
byjusexamprep.com

1

https://byjusexamprep.com/
https://byjusexamprep.com/

byjusexamprep.com

2

 Chapter 1: C programming

¶ C TOKENS:

The smallest individual units recognizable by the lexical analyser are known as C tokens. C has six

types of tokens: Keywords, Identifiers, Constants, Operators, Delimiters / Separators and Special

symbols.

E.g.: int, _name, +, - , ++, -- etc.

¶ Data types:

Types Data Types

Basic data types Int, char, float, double

Enumeration data

type
enum

Derived data type
Pointer, array, structure,

union

Void data type void

Data

Types
Size (in bytes)

short int 1

int 2

long int 4

char 1

float 4

double 8

Short Notes — C PROGRAMMING & DATA STRUCTURES

https://byjusexamprep.com/

byjusexamprep.com

3

¶ TYPES OF OPERATORS:

Operators Symbols

Arithmetic

operators
+, -, *, /, %, ++, --

Assignment

operator
=, +=, -=, *=, etc

Relational

operators
<, <=, >, >=, !=, ==

Logical operators &&, ||, !

Bitwise operators &, |, ~, ^, <<, >>

Special operators sizeof(), comma

Pointer operators
* - Value at address (indirection), & - Address

Operator

¶ Operator Precedence table:

Precedenc

e
Operator Description

Associativit

y

1

++ -- Suffix/postfix increment and decrement

Left-to-right

() Function call

[] Array subscripting

. Structure and union member access

->
Structure and union member access through a

pointer

(type){list

}
Compound literal(C99)

https://byjusexamprep.com/

byjusexamprep.com

4

Precedenc

e
Operator Description

Associativit

y

2

++ -- Prefix increment and decrement

Right-to-left

+ - Unary plus and minus

! ~ Logical NOT and bitwise NOT

(type) Type cast

* Indirection (dereference)

& Address-of

Sizeof Size-of

_Alignof Alignment requirement(C11)

3 * / % Multiplication, division, and the remainder

Left-to-right

4 + - Addition and subtraction

5 << >> Bitwise left shift and right shift

6
< <= For relational operators < and ≤ respectively

> >= For relational operators > and ≥ respectively

7 == != For relational = and ≠ respectively

8 & Bitwise AND

9 ^ Bitwise XOR (exclusive or)

10 | Bitwise OR (inclusive or)

11 && Logical AND

12 || Logical OR

13 ?: Ternary conditional

Right-to-Left
14

= Simple assignment

+= -= Assignment by sum and difference

*= /= %=
Assignment by product, quotient, and

remainder

<<= >>= Assignment by bitwise left shift and right shift

&= ^= |= Assignment by bitwise AND, XOR, and OR

15 , Comma Left-to-right

https://byjusexamprep.com/

byjusexamprep.com

5

¶ C FLOW CONTROL STATEMENTS:

1. If Statement:

if (condition)

{

statement1

statement2

:

}

2. If else statement:

if (condition)

{statements}

else

{statements}

3. The switch Statement:

switch (control variable)

{

case constant-1: statement(s);

break;

case constant-2: statement(s);

break;

 :

case constant-n: statement(s);

break;

default: statement(s);

 }

Note: Here constant can be either character or integer

4. Loop Control Structure:

4.1 . While Loop:

while (testExpression)

{

 // statements inside the body of the loop

}

 4.2. do while Loop:

do

{

 // statements inside the body of the loop

https://byjusexamprep.com/

byjusexamprep.com

6

}

while (testExpression);

 4.3. for Loop:

for (initializationStatement; testExpression; updateStatement)

{

 // statements inside the body of loop

}

5. Unconditional Flow Control Statements:

5.1. The break Statement: The break statement is used to instantly jump out of a

loop, without waiting to get back to the conditional test.

5.2. The continue Statement: The 'continue' statement is used to take the control to

the beginning of the loop, by passing the statement inside the loop, which has not yet

been executed.

5.3. goto Statement: C supports an unconditional control statement, goto, to transfer

the control from one point to another in a C program.

https://byjusexamprep.com/

byjusexamprep.com

7

 Chapter 2 : Recursion

¶ FUNCTION:

There are three aspects of a C function:

1. Function declaration A function must be declared globally in a c program to tell the

compiler about the function name, function parameters, and return type.

2. Function call Function can be called from anywhere in the program. The parameter list

must not differ in function calling and function declaration. We must pass the same number

of functions as it is declared in the function declaration.

3. Function definition It contains the actual statements which are to be executed. It is the

most important aspect to which the control comes when the function is called. Here, we

must notice that only one value can be returned from the function.

¶ TYPES OF FUNCTION CALL:

1. Call by value in C : This method copies the actual value of an argument into the function’s

formal parameter. In this case, changes made to the parameter inside the function do not

affect the argument.

2. Call by reference in C : This method copies the address of an argument into the formal

parameter. Inside the function, the address is used to access the actual argument used in the

call. This means that changes made to the parameter affect the argument.

¶ RECURSION:

o Recursive Function: A function is called recursively defined if the definition of the function

refers to itself. Function that calls itself is known as a recursive function. And this technique is

known as recursion.

How does recursion work?

For this the definition of the function should satisfy the following conditions :

- There must be certain arguments for which the function does not refer to itself, these

arguments are called base values or base conditions.

- Each time the function does not refer to itself, its argument must be closer to a base

value or base condition.

- The base condition(s) must be defined before the recursive call in the function definition.

https://byjusexamprep.com/

byjusexamprep.com

8

Example : #include<stdio.h>

 #include<math.h>

 int rec_fun(int n)

 {

 Static int count = 0;

 if(n ≤ 0) //Base condition

 return 0;

 if(n%2 == 0)

 count++;

 rec_fun(n/2); //Recursive call

 return count;

 }

 int main()

 {

 int m, i, k;

 printf(“\nEnter any number >0 : “);

 scanf(“%d”, &m);

 i = rec_fun(m); //Function call by value

 k = ceil(log2(m)) - i;

 printf(“\nNumber of zeros in binary representation = %d\nNumber of ones in

binary representation = %d”, i, k);

 return 0:

 }

INPUT : Enter any number >0 : 78

OUTPUT : Number of zeros in binary representation = 3

 Number of ones in binary representation = 4

https://byjusexamprep.com/

byjusexamprep.com

9

 Chapter 3 : Array s & Linked List

¶ Pointers: It is a variable which stores the address of another variable.

1. Declaring a pointer:

e.g: int *p;

 char *c;

 2. Usage of Pointers:

2.1. Pointer to array:

 e.g: int arr[10];

int *p[10]=&arr; //pointer to array

 2.2. Pointer to a function:

 e.g: void show (int); //function declaration

void(*p)(int) = &show; //pointer to function

 2.3. Pointer to structure:

 e.g: struct emp //structure

 {

 int id;

 char name[20];

 }e1;

 struct emp *p; //pointer to structure

 p = &e1;

2.4. NULL Pointer: A pointer that is not assigned any value but NULL is known as the

NULL pointer.

 e.g: int *p = NULL;

 3. Advantage of pointer:

 3.1. Pointer reduces the code and improves the performance.

 3.2. We can return multiple values from a function using the pointer.

3.3. It makes easy to access any memory location in the computer's

memory.

https://byjusexamprep.com/

byjusexamprep.com

10

3.4. It makes Dynamic memory allocation possible.

 4. STORAGE CLASSES IN C:

Storage

Classes

Storage

Place

Default

Value
Scope Lifetime

auto RAM
Garbage

Value
Local Within function

extern RAM Zero Global
Till the end of the main program May

Be declared anywhere in the program

static RAM Zero Local

Till the end of the main program,

Retains value between multiple

functions call

register Register
Garbage

Value
Local Within the function

¶ Arrays: It is a linear data structure. It is a collection of similar elements having same data type.

 1. Declaration and Initialization:

 e.g: int mark[5]; //declaration

 mark[5] = {19, 10, 8, 17, 9}; //initialization

2. TYPES OF ARRAYS:

 2.1. One dimensional (1 - D) arrays or Linear arrays:

Consider a single dimensional array as A[lb ------ ub]

The base address of array = BA

Size of each element in array = c

Total elements in array is given by (ub-lb+1)

https://byjusexamprep.com/

byjusexamprep.com

11

Then address of any random element A[i] is given by = BA + (i-lb+1)*c

2.2. Two dimensional (2 - D) arrays or Matrix arrays: 2-D arrays can be stored in

the system in two ways: Row Major order and Column Major order.

E.g: A[lb 1----- ub 1] [lb 2------ ub 2]

 The base address of array = BA

Size of each element in array = c

Number of rows = ub1-lb1+1

Number of columns = ub2-lb2+1

2.2.1. Row Major order:

 Address of A[i][j] = BA + [(i - lb1)×(ub2 – lb2 + 1) + (j – lb2)] ×c

2.2.2. Column Major order:

 Address of A[i][j] = BA + [(j – lb2) ×(ub1 – lb1 + 1) + (i – lb1)] ×c

3. POINTERS & ARRAYS: An array variable is just a pointer to the first element

in the array.

 A[i] ≡ *(A+i)

 A[i][j] ≡ *(*(A+i) + j)

 A[i][j] ≡ *(A[i] + j)

 &A[i][j] ≡ *(A+i) + j

 4. STRINGS: Strings are defined as an array of characters. The difference between a character

array and a string is that the string is terminated with a special character ‘\0’(Null character).

 Syntax: char str_name[size];

https://byjusexamprep.com/

byjusexamprep.com

12

 e.g: char c[] = "abcd";

¶ STRUCTURE: Structure is a user-defined datatype in C language which allows us to combine data

of different types together.

1. DEFINING A STRUCTURE:

struct [structure_tag]

{

 //member variable 1

 //member variable 2

 //member variable 3

 ...

}[structure_variables];

 1.1 . DECLARING STRUCTURE VARIABLES:

 struct student

 {

 //member variables

 }s1,s2; //declaration

 Struct student s3,s4; //declaration

1.2. ACCESSING STRUCTURE MEMBERS: In order to assign a value to any

structure member, the member name must be linked with the structure variable

using a dot (.) operator also called period or member access operator.

 Syntax: s1. member_variable_name

2. SELF REFERENTIAL STRUCTURES: Structures pointing to the same type of structures

are self-referential in nature.

 e.g: struct node {

 int data1;

 char data2;

 struct node* link;

};

2.1. Types of Self Referential Structures:

2.1.1. Self Referential Structure with Single Link.

2.1.2. Self Referential Structure with Multiple Links.

https://byjusexamprep.com/

byjusexamprep.com

13

 3. APPLICATIONS : Self referential structures are very useful in creation of other complex

data structures like:

3.1. Linked Lists

3.2. Stacks

3.3. Queues

3.4. Trees

3.5. Graphs etc.

ǒ UNIONS: A union is a special data type available in C that allows to stores different data types

in the same memory location.

1. Defining a Union:

 union [union tag] {

member definition;

 member definition;

 ...

 member definition;

 } [one or more union variables];

e.g: union Data {

 int i;

 float f;

 char str[20];

} data;

2. Accessing Union Members: To access any member of a union, we use the member access

operator (.).

 e.g: data.i or data.f or data.str[5]

¶ LINKED LIST: Linked List is a linear data structure which consists of group of nodes in a sequence.

1. Operations:

 1.1. Insertion.

 1.2. Deletion.

 1.3. Traversing.

2. TYPES OF LINKED LIST:

 2.1. Singly Linked list:

https://byjusexamprep.com/
https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/binary-tree-data-structure/
https://www.geeksforgeeks.org/graph-and-its-representations/

byjusexamprep.com

14

2.2. Doubly linked list:

 2.3. Circular Linked List:

3. TIME COMPLEXITY:

Operations Ÿ Insertion Deletion

Types of Linked

list

Ź

At Starting At Middle At End At Starting At Middle At End

Singly Linked List 0(1) 0(n) 0(1) 0(n) 0(n) 0(n)

Doubly Linked List 0(1) 0(n) 0(1) 0(1) 0(n) 0(n)

Circular

Linked List
0(1) 0(n) 0(1) 0(n) 0(n) 0(n)

https://byjusexamprep.com/

byjusexamprep.com

15

 Chapter 4 : Stacks & Queues

¶ STACKS: A stack is a last in first out (LIFO) abstract data type and data structure.

1. Stack Operations:

1.1. PUSH: Inserting an item into a stack.

1.2. POP: Deleting an item from the stack.

1.3. PEEK: Displaying the contents of the stack.

¶ EXPRESSION NOTATION:

1. Infix Expression: Here, the binary operator comes between the operands. It is of the

form <left><data><right> or <operand><operator><operand>.

e.g: (a+b)/c

2. Postfix Expression: Here, the binary operator comes after both the operands. It is of the

form <left><right><data> or <operand><operand><operator>. A postfix expression is a

parenthesis-free expression. For evaluation, we evaluate it from left-to-right. It is also known

as Polish Notation.

e.g: ab+c/

3. Prefix Expression: Here, the binary operator comes before both the operands. It is of

the form <data><left><right> or < operator > < operand > < operand >. It is also known

as Reverse Polish Notation.

e.g: /+abc

¶ APPLICATIONS OF STACK:

1. Infix to Postfix: Operator stack is used for infix to postfix conversion.

 e.g: Infix : (A+B)/C to Postfix : AB+C/

Stack Input Output

Empty (A+B)/C -

(A+B)/C -

(+B)/C A

(+ B)/C A

(+)/C AB

Empty /C AB+

/ C AB+

/ END AB+C

Empty END AB+C/

https://byjusexamprep.com/

byjusexamprep.com

16

 2. Postfix Evaluation: Operand stack is used for evaluation. Scan the postfix expression

from left to right.

 e.g: 75+6/

Step
Input

Symbol
Operation Stack Calculation

1. 7 Push 7

2. 5 Push 7,5

3. + Pop (2 elements & evaluate) Empty 7+5 = 12

4. Push result (30) 12

5. 6 Push 12, 6

6. / Pop (2 elements & evaluate) Empty 12/6 = 2

7. Push result (2) 2

8. No-more elements (pop) Empty 2 (Result)

3. Prefix Evaluation: Operand stack is used for evaluation. Scan the prefix expression from

right to left.

 e.g: /+756

Symbol Opnd1 Opnd2 Value Opndstack

6 6

5 6, 5

7 6, 5, 7

+ 7 5 12 6

 6, 12

/ 12 6 2 Empty

 2

https://byjusexamprep.com/

byjusexamprep.com

17

 4. Prefix to Postfix:

 e.g: Prefix : + - 435 to Postfix : 43 - 5+

Symbol Opnd1 Opnd2 Value Opndstack

5 5

3 5, 3

4 5, 3, 4

- 4 3 43- 5

 5, 43-

+ 43- 5 43-5+

 43 - 5+

5. Recursion using Stacks: In recursion the last function called needs to be completed first.

As Stack is a LIFO data structure i.e. (Last In First Out) and hence it is used to implement

recursion.

¶ QUEUES: Queues follow the First In First Out (FIFO) i.e. the first element that is added to the

queue is the first one to be removed. Elements are always added to the back and removed from

the front.

1. Queue Operations :

 1.1. Enqueue : Inserting an item into a queue.

 1.2 . Dequeue : Deleting an item from the queue.

¶ TYPES OF QUEUES:

1. Simple Queue: Insertion occurs at the rear (end) of the queue and deletions are performed

at the front (beginning) of the queue list.

All nodes are connected to each other in a sequential manner.

https://byjusexamprep.com/

byjusexamprep.com

18

2. Circular Queue: A circular queue overcomes the problem of un-utilized space in

linear queues implemented as arrays.

2.1. If : (Rear+1) % n == Front, then queue is Full

2.2. If Front = Rear, the queue will be empty.

3. Priority Queue: While the deletion is performed in accordance with priority number (the

data item with highest priority is removed first), insertion is performed only in the order.

4. Doubly Ended Queue (Deque): The doubly ended queue or deque allows the insert and

delete operations from both ends (front and rear) of the queue.

https://byjusexamprep.com/

byjusexamprep.com

19

¶ APPLICATIONS OF QUEUE:

1. Breadth first Search can be implemented.

2. CPU Scheduling.

3. Handling of interrupts in real-time systems.

4. Routing Algorithms.

5. Computation of shortest paths.

6. Computation a cycle in the graph.

https://byjusexamprep.com/

byjusexamprep.com

20

 Chapter 5 : Trees

¶ TREES: A tree is a non-linear data structure designated at a special node called the root and

elements are arranged in levels without containing cycles.

1. TYPES OF TREES:

1.1. Binary Tree: It is a special type of tree where each node of tree contains either 0

or 1 or 2 children.

Time Complexities:

Insertion: O(n) {Every Case}

Deletion: O(n) {Every Case}

1.2. Types of Binary Trees:

1.2.1. Full Binary Tree: If each node of binary tree has either two children or

no child at all, is said to be a Full Binary Tree .

1.2.2. Complete Binary Tree: If all levels of tree are completely filled except

the last level and the last level has all keys as left as possible, is said to be

a Complete Binary Tree .

1.2.3. Skewed Binary Tree: If a tree which is dominated by left child node

or right child node, is said to be a Skewed Binary Tree .

1.2.4. Strict Binary Tree: If every non-leaf node in a binary tree has nonempty

left and right subtrees, the tree is called a strict binary tree. A strict binary tree

with n leaves always contains 2n -1 nodes.

https://byjusexamprep.com/

byjusexamprep.com

21

1.2.5. Binary Search Tree: A Binary Search Tree (BST) is a tree in which all

the nodes follow the below-mentioned properties −

left subtree (keys) ≤ node (key) ≤ right subtree (keys)

Time Complexities:

Insertion: O(n) {worst Case}

O(1) { Best Case}

 O(logn) { Average Case}

Deletion: O(n) {worst Case}

O(1) { Best Case}

 O(logn) { Average Case}

2. TREE TRAVERSAL:

2.1. Pre - order : (D, L, R)

2.2. In - order : (L, D, R)

2.3. Post - order : (L, R, D)

¶ BINARY HEAPS: Heap is a special case of balanced binary tree data structure where the root-

node key is compared with its children and arranged accordingly.

1. Min - Heap − Where the value of the root node is less than or equal to either of its children.

The same property must be true for all subtrees.

 2. Max - Heap − Where the value of the root node is greater than or equal to either of its

children. The same property must be true for all subtrees.

¶ AVL TREE: AVL tree is a height balanced tree. It is a self-balancing binary search tree.

https://byjusexamprep.com/

byjusexamprep.com

22

Balance Factor = Height of left subtree – Height of right subtree

Domain of Balance Factor = { - 1, 0, +1}

Time Complexities: Insertion: O(logn)

Deletion: O(logn)

 1. Types of Rotations:

 1.1. Left Rotation (LL - Rotation)

 1.2. Right Rotation (RR - Rotation)

 1.3. Left - Right Rotation (LR - Rotation)

 1.4. Right - Left Rotation (RL - Rotation)

ǒ Graphs: It is a collection of vertices and edges connecting two such vertices. It is

represented as G(V, E) where V is the set of vertices and E is the set of edges.

1. Graph Operations:

 1.1. Add Vertex

 1.2. Add Edge

 1.3. Display Vertex

2. Types of Graphs :

 2.1. NULL Graph: A graph having no edges is called a Null Graph.

2.2. Trivial Graph: A graph with only one vertex is called a Trivial Graph.

2.3. Non - Directed Graph: A non-directed graph contains edges, but the edges are not

directed ones.

2 .4. Directed Graph: In a directed graph, each edge has a direction.

https://byjusexamprep.com/

byjusexamprep.com

23

2.5. Simple Graph: A graph with no loops and no parallel edges is called a simple graph.

The number of simple graphs possible with ‘n’ vertices = 2n(n-1)/2.

2.6. Connected Graph: A graph G is said to be connected if there exists a path between

every pair of vertices.

2.7. Disconnected Graph: A graph G is disconnected if it does not contain at least two

connected vertices.

2.8. Regular Graph: A graph G is said to be regular, if all its vertices have the same

degree. In a graph, if the degree of each vertex is ‘k’, then the graph is called a ‘k-regular

graph’.

https://byjusexamprep.com/

byjusexamprep.com

24

2.9. Cycle Graph: A simple graph with ‘n’ vertices (n >= 3) and ‘n’ edges is called a cycle

graph if all its edges form a cycle of length ‘n’.

ǒ Graph Traversal:

1. DFS (Depth First Search): The result of a DFS traversal of a graph is a spanning

tree. Spanning Tree is a graph without loops. We use Stack data structure with maximum

size of total number of vertices in the graph to implement DFS traversal.

Time complexity : O(V + E) when Adjacency List is used

O(V2) when Adjacency Matrix is used

2. BFS (Breadth First Search): Breadth First Search (BFS) algorithm traverses a graph in

a breadth-ward motion and uses a queue to remember to get the next vertex to start a

search, when a dead end occurs in any iteration.

Time complexity : O(V + E) when Adjacency List is used

O(V2) when Adjacency Matrix is used

https://byjusexamprep.com/

