:

$$
S=1+\beta
$$

Disadvantage

- If $\beta=100$, the stability factor is 101 and the collector current is 101 times that Ico, reverse saturation current. Hence the stability factor for a fixed biased circuit is very high. So, it will be the least stable biasing arrangement.

4.2 Collector to base bias circuit :

$$
S=\frac{\beta+1}{1+\beta\left(\frac{R_{C}}{R_{C}+R_{B}}\right)}
$$

Advantage

- Stability factor is smaller than $(\beta+1)$, hence an improvement in stability is obtained over fixed bias circuit.

Disadvantage

- Stability factor depends upon Rc. If R_{c} becomes smaller or zero, then stability factor becomes very large and Ic does not remain stable.
- Resistance $\mathrm{R}_{\text {в }}$ connected from collector to base cause negative feedback due to which voltage gain of the amplifiers circuit decreases.

4.3. Self-bias or Voltage-Divider bias:

$$
S=\frac{1+\beta}{1+\frac{\beta R_{E}}{R_{b}+R_{E}}}
$$

Important point

- S varies between 1 for small R_{b} / R_{E} and $1+\beta$ for $R_{b} / R_{E} \rightarrow \infty$
- Smaller value of R_{b}, better to stabilization
(Note: even if R_{b} becomes zero, the value of S can't be reduced below unity. Hence Ic always increases more than Ico.)

1.CURRENT MIRROR CIRCUIT

NOTE : for Current Mirror:
High output resis tance
Low input resistance

1.1.Dc Analysis Of Bipolar Transistor Current Mirror

Figure 1

NOTE : Generalized Formula

$I_{C 1}=\frac{I_{R} n}{1+\frac{n+1}{\beta}}$
Here, $\mathrm{n}=$ no. of transistors.

1.2.Drawback Of Single Current Mirror

(a) The main drawback of a single Current Mirror is that the no. of transistors cannot be more than 10 .
i.e., $I_{0}=n I_{C 1}=\frac{n \cdot I_{R}}{1+\frac{n+1}{\beta}}$ Here $n=$ no. of transistors $n<10$
(b) Single Current Mirror holds only for higher values of β.
(c) This Mirror concept is only used for perfectly matched transistors.
\therefore we used Modified Current Mirror that can be used for n (no. of transistors) greater than 10 and β limitation is also removed.

2. MODIFIED CURRENT MIRROR: [n > 10]

Figure 3
$I_{R}=I_{C 1}\left[1+\frac{2}{\beta(1+\beta)}\right]$
$\therefore \mathrm{I}_{\mathrm{C} 1}=\frac{\mathrm{I}_{\mathrm{R}}}{1+\frac{2}{\beta(\beta+1)}}$
NOTE: In General, for \mathbf{n} current sources,

$$
\mathrm{I}_{\mathrm{C}}=\frac{\mathrm{I}_{\mathrm{R}}}{1+\frac{\mathrm{n}+1}{\beta(\beta+1)}} \text { for } \mathrm{n}>10
$$

Applications of Current Mirror

(i) It can be used as a Current Regulator
(ii) It is used in biasing circuits
(iii) It is used is differential Amplifiers as a current source at the emitter terminal.

CHAPTER 5 : BJT AMPLIFIERS

1. HYBRID EQUIVALENT MODEL:

Figure 1: Hybrid equivalent Circuit

- $\quad A_{i}=\frac{I_{0}}{I_{i}}=\frac{h_{f}}{1+h_{0} R_{L}}$
. $A_{V}=\frac{V_{0}}{V_{i}}=-\frac{h_{f} R_{L}}{h_{i}+\left(h_{i} h_{0}-h_{f} h_{r}\right) R_{L}}$
. $Z_{i}=\frac{V_{i}}{I_{i}}=h_{i}-h_{r} R_{L} A_{i} \quad=h_{i}-h_{r} R_{L} \frac{h_{f}}{1+h_{0} R_{L}}$
$\mathrm{Z}_{0}=\frac{\mathrm{V}_{0}}{\mathrm{I}_{0}}=\frac{1}{\mathrm{~h}_{0}-\left[\mathrm{h}_{\mathrm{r}} \mathrm{h}_{\mathrm{f}}\left(\mathrm{h}_{\mathrm{i}}+\mathrm{R}_{\mathrm{s}}\right)\right]}$

1.1 Summary of h-parameters:

Table-1 h-parameter for Common-Emitter Configuration

h-parameters	Expression
Input impedance	$\mathrm{h}_{\mathrm{ie}}=\left.\frac{\Delta \mathrm{V}_{\mathrm{be}}}{\Delta \mathrm{i}_{\mathrm{b}}}\right\|_{\mathrm{V}_{\mathrm{CE}}=\text { const }}$ ohms
Reverse voltage gain	$\mathrm{h}_{\mathrm{re}}=\left.\frac{\Delta \mathrm{V}_{\mathrm{be}}}{\Delta \mathrm{V}_{\mathrm{ce}}}\right\|_{\mathrm{I}_{\mathrm{B}}=\text { const }}$ unitless
Forward current gain	$\mathrm{h}_{\mathrm{fe}}=\left.\frac{\Delta \mathrm{i}_{\mathrm{c}}}{\Delta \mathrm{i}_{\mathrm{b}}}\right\|_{\mathrm{V}_{\mathrm{CE}}=\text { const }}$ unitless
Output conductance	$\mathrm{h}_{\mathrm{oe}}=\left.\frac{\Delta \mathrm{I}_{\mathrm{c}}}{\Delta \mathrm{V}_{\mathrm{ce}}}\right\|_{\mathrm{I}_{\mathrm{B}}=\text { const }}$ siemens

Table 2: Conversion table for Hybrid Parameters

Common-base to common-emitter	Common-emitter to common-base	Common-base to common-collector
$\mathrm{h}_{\mathrm{ie}}=\frac{\mathrm{h}_{\mathrm{ib}}}{1+\mathrm{h}_{\mathrm{fb}}}$	$\mathrm{h}_{\mathrm{ib}}=\frac{\mathrm{h}_{\mathrm{ie}}}{1+\mathrm{h}_{\mathrm{fe}}}$	$\mathrm{h}_{\mathrm{ic}}=\frac{\mathrm{h}_{\mathrm{ib}}}{1+\mathrm{h}_{\mathrm{fb}}}$
$\mathrm{h}_{\mathrm{re}}=\frac{\mathrm{h}_{\mathrm{ib}} \mathrm{h}_{\mathrm{ob}}}{1+\mathrm{h}_{\mathrm{fb}}}-\mathrm{h}_{\mathrm{rb}}$	$\mathrm{h}_{\mathrm{rb}}=\frac{\mathrm{h}_{\mathrm{ie}} \mathrm{h}_{\mathrm{ob}}}{1+\mathrm{h}_{\mathrm{fe}}}-\mathrm{h}_{\mathrm{re}}$	$\mathrm{h}_{\mathrm{rc}}=1$
$\mathrm{~h}_{\mathrm{fe}}=-\frac{\mathrm{h}_{\mathrm{fb}}}{1+\mathrm{h}_{\mathrm{fb}}}$	$\mathrm{h}_{\mathrm{fb}}=-\frac{\mathrm{h}_{\mathrm{fe}}}{1+\mathrm{h}_{\mathrm{fe}}}$	$\mathrm{h}_{\mathrm{fc}}=\frac{-1}{1+\mathrm{h}_{\mathrm{fb}}}$
$\mathrm{h}_{\mathrm{oe}}=\frac{\mathrm{h}_{\mathrm{ob}}}{1+\mathrm{h}_{\mathrm{fb}}}$	$\mathrm{h}_{\mathrm{ob}}=\frac{\mathrm{h}_{\mathrm{oe}}}{1+\mathrm{h}_{\mathrm{fe}}}$	$\mathrm{h}_{\mathrm{oc}}=\frac{\mathrm{h}_{\mathrm{ob}}}{1+\mathrm{h}_{\mathrm{fb}}}$

Table 3: Typical values of h-parameters for CE, CC and CB Transistor Configurations

h-Parameters	Common-emitter	Common-collector	Common-base
h_{i}	$1 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$	20Ω
$\mathrm{~h}_{\mathrm{r}}$	2.5×10^{-4}	1	3×10^{-4}
$\mathrm{~h}_{\mathrm{f}}$	50	-50	-0.98
$1 / \mathrm{h}_{0}$	$40 \mathrm{k} \Omega$	$40 \mathrm{k} \Omega$	$2 \mathrm{M} \Omega$

2. Base Current and input Resistance at the Base:

The small signal input resistance between base and emitter, looking into the base, is denoted by $\mathbf{r}_{\boldsymbol{n}}$ and is defined as

$$
\mathrm{r}_{\pi}=\frac{\mathrm{v}_{\mathrm{be}}}{\mathrm{i}_{\mathrm{b}}}=\frac{\beta}{\mathrm{g}_{\mathrm{m}}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{B}}} \quad \text { or } \quad \mathrm{r}_{\pi}=\frac{\beta \mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{C}}}
$$

3.Emitter Current and the input Resistance at the Emitter :

$$
r_{e}=\frac{V_{b e}}{i_{e}}=\frac{V_{T}}{I_{E}}=\frac{r_{\pi}}{1+\beta}
$$

4.SMALL SIGNAL HYBRID-ח EQUIVALENT CIRCUIT OF BJT:

Figure 2

$$
\frac{\mathrm{V}_{\mathrm{be}}}{\mathrm{i}_{\mathrm{b}}}=\mathrm{r}_{\pi}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{BQ}}}=\frac{\beta \mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{CQ}}}
$$

$$
g_{\mathrm{m}}=\frac{\mathrm{I}_{\mathrm{CQ}}}{\mathrm{~V}_{\mathrm{T}}}
$$

$$
\mathrm{r}_{\pi} \mathrm{g}_{\mathrm{m}}=\frac{\beta \mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{CQ}}} \cdot \frac{\mathrm{I}_{\mathrm{CQ}}}{\mathrm{~V}_{\mathrm{T}}}=\beta
$$

5.BASIC TRANSISTOR AMPLIFIER CONFIGURATIONS:

Table 4

Four equivalent two-ports network		
Gain Property	Equivalent circuit	Gain Property
Voltage amplifier		Output voltage proportional to input voltage
Current amplifier		Output current proportional to input current
Transconductance amplifier		Output current proportional to input voltage
Transresistance amplifier		Output voltage proportional to input current

6.Different Types of Amplifiers comparison:

Table 5: Different Types of Amplifiers \& its performance parameters

	Voltage Gain A_{v}	Input Impedance	Output Impedance	Current Gain A_{1}					
Commo n Emitter with R_{E}	$\begin{aligned} & \frac{\beta}{r_{\pi}} R_{L}^{\prime \prime}=g_{m} R_{L}^{\prime \prime} \\ & \left(R_{L}^{\prime \prime}=r_{0}\left\\|R_{C}\right\\| R_{L}\right) \end{aligned}$	$\begin{aligned} & R_{i}=r_{\pi} \\| R_{B} \\ & R_{i}^{\prime}=R_{S}+\left(R_{i}\right) \end{aligned}$	$\mathrm{r}_{\mathrm{o}} \\|$ R R^{\prime}	$\frac{-\beta R_{C}^{\prime}}{R_{C}^{\prime}+R_{C}} \quad\left(R_{C}^{\prime}=R_{C} \\| r_{0}\right.$					
Commo n Emitter without R_{E}	$\frac{\beta R_{L}^{\prime \prime}}{r_{\pi}+(1+\beta) R_{E}}=\frac{-g_{m} R_{L}^{\prime \prime}}{1+g_{m} R_{E}}$	$\begin{aligned} & R_{i}=r_{\pi}+(1+\beta) R_{E} \\ & R_{i}^{\prime}=R_{s}+R_{i} \end{aligned}$	Rc	- β					
Commo n Collecto r	$\begin{aligned} & \frac{(1+\beta) R_{E}^{\prime \prime}}{r_{\pi}+(1+\beta) R_{E}^{\prime \prime}} \approx 1 \\ & \left(R_{E}^{\prime \prime}=R_{E}\| \| r_{0}\right) \end{aligned}$	$\begin{aligned} & R_{i}=r_{\pi}+(1+\beta) R_{E}^{\prime} \\ & R_{i}^{\prime}=\left(R_{S}\| \| R_{B}\right)+R_{i} \end{aligned}$	$R_{E}\left\\|r_{o}\right\\|\left[\frac{R_{S}+r_{\pi}}{(1+\beta)}\right]$	$\frac{(\beta+1) r_{0}}{\left(R_{E}+r_{0}\right)} \approx(\beta+1) \approx \beta$					
Commo n Base	$\frac{\beta}{r_{\pi}}\left(R_{C} \\| R_{C}\right)=g_{m}\left(R_{C} \\| R_{L}\right)$	$\frac{r_{\pi}}{1+\beta}$		$\frac{g_{\mathrm{m}} \mathrm{R}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{L}}}\left(\frac{\mathrm{r}_{\pi}}{(1+\beta)} \\| \mathrm{R}_{\mathrm{E}}\right) \approx 1$					

7. FREQUENCY RESPONSE OF COMMON EMITTER AMPLIFIER:

Figure 3: Capacitive Coupled Common Emitter Amplifier

Figure 4: Magnitude of gain of the CE amplifier versus frequency

7.1. Cut-off Frequency

For a given circuit with equivalent resistance (Req) and equivalent capacitance (Ceq), the $3-\mathrm{dB}$ cut-off frequency is given by

$$
f_{3 d B}=\frac{1}{2 \pi C_{e q} R_{e q}}
$$

Thus, we calculate 3 dB frequencies due to $\mathrm{C}_{C 1}, \mathrm{C}_{C 2}, \mathrm{C}_{\mathrm{E}}$ as below.

- The effect of $C_{C 1}$ is determined with C_{E} and $C_{C 2}$ assumed to be acting as perfect short circuit as shown in fig, So,

$$
\left(\mathrm{f}_{3 \mathrm{~dB}}\right)_{\mathrm{C}_{\mathrm{C} 1}}=\frac{1}{2 \pi \mathrm{C}_{\mathrm{C} 1}\left(\left(\mathrm{R}_{\mathrm{B}} \| \mathrm{r}_{\pi}\right)+\mathrm{R}_{\mathrm{S}}\right)}
$$

Figure 5 :The effect of $C_{c 1}$ is determined with C_{E} and $C_{c 2}$ assumed to be acting as perfect short circuit

- The 3 dB frequency due to C_{c} is given by

$$
\left(\mathrm{f}_{3} \mathrm{~dB}\right)_{\mathrm{C}_{\mathrm{c} 2}}=\frac{1}{2 \pi \mathrm{C}_{\mathrm{C} 2}\left(\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{L}}\right)}
$$

Figure 6 :The effect of $C_{c 2}$ is determined with $C_{c 1}$ and C_{E} assumed to be as perfect short circuit.

- The 3 dB frequency due to C_{e} is given by

$$
\left(f_{3 \mathrm{~dB}}\right)_{\mathrm{C}_{\mathrm{E}}}=\frac{1}{2 \pi \mathrm{C}_{\mathrm{E}}\left(\mathrm{r}_{\mathrm{e}}+\frac{\mathrm{R}_{\mathrm{B}}| | \mathrm{R}_{\mathrm{S}}}{\beta+1}\right)}
$$

CHAPTER 6 : MOSFET Biasing \& Amplifiers

1.MOS TRANSCONDUCTANCE:

1.1.Transconductand in saturation region:

$$
\begin{aligned}
& I_{D(\text { sat })}=\frac{\mu_{n} C_{o x} W}{2 L}\left(V_{G S}-V_{t h}\right)^{2} \\
& g_{m}=\frac{\partial I_{D}}{\partial V_{G S}} \\
& g_{m}=\mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T H}\right) \\
& g_{\mathrm{m}}=\sqrt{2 \mu_{\mathrm{n}} C_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}} \mathrm{I}_{\mathrm{D}}}=\sqrt{2 \mathrm{KI}_{\mathrm{D}}}
\end{aligned}
$$

1.2 Various dependencies of $\mathbf{g m}_{m}$

Table 1

$\frac{\mathrm{W}}{\mathrm{L}}$ constant	$\frac{\mathrm{W}}{\mathrm{L}}$ variable	$\frac{\mathrm{W}}{\mathrm{L}}$ variable
$\mathrm{V}_{G S}-\mathrm{V}_{T H}$ variable	$\mathrm{V}_{G S}-\mathrm{V}_{T H}$ constant	$\mathrm{V}_{G S}-\mathrm{V}_{T H}$ constant
$\mathrm{g}_{\mathrm{m}} \alpha \sqrt{\mathrm{l}_{\mathrm{D}}}$	$\mathrm{g}_{\mathrm{m}} \propto \sqrt{\mathrm{l}_{\mathrm{D}}}$	$\mathrm{g}_{\mathrm{m}} \propto \sqrt{\frac{\mathrm{W}}{\mathrm{L}}}$
$g_{m} \propto V_{G S}-V_{T H}$	$g_{\mathrm{m}} \propto \frac{\mathrm{W}}{\mathrm{L}}$	$g_{m} \propto \frac{1}{V_{G S}-V_{T H}}$

2. DIFFERENT BIASING METHODS

2.1 Drain to gate bias configuration:
(Ctrl)

Figure 5.b: DC equivalent

Figure 5.a: Drain to bias configuration,

$$
\mathbf{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}
$$

Drain to gate bias always enables MOSFET in saturation region
2.2 Fixed bias configuration:

Figure 2 (a) and (b)

DRAWBACK OF FIXED BIAS:

It is a dual battery design which makes it expensive and more space occupied bias Configuration.
2.3 Self bias configuration:

Figure 5.c: Voltage divider configuration,

Figure 5.d: DC Equivalent

Figure 5.e: DC equivalent
$\therefore\left(\mathrm{I}_{\mathrm{D}}\right)_{\mathrm{Q}}=-\frac{\left(\mathrm{V}_{G S}\right)_{Q}}{\mathrm{R}_{\mathrm{S}}}$
$\mathbf{V d s}=\mathbf{V d d}-\mathbf{I d}(\mathbf{R s}+\mathbf{R d})$

3.SMALL SIGNAL AC EQUIVALENT MODEL

- Comparison between BJT and MOSFET:

BJT Current Controlled Current Source (CCCS) Here, $\mathrm{g}_{\mathrm{m}}=$ transconductance $r_{d}=$ dynamic resistance $r_{0}=$ output resistance \therefore In BJT, high input impedance and low output impedance Therefore, BJT = CCCS \Rightarrow Current amplifier	MOSFET Voltage Controlled Current Source (VCCS) Here, $g_{m}=$ transconductance $\mathrm{r}_{\mathrm{d}}=$ dynamic resistance $I_{D}=f\left(V_{G S}, I_{D S}\right)$ $\mathrm{I}_{\mathrm{D}}=\underbrace{\frac{\partial \mathrm{I}_{\mathrm{D}}}{\partial \mathrm{~V}_{\mathrm{GS}}} \cdot \mathrm{~V}_{\mathrm{GS}}}_{\mathrm{g}_{\mathrm{m}}}+\underbrace{\frac{\partial \mathrm{I}_{\mathrm{D}}}{\partial \mathrm{~V}_{\mathrm{DS}}} \cdot \mathrm{~V}_{\mathrm{DS}}}_{1 / \mathrm{r}_{\mathrm{d}}}$ Therefore, MOSFET = VCCS \Rightarrow Transconductance amplifier

Table 2: Comparison between BJT and MOSFET

4.ANALYSIS OF COMMON SOURCE AMPLIFIER

Figure 2 : CS Configuration of E-MOSFET with potential divider biasing (Bypassed Rs)

PARAMETER	EXACT	With $\mathbf{r}_{d} \gg \mathbf{R}_{\mathbf{D}}$	
Z_{I}	R_{G}	R_{G}	
Z_{o}	$\mathrm{R}_{\mathrm{D}} \\| r_{d}$	R_{D}	
A_{v}	$-\mathrm{g}_{\mathrm{m}}\left(\mathrm{R}_{\mathrm{D}} \\| \mathrm{r}_{\mathrm{d}}\right)$	$-\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{D}}$	

Table 2: Summarized performance of common source amplifier

5.ANALYSIS OF COMMON DRAIN AMPLIFIER:

Figure 3: Circuit diagram of Common Drain Amplifier

PARAMETER	EXACT	$\mathbf{r}_{\mathrm{d}} \gg \mathbf{R}_{\mathbf{D}}$		
Z_{I}	R_{G}	R_{G}		
Z_{o}	$\frac{1}{\mathrm{~g}_{\mathrm{m}}} \\| \mathrm{R}_{\mathrm{S}}$	$\frac{1}{\mathrm{~g}_{\mathrm{m}}} \\| \mathrm{R}_{\mathrm{S}}$		
A_{v}	$\frac{\mathrm{~g}_{\mathrm{m}}\left(\mathrm{r}_{\mathrm{d}} \\| \mathrm{R}_{\mathrm{s}}\right)}{1+\mathrm{g}_{\mathrm{m}}\left(\mathrm{r}_{\mathrm{d}} \\| \mathrm{R}_{\mathrm{s}}\right)}$	$\frac{\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{s}}}{1+\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{s}}}$		

Table 3: Summarized performance of Common Drain Amplifier

6. ANALYSIS OF COMMON GATE AMPLIFIER

Figure 5: Common Gate Amplifier

Figure 6: Simplified small signal model
$z_{\text {in }}{ }^{\prime}=\frac{\left(r_{0}+R_{D}\right)}{\left(1+g_{m} r_{0}\right)}$
$Z_{\text {in }}=\left(R_{S} \| \frac{1}{g_{m}}\right)$
(if ro is infinity)
$Z_{0}=R_{D} \| r_{0}$
$Z_{0}=R_{D}$
(if r_{0} is infinity)
$A_{v}=\frac{V_{0}}{V_{i n}}=\left[\frac{\left(g_{m} R_{D}+\frac{R_{D}}{r_{0}}\right)}{\left(1+\frac{R_{D}}{r_{0}}\right)}\right]$
Voltage gain $=A_{v}=g_{m} R_{D}$

1.Cascading Amplifier

Figure 1: Two stage Amplifier.
$A=A_{1} \times A_{2}$
$A=\frac{V_{0}}{V_{\text {in }}}$

2.EFFECT OF CASCADING ON BANDWIDTH

2.1. Identical Stages:

The lower cutoff frequency for the multi stage amplifier is given by :

$$
\left(f_{C}\right)_{\text {low }}=\frac{f_{L}}{\sqrt{2^{1 / n}-1}}
$$

and the upper cutoff frequency for multi-stage amplifier is given by:

$$
\left(\mathrm{f}_{\mathrm{C}}\right)_{\text {high }}=\mathrm{f}_{\mathrm{H}} \cdot \sqrt{2^{1 / n}-1}
$$

Here,
$\mathrm{n}=$ no. of stages
f_{L}, f_{H} are low \& high frequency respectively.
Thus, bandwidth of multi-stage amplifier is $\mathrm{BW}=\left(\mathrm{f}_{\mathrm{C}}\right)_{\text {high }}-\left(\mathrm{f}_{\mathrm{C}}\right)_{\text {low }}$

2.2.Non-Identical stages:

Here for every gain, separate bandwidth is present.

Figure 2: Cascading of non-identical stages
$\therefore \quad \mathrm{f}_{\mathrm{L}}^{\mathrm{n}}=1.1 \sqrt{\mathrm{f}_{\mathrm{L}_{1}}^{2}+\mathrm{f}_{\mathrm{L}_{2}}^{2}+\ldots \mathrm{f}_{\mathrm{Ln}}^{2}}$

$$
\text { Similarly, } \mathrm{f}_{\mathrm{H}}^{\mathrm{n}}=\frac{1.1}{\sqrt{\frac{1}{\mathrm{f}_{\mathrm{H}_{1}}^{2}}+\frac{1}{\mathrm{f}_{\mathrm{H}_{2}}^{2}} \cdots \cdot \frac{1}{\mathrm{f}_{\mathrm{H}_{\mathrm{n}}}^{2}}}}
$$

3.EFFECT OF CASCADING ON RISE TIME (t_{r})

3.1. For Single Stage:

$\mathrm{t}_{\mathrm{r}}=\frac{0.35}{\mathrm{f}_{\mathrm{H}}}$
Here, $\mathrm{t}_{\mathrm{r}}=$ rise-time
$f_{\mathrm{H}}=$ bandwidth

3.2. For Multi Stage:

\therefore Rise time of Multistage:

Conclusion:

(i) Bandwidth of multi-stage amplifier is always less than bandwidth of single stage amplifier (Gain = more)
(ii) Rise-time of multi-stage amplifier is always greater than rise time of single stage amplifier.

4.Comparison of different type of coupling :

Table 1

Characteristic	R-C coupling	Transformer coupling	Direct Coupling
Frequency Response	Excellent in audio frequency range	Poor	Best
Cost	Less	More	Least
Space \& Weight	Less	More	Least
Impedance Matching	Not good	Excellent	Good
Use	Voltage amplification	Power amplification	amplifying extremely low frequency

5. POPULAR CASCADING DESIGN:

5.1.1 Cascade Amplifier: (CE - CB configuration)-

Figure 3: Cascode Amplifier Configuration
cascode amplifier has a high gain, moderately high input impedance, a high output impedance, and a high bandwidth.

5.1.2 Transconductance of below cascode amplifier:

Figure 4: Cascode Amplifier

$$
\left(\mathrm{g}_{\mathrm{m}}\right)_{\text {cascode }}=\mathrm{g}_{\mathrm{m}_{1}}
$$

5.2 Darlington Pair [CC - CC]

Figure 5: Darlington pair configuration

5.3 DIFFERENCE:

Emitter Follower (i) $\quad A_{I}=\beta$ (ii) $\quad A_{v}=1(C C=$ voltage buffer $)$ (iii) $\quad Z_{i}=\beta R_{L}$ (iv) $Z_{0}=r_{e}$	$\begin{aligned} & \text { Darlington pair } \\ & A_{I}=A_{I 1} \cdot A_{I 2} \\ & A_{I}=\frac{I_{E 1}}{I_{B 1}} \cdot \frac{I_{E 2}}{I_{B 2}} \\ & A_{I}=\frac{\left(1+\beta_{1}\right) I_{B 1}}{I_{B 1}} \cdot \frac{\left(1+\beta_{2}\right) I_{B 2}}{I_{B 2}} \\ & A_{I}=\left(1+\beta_{1}\right) \times\left(1+\beta_{2}\right) \\ & \therefore \text { overall } \beta \approx \beta_{1} \cdot \beta_{2} \end{aligned}$ $\text { (ii) } Z_{i}=\left(1+\beta_{1}\right)\left(1+\beta_{2}\right) R_{L} \approx \beta_{1} \beta_{2} R_{L}$

Table 3: Difference between Emitter follower and Darlington pair

Following are the important characteristics of Darlington pair:

- Extremely high input impedance.
- Extremely high current gain.
- Extremely low output impedance.

CHAPTER 8: FEEDBACK AMPLIFIERS

1. Difference between positive and negative feedback:

Positive feedback	Negative feedback
$V_{0}=A V_{i}$	$V_{0}=A V_{i}$
$V_{i}=V_{s}+V_{f}$	$V_{i}=V_{s}-V_{f}$
$V_{0}=A\left(V_{s}+V_{f}\right)$	$V_{0}=A\left(V_{s}-V_{f}\right)$
$V_{0}=A\left(V_{s}+\beta V_{0}\right)$	$V_{0}=A\left(V_{s}-\beta V_{0}\right)$
$V_{0}(1-\beta A)=A V_{s}$	$V_{0}(1+\beta A)=A V_{s}$
$\frac{V_{0}}{V_{s}}=\frac{A}{1-A \beta}$	$\frac{V_{0}}{V_{s}}=\frac{A}{1+A \beta}$

Table 1: Difference between positive and negative feedback

1.1 Conclusion

(1) $A_{\text {pf }}>A>A_{n f .}$
(2) $A_{n f}=\frac{A}{1+\beta A} \beta A \ggg 1$
$A_{n f}=\frac{1}{\beta} \quad$ stability.
NOTE- Negative feedback theory is applied for stable system like Amplifier.
(3) $A_{p f}=\frac{A}{1-\beta A}$

Figure 1
NOTE- Positive feedback theory is applied for unstable system like oscillator

2. EFFECTS OF NEGATIVE FEEDBACK

2.1 Advantage of Negative feedback amplifier
$A_{f}=\frac{A}{1+A \beta}$

Fractional change of gain with feedback
of gain with without feedback
$\frac{\partial A_{f} / A_{f}}{\partial A_{f} / A}=\frac{1}{1+\beta A} \Rightarrow$ sensitivity
$(1+\beta A) \rightarrow$ desensitivity

2.2 Increase in input impedance

Figure 2
$Z_{\text {if }}=Z_{i}(1+A \beta)$
2.3 Decrease in output impedance
$Z_{\text {of }}=\frac{Z_{0}}{1+\beta A}$

2.4 Increase in BW

Figure 3
Lower cutoff frequency decreases
$f_{L}^{\prime}=\frac{f_{L}}{1+A \beta}$
Upper cutoff frequency increases
$\mathrm{f}^{\prime}{ }_{H}=(1+\mathrm{A} \beta) \mathrm{f}_{\mathrm{H}}$
$B W^{\prime}=B W(1+A \beta)$

3.TOPOLOGY

Figure 4-Block diagram analysis

3.1 At input side

At input side voltage mixed in series and current mixed in shunt.

Figure 5

3.2 At output side

In output side current sampled in series and voltage sampled in shunt.

Figure 6

4.Amplifier Characteristics-

The amplifier characteristics which are affected by various negative feedback are listed in the following table 2

Amplifier	Nomenclature	Input Impedance	Output Impedance
Voltage Amplifier	Voltage series OR Series voltage OR Series shunt OR Voltage Voltage	$Z_{i}=\infty$ Increases $Z_{i f}=Z_{i}(1+A \beta)$	$Z_{0}=0$ Decreases
Transreistance Amplifier	Voltage shunt OR Shunt voltage OR Shunt shunt OR Voltage current OR	$Z_{i}=0 .$ Decrease $\frac{Z_{i}}{1+A \beta}$	$Z_{0}=0 .$ Decrease $\frac{Z_{0}}{1+A \beta}$
Transconductance Amplifier	Current series OR Series current OR Series series OR Current voltage	$Z_{i}=\infty$ Input impedance increases $Z_{i}(1+A \beta)$	$\mathrm{Z}_{0}=\infty$ output impedance increases $\mathrm{Z}_{0}(1+\mathrm{A} \beta)$
Current Amplifier		Input impedance decreases $\begin{gathered} z_{i}=0 \\ \frac{Z_{i}}{1+A \beta} \end{gathered}$	output impedance increases $\begin{gathered} Z_{0}=\infty \\ Z_{0}(1+A \beta) \end{gathered}$

Table 2

5.TYPES OF NEGATIVE FEEDBACK AMPLIFIERSRS:

Figure 4.1: Voltage Series Topology

Figure 4.2 : Voltage Shunt Topology

Figure 4.3 : Current Series Topology

Figure 4.4: Current Shunt Topology

CHAPTER 9 :POWER AMPLIFIERS

1. BASICS OF POWER AMPLIFIERS

1.1.CLASS A POWER AMPLIFIERS

$P_{\text {in }}=$ voltage \times current $=\mathrm{Vcc}(\mathrm{Ic}) \mathrm{Q}_{\mathrm{Q}}$
$\left(\mathrm{P}_{\text {out }}\right)_{\mathrm{ac}}=\mathrm{I}^{2} \mathrm{R}_{\mathrm{c}}=\frac{\mathrm{V}^{2}}{\mathrm{R}_{\mathrm{c}}}=\left(\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{2}}\right)^{2} \frac{1}{\mathrm{R}_{\mathrm{c}}}=\frac{\mathrm{V}_{\mathrm{m}}{ }^{2}}{2 \mathrm{R}_{\mathrm{c}}}$
I = RMS value of ac output current through load.
$V=$ RMS value of ac voltage

Overall efficiency ($\mathbf{\eta}$):

$$
(\eta)_{\text {overall }}=\frac{\left(P_{\text {out }}\right)_{\mathrm{ac}}}{\left(\mathrm{P}_{\text {in }}\right)_{\mathrm{dc}}}
$$

Here,
$(\eta)_{\text {overall }} \approx 30 \%$

Transformer coupled class A power Amplifier: -

$(\eta)_{\text {collector }}=\frac{\mathrm{V}_{\mathrm{CC}} \times\left(\mathrm{I}_{\mathrm{C}}\right)_{\mathrm{Q}}}{2 \mathrm{~V}_{\mathrm{cc}} \times\left(\mathrm{I}_{\mathrm{C}}\right)_{\mathrm{Q}}}=\frac{1}{2}$
$\eta=\frac{1}{2} \times 100 \%=50 \%$

CONCLUSION:

Therefore, the efficiency of class A power amplifier is nearly to 30\% whereas it has got improved to 50% by using the transformer coupled class A power amplifier.

1.2. CLASS B POWER AMPLIFIERS:

POWER EFFICIENCY OF CLASS B PUSH PULL AMPLIFIER

$(\eta)_{\text {overall }}=\frac{\left(P_{\text {out }}\right)_{\text {ac }}}{\left(P_{\text {in }}\right)_{\text {dc }}}$
$=\frac{\pi}{4}=0.785=78.5 \%$

1.3. CLASS AB AMPLIFIER

The conduction angle of class $A B$ amplifier is somewhere between 180° to 360° depending upon the operating point selected.

Efficiency of class $A B$ is in between 50-60\%

1.4. CLASS C AMPLIFIERS

The conduction angle for class C is less than 180°

2.COMPARISON

	Class A	Class B	Class AB	Class C
Efficiency	50%	78.5%	Between A \& B	100%
Conduction angle	360°	180°	$180^{\circ}-220^{\circ}$ $\left(\right.$ Greater than $\left.180^{\circ}\right)$	$100^{\circ}-150^{\circ}$ $\left(\right.$ less than $\left.180^{\circ}\right)$

Table 1: Comparative study between different Power Amplifiers

CHAPTER 10 : DIFFERENTIAL AMPLIFIERS

1. Basics of Differential Amplifier:

Fig. 1 Ideal differential amplifier
The differential amplifier amplifies the difference between two input voltage signals. Hence it is also called difference amplifier.
$V_{0} \propto\left(V_{1}-V_{2}\right)$
2. Differential Gain (A_{d})
$\mathrm{V}_{0}=\mathrm{A}_{\mathrm{d}}\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
Where, $A_{d}=$ differential gain
The difference between the two inputs $\left(V_{1}-V_{2}\right)$ is generally called difference voltage and denoted as V_{d}.
$V_{o}=A_{d} V_{d}$
Hence, the differential gain can be expressed as,
$A_{d}=\frac{V_{0}}{V_{d}}$
Generally, the differential gain is expressed in its decibel (dB) value as,
$A_{d}=20 \log _{10}\left(A_{d}\right)$ in $d B$

3. Common Mode Gain (A_{c}):

The output voltage of the practical differential amplifier also depends on the average common level of the two inputs. Such an average level of the two input signals is called common mode signal denoted as V_{c}.
$\therefore \quad \mathrm{V}_{\mathrm{c}}=\frac{\mathrm{V}_{1}+\mathrm{V}_{2}}{2}$
The gain with which it amplifies the common mode signal to produce the output is called as common mode gain of the differential amplifier denoted as A_{c}.
$\therefore \quad \mathrm{V}_{\mathrm{o}}=\mathrm{A}_{\mathrm{c}} \mathrm{V}_{\mathrm{c}}$
So, the total output of any differential amplifier can be expressed as,
$\therefore \quad \mathrm{V}_{\mathrm{o}}=\mathrm{A}_{\mathrm{d}} \mathrm{V}_{\mathrm{d}}+\mathrm{A}_{\mathrm{c}} \mathrm{V}_{\mathrm{c}}$

4. Common Mode Rejection Ratio (CMRR)

`The ability of a differential amplifier to reject a common mode signals is expressed by a ratio called common mode rejection ratio denoted as CMRR.

It is defined as the ratio of the differential voltage gain A_{d} to common mode voltage gain A_{c}.
$\therefore \quad$ CMRR $=\rho=\left|\frac{A_{d}}{A_{c}}\right|$
*Ideally the common mode voltage gain is zero, hence the ideal value of CMRR is inifinite.
*For a practical differential amplifier A_{d} is large and A_{c} is small hence the value of CMRR is also very large.
*Many a times, CMRR is also expressed in dB, as
CMRR in $d B=20 \log \left|\frac{A_{d}}{A_{c}}\right| d B$
The output voltage can be expressed in terms of CMRR as below:

$$
\begin{aligned}
& \therefore \quad V_{o}=A_{d} V_{d}+A_{c} V_{c} \\
& =A_{d} V_{d}\left[1+\frac{A_{c} V_{c}}{A_{d} V_{d}}\right]
\end{aligned}
$$

$\therefore \quad V_{o}=A_{d} V_{d}\left[1+\frac{1}{\left(\frac{A_{d}}{A_{c}}\right)} \frac{V_{c}}{V_{d}}\right]$
$\therefore \quad V_{o}=A_{d} V_{d}\left[1+\frac{1}{\operatorname{CMRR}} \cdot \frac{V_{c}}{V_{d}}\right]$

5. Different types of Differential Amplifier:

	nfiguration	Circuit	Ad Voltage gain	R_{E} Input resistance	Ro Output resistance
1.	Dual Input, Balanced Output		$\frac{h_{\mathrm{fe}} \mathrm{R}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{S}}+\mathrm{h}_{\mathrm{ie}}}$	$2\left(\mathrm{R}_{\mathrm{s}}+\mathrm{h}_{\mathrm{ie}}\right)$	Rc

2.	Dual Input, Unbalanced Output		$\frac{h_{\text {fe }} \mathrm{R}_{\mathrm{C}}}{2\left(\mathrm{R}_{\mathrm{S}}+\mathrm{h}_{\mathrm{ie}}\right)}$	$2\left(R_{S}+h_{i e}\right)$	Rc
3.	Single Input, Balanced Output		$\frac{\mathrm{h}_{\mathrm{fe}} \mathrm{R}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{S}}+\mathrm{h}_{\mathrm{ie}}}$	$2\left(R_{s}+h_{i e}\right)$	
4.	Single Input, Unbalanced Output		$\frac{\mathrm{h}_{\mathrm{fe}} \mathrm{R}_{\mathrm{C}}}{2\left(\mathrm{R}_{\mathrm{S}}+\mathrm{h}_{\mathrm{ie}}\right)}$	$2\left(R_{S}+h_{\text {ie }}\right)$	Rc

Table 5
The expression for the common mode gain A_{c} remains same for all the configurations which is,

$$
A_{c}=\frac{h_{f e} R_{C}}{R_{S}+h_{i e}+3 R_{E}\left(1+h_{f e}\right)}
$$

1. OPAMP INTRODUCTION:

1.1 COMPARISON BETWEEN IDEAL OPAMP AND PRACTICAL OPAMP:

Property	Ideal	Practical (Typical)
Open-loop gain	Infinite	Very high (>1000)
Open-loop bandwidth	Infinite	Dominant pole ($\cong 10 \mathrm{~Hz}$)
CMRR	Infinite	High (>60 dB)
Input Resistance	Infinite	High (> $1 \mathrm{M} \Omega$)
Output Resistance	Zero	Low (<100 Ω)
Input Bias Currents	Zero	Low (<50nA)
Offset Voltages	Zero	Low (< 10 mV)
Offset Currents	Zero	Low (< 50 nA)
Slew Rate	Infinite	- A few $V / \mu \mathrm{s}$
Drift	Zero	Low

Table1: Comparison of an ideal and a typical practical opamp
1.2. Slew-Rate:

$$
\begin{aligned}
& \mathrm{SR}=\frac{\Delta \mathrm{V}_{0}}{\Delta \mathrm{t}} \mathrm{~V} / \mu \mathrm{S} \\
& \mathrm{SR}=\mathrm{A}_{\mathrm{CL}} \frac{\Delta \mathrm{~V}_{\mathrm{i}}}{\Delta \mathrm{t}}
\end{aligned}
$$

1.3. Maximum Signal Frequency in terms of Slew Rate:

$$
\mathrm{f} \leq \frac{\mathrm{SR}}{2 \pi \mathrm{k}} \mathrm{~Hz}
$$

2. APPLICATIONS OF OP-AMP

2.1. Inverting-Amplifier:

$$
A_{v}=\frac{-R_{f}}{R_{1}}
$$

Figure: 1
2.2. Non-Inverting Amplifier:

Figure 2: Non-Inverting Amplifier

$$
A_{V}=\frac{V_{0}}{V_{i}}=1+\frac{R_{f}}{R_{1}}
$$

2.3. Voltage Adder:

2.3.1. Inverting Adder:

Figure: 3

$$
\therefore \quad \mathrm{V}_{0}=-\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right) \text { if } \mathrm{R} 1=\mathrm{R} 2=\mathrm{R}
$$

2.3.2. Non-Inverting Adder:

Figure: 4

$$
\therefore \quad \mathrm{V}_{0}=\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)
$$

2.4. Voltage Subtractor Circuit

$$
V_{0}=\frac{R_{f}^{2}}{R_{1} R_{3}} V_{1}-\frac{R_{f}}{R_{2}} V_{2}
$$

Summing Amplifier
Figure 5: Voltage Subtractor Circuit

2.5. Differentiator circuit:

Figure 6: Differentiator circuit
$V_{0}=-R C \frac{d V_{i}}{d t}$
2.6. Integrator circuit:

Figure 7: Integrator circuit

$$
\mathrm{V}_{0}=\frac{-1}{R C} \int \mathrm{~V}_{\mathrm{i}} \mathrm{dt}
$$

2.7. Logarithmic Amplifier:

Figure: 8

$$
\mathrm{V}_{0}=-\mathrm{V}_{\mathrm{T}} \ln \left[\frac{\mathrm{~V}_{\mathrm{i}}}{\mathrm{I}_{\mathrm{S}} \mathrm{R}}\right]
$$

2.8. Exponential Amplifier:

Figure 9: Exponential Amplifier

$$
V_{0}=-I_{S} R e^{V_{i} / V_{T}}
$$

2.9. Square root amplifier:

Figure: 10

$$
V_{0}=-\sqrt{\frac{2 V_{i}}{\mu_{n} C_{o x} \frac{W}{L} R}}-V_{T}
$$

2.10. Comparator: -

Table 2: Comparator
2.11. Schmitt Trigger

Figure 11: Basic Schmitt Trigger

2.11.1. Inverting Schmitt trigger:

Here,
$\mathrm{V}_{\mathrm{TH}}=\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right) \mathrm{V}_{\mathrm{H}}, \quad \mathrm{V}_{\mathrm{TL}}=\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right) \mathrm{V}_{\mathrm{L}}$

2.11.1. Non Inverting Schmitt trigger:

$V_{T H}=-\left(\frac{R_{1}}{R_{2}}\right) V_{L}$
$V_{T L}=-\left(\frac{R_{1}}{R_{2}}\right) V_{H}$

2.12. Precision Rectifier

Figure 13:

2.13. Instrumentation Amplifier:

It consists of two non-inverting amplifiers and one difference amplifier.

Figure 14: Instrumentation Amplifier
$\mathrm{V}_{0}=\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}}\left[1+\frac{2 \mathrm{R}_{2}}{\mathrm{R}_{1}}\right]\left[\mathrm{V}_{2}-\mathrm{V}_{1}\right]$

2.14. Astable Multivibrator:

Figure 15: Astable Multivibrator
Here $\beta=\frac{R_{2}}{R_{1}+R_{2}}=$ feedback fraction

Figure 16: Waveform
Here,
$\mathrm{T}_{\mathrm{c}}=$ charging time
$T_{d}=$ discharging time
$T_{d}=\operatorname{RC} \ln \left[\frac{1+\beta}{1-\beta}\right]$ Discharging time
$T_{C}=\operatorname{RC} \ln \left[\frac{1+\beta}{1-\beta}\right]$ Charging time
$T=T_{d}+T_{C}=2 R C \ln \left[\frac{1+\beta}{1-\beta}\right]$ Total time period
Here, $\beta=\frac{R_{2}}{R_{1}+R_{2}}$
$f=\frac{1}{2 R C \ln \left[\frac{1+\beta}{1-\beta}\right]}$ Frequency of square wave generator
2.15. Bistable Multivibrator

Figure 17: Bistable Multivibrator
Here, a to b changes only after triggering and before triggering, it will be constant $=+V_{\text {sat }}$

Figure:18
2.16. Monostable Multivibrator

Figure 19: Monostable Multivibrator

Figure: 20 Waveform
Time Period of Monostable Multivibrator:
$\mathrm{T} P=0.693 \mathrm{RC}$
Other names of Monostable Multivibrator:

- One Shot Multivibrator
- Pulse Stretcher

1. OSCILLATION CRITERION

Figure 1: Oscillator Block Diagram

$$
\frac{V_{0}}{V_{\text {in }}}=\frac{A}{1-A \beta}
$$

$$
\begin{equation*}
\mathrm{A} \beta=1 \tag{i}
\end{equation*}
$$

Expressed in polar form

$$
\mathrm{A} \beta=1 \angle 0^{\circ} \text { or } 360^{\circ}
$$

(ii)

Equation (i) \& (ii) gives two requirements for oscillation:

- The magnitude of the loop gain $A \beta$ must be at least 1 , and
- The total phase shift of the loop gain $A \beta$ must be equal to 0° or 360°.

The above conditions is known as Barkhausen criterion.

2.OSCILLATOR TYPES:

Types of components used	Frequency of oscillation	Types of waveform generated
RC oscillator	Audio frequency (AF)	Sinusoidal
LC oscillator	Radio frequency (RF)	Square wave
Crystal oscillator		Sawtooth wave etc.

Table 1

3. THE PHASE-SHIFT OSCILLATOR

3.1. Phase Shift Oscillator Using FET

Figure 2(a): An FET Phase Shift Oscillator

$$
f=\frac{1}{2 \pi R C \sqrt{6}}
$$

At the frequency of oscillation,

$$
\beta=+\frac{1}{29}
$$

In order that $|\beta A|$ shall not be less than unity, it is required that $|A|$ be at least 29. Hence and FET with $\mu<29$ cannot be made to oscillate in such a circuit.

3.2. Phase Shift Oscillator Using BJT:

Figure 2(b): A Transistor Phase shift oscillator

$$
\mathrm{f}=\frac{1}{2 \pi \mathrm{RC}} \cdot \frac{1}{\sqrt{6+4 \mathrm{~K}}}
$$

Where, $K=R_{c} / R$. The condition for sustaining of oscillation is given by

$$
\mathrm{h}_{\mathrm{fe}}>4 \mathrm{~K}+23+\frac{29}{\mathrm{~K}}
$$

3.3. Phase-Shift Oscillator with Op-Amp

Figure 2(c): A Phase Shift Oscillator Using Op-amp

$$
\mathrm{f}_{0}=\frac{1}{2 \pi \sqrt{6} R C}=\frac{0.065}{R C}
$$

At this frequency, the gain A must be at least 29.
That is,

$$
\left|\frac{R_{F}}{R_{1}}\right|=29 \quad \text { or } \quad R_{F}=29 R_{1}
$$

3.4.Disadvantage:

The disadvantage of RC phase-shift oscillator is that the frequency of oscillation cannot be altered. In further we will study the oscillators in which frequency can be altered by changing circuit parameters.

4.WEIN BRIDGE OSCILLATOR:

$$
f_{0}=\frac{1}{2 \pi R C}=\frac{0.159}{R C}
$$

Figure 3: Wein- Bridge Oscillator
At this frequency the gain required for sustained oscillation is given by

$$
A=\frac{1}{\beta}=3
$$

That is $1+\frac{R_{2}}{R_{1}}=3 \quad \rightarrow \quad R_{2}=2 R_{1}$

5.1.COLPITTS OSCILLATOR:

Figure 4: MOSFET Colpitts Oscillator (a) The ac equivalent circuit,
(b) Small- Signal equivalent Circuit

$$
\begin{equation*}
\omega_{0}=\frac{1}{\sqrt{\mathrm{~L}\left(\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}\right)}} \tag{i}
\end{equation*}
$$

From the real part, the condition for oscillation is

$$
\begin{equation*}
\frac{\omega_{0}^{2} L C_{2}}{R}=g_{m}+\frac{1}{R} \tag{ii}
\end{equation*}
$$

combining equations (iii) and (iv) yields,

$$
\begin{equation*}
\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}=\mathrm{g}_{\mathrm{m}} \mathrm{R} \tag{iii}
\end{equation*}
$$

where $g_{m} R$ is the magnitude of the gain, Equation (v) states that to initiate oscillations spontaneously, it must have $g_{m} R>\left(C_{2} / C_{1}\right)$.

5.2. Colpitts Oscillator using BJT

Frequency of oscillation

$$
\mathrm{f}=\frac{1}{2 \pi \sqrt{\mathrm{~L}\left(\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}\right)}} \text { and } \mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{c}} \geq \frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}
$$

Figure 4(c): Colpitts Oscillator using BJT.

6. HARTLEY OSCILLATOR:

Figure 5: The ac equivalent BJT Hartley Oscillator

$$
\omega_{0}=\frac{1}{\sqrt{\left(L_{1}+L_{2}\right) C}} \quad \text { and } \quad r_{\Pi} \gg 1 / \omega C_{2} .
$$

7. CLAPP OSCILLATOR:

Figure 6: Clapp Oscillators
Frequency of oscillation

$$
\mathrm{f}_{0}=\frac{1}{2 \pi} \sqrt{\frac{1}{\mathrm{~L}}\left(\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}\right)}
$$

If C_{3} is selected such that it is much smaller than C_{1}^{\prime} and C_{2}^{\prime} then

$$
\frac{1}{\mathrm{C}_{3}} \gg \frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}
$$

Thus,

$$
\mathrm{f}_{0}=\frac{1}{2 \pi} \sqrt{\frac{1}{\mathrm{~L}} \times \frac{1}{\mathrm{C}_{3}}}
$$

f_{0} becomes independent of C_{1} and C_{2}.

8.CRYSTAL OSCILLATORS

Figure 7: (a) Circuit Symbol, (b) Equivalent Circuit,
(c) Crystal reactance versus frequency
a series resonance at $\omega_{\mathrm{s}} \quad \omega_{\mathrm{s}}=\frac{1}{\sqrt{\mathrm{LC}_{\mathrm{s}}}}$
and a parallel at $\omega_{p} \quad \omega_{p}=\frac{1}{\sqrt{L\left(\frac{C_{s} C_{p}}{C_{s}+C_{p}}\right)}}$
$\omega_{0} \simeq \frac{1}{\sqrt{\text { LC }_{s}}}=\omega_{\mathrm{s}}$

S.No	Oscillator	Range of Frequency
1.	Phase shift	1 Hz to 10 MHz
2.	Wein-bridge	1 Hz to 1 MHz
3.	Colpitts	10 kHz to 100 MHz
4.	Hartley	10 kHz to 100 MHz
5.	Crystal	For fixed frequency
6.	Clapp	10 kHz to 100 MHz
7.	Negative resistance	$>100 \mathrm{mHz}$

Table 2

CHAPTER 13 : 555 TIMER \& WAVE GENERATORS

1. THE 555 TIMER CIRCUIT

Figure 1(a): Pin diagram of 555 Timer

Figure 1(b): Block diagram representation of the internal circuit of the 555-IC timer.
$\mathrm{V}_{\mathrm{TH}}=\frac{2}{3} \mathrm{~V}_{\mathrm{CC}}$ for comparator 1
And $\quad \mathrm{V}_{\mathrm{TL}}=\frac{1}{3} \mathrm{~V}_{\mathrm{CC}}$ for comparator 2
2. IMPLEMENTATION OF A MONOSTABLE MULTIVIBRATOR USING 555 TIMER

Figure 2(a): The 555 circuit connected as a monostable multi-vibrator.

Figure 2(b): Waveform of circuit 2(a)

$$
\mathrm{T}=\mathrm{RC} \ln (3)=1.1 \mathrm{RC}
$$

3. IMPLEMENTATION OF ASTABLE MULTIVIBRATOR USING THE 555 TIMER

Figure 3(a): Astable Multivibrator 555 circuit.

Figure 3(b): waveform of circuit 3(a)

$$
T_{C}=0.693\left(R_{A}+R_{B}\right) C
$$

$$
\mathrm{T}_{\mathrm{D}}=\tau_{\mathrm{B}} \ln (2)=0.693 \mathrm{R}_{\mathrm{B}} \mathrm{C}
$$

$$
T=0.693\left(R_{A}+2 R_{B}\right) C
$$

The frequency of oscillation,

$$
f=\frac{1}{T}=\frac{1}{T_{C}+T_{D}}
$$

$$
f=\frac{1}{0.693\left(R_{A}+2 R_{B}\right) C}=\frac{1.44}{\left(R_{A}+2 R_{B}\right) C}
$$

Duty cycle:

Duty cycle $=\frac{T_{C}}{T} \times 100 \%=\frac{R_{A}+R_{B}}{R_{A}+2 R_{B}} \times 100 \%$
Duty cycle of the circuit is always greater than 50%.

