Volumetric Strain

Volumetric strain is defined as the ratio of change in the volume of a body to its original volume due to the application of some external deformation-causing forces. It is also known as Dilation and is important for the GATE exam. The general equation for volumetric strain is given as -

$$
E_{v}=\Delta V / V
$$

where

- $\Delta \mathrm{V}=$ change in volume
- $V=$ original volume

Bulk Modulus (K): When a body is subjected to stresses of equal intensity in 3 mutually perpendicular directions, then the ratio of this direct stress to the volumetric strain is called Bulk modulus. It is generally denoted by K .

$$
\mathrm{K}=\text { Direct Stress/Volumetric strain }=\sigma / \mathrm{Ev}
$$

Volumetric Strain for Rectangular Bar

This section will derive the volumetric strain formula for a rectangular bar. To define volumetric strain expression for a rectangular bar, let us assume a rectangular prismatic member of length L, width B, and depth D subjected to triaxial stresses, as shown in the figure below.

The initial volume of the rectangular bar,

$$
V=L \times B \times D
$$

The change in volume due to the applied stresses,

$$
\Delta V=\delta L \times B \times D+L \times \delta B \times D+L \times B \times \delta D
$$

We know that volumetric strain,

$$
\begin{gathered}
\mathrm{Ev}=\Delta \mathrm{V} / \mathrm{V} \\
\mathrm{Ev}=\delta \mathrm{L} / \mathrm{L}+\delta \mathrm{B} / \mathrm{B}+\delta \mathrm{D} / \mathrm{D}
\end{gathered}
$$

We know that,

$$
\begin{aligned}
& \delta L / L=E_{x} \text { (strain in the } x \text {-direction) } \\
& \delta B / B=E_{y} \text { (strain in the } y \text {-direction) } \\
& \text { and } \delta D / D=E_{z} \text { (strain in the z-direction) }
\end{aligned}
$$

So,

$$
\mathrm{E}_{v}=\mathrm{E}_{x}+\mathrm{E}_{y}+\mathrm{E}_{z} \ldots . . \text { (i) }
$$

We also know that,

$$
\begin{gathered}
\mathrm{E}_{x}=\sigma_{x} / \mathrm{E}-\mu \sigma_{y} / \mathrm{E}-\mu \sigma_{z} / \mathrm{E} \\
\mathrm{E}_{y}=\sigma_{y} / \mathrm{E}-\mu \sigma_{x} / \mathrm{E}-\mu \sigma_{z} / \mathrm{E} \text { and } \\
\mathrm{E}_{z}=\sigma_{z} / \mathrm{E}-\mu \sigma_{x} / \mathrm{E}-\mu \sigma_{z} / \mathrm{E}
\end{gathered}
$$

where

- $\mu=$ Poisson's ratio
- $E=$ Young's modulus of elasticity

Putting the value of x, y and z in equation (i)

$$
\begin{gathered}
\mathrm{Ev}=\sigma_{x} / \mathrm{E}-\mu \sigma_{y} / \mathrm{E}-\mu \sigma_{z} / \mathrm{E}+\sigma_{y} / \mathrm{E}-\mu \sigma_{x} / \mathrm{E}-\mu \sigma_{z} / \mathrm{E}+\sigma_{z} / \mathrm{E}-\mu \sigma_{x} / \mathrm{E}-\mu \sigma_{z} / \mathrm{E} \\
\mathrm{Ev}=(1-2 \mu)\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) / \mathrm{E}
\end{gathered}
$$

Volumetric Strain for Cylindrical Rod

In this section, we will derive the volumetric strain formula for a cylindrical rod. To define volumetric strain expression for a cylindrical rod, let us assume a cylindrical rod of length L and diameter d as shown in the figure below

The initial volume of the cylindrical rod,
$\mathrm{V}=(\pi / 4) \mathrm{d}^{2} . \mathrm{L}$
The change in volume due to applied stresses
$\Delta V=(\pi / 4)\left[\mathrm{d}^{2} . \delta \mathrm{L}+\mathrm{L} .2 \mathrm{~d} \delta \mathrm{~d}\right]$
We know that volumetric strain,
$\mathrm{Ev}=\Delta \mathrm{V} / \mathrm{V}$
$E v=[\delta L / L+2 . \delta d / d]$
We know that,
$\delta \mathrm{L} / \mathrm{L}=\mathrm{EL}$ (strain in the longitudinal direction)
$\delta \mathrm{d} / \mathrm{d}=\mathrm{E}_{\mathrm{d}}$ (strain in the radial direction)
So,

$$
E_{v}=E_{L}+2 E_{d}
$$

Volumetric Strain for a Spherical Body

In this section, we will derive the volumetric strain formula for a spherical body. To define volumetric strain expression for a spherical body, let us assume a sphere of diameter d , as shown in the figure below.

The initial volume of the sphere,
$V=(\pi / 6) d^{3}$
The change in volume due to applied stresses
$V=(\pi / 6) .3 \delta d . d^{2}$
We know that volumetric strain,
$\mathrm{Ev}=\Delta \mathrm{V} / \mathrm{V}$
$E v=3 \delta d / d$
$E v=3 E_{d}$

