Parallelogram Law of Vectors

Suppose the magnitude and direction of two vectors acting simultaneously on a particle are represented by the two adjacent sides of a parallelogram drawn from a point. In that case, the resultant is wholly represented in magnitude and direction by the diagonal of that parallelogram formed from that point.

Let two vectors, P and Q operate on a particle O simultaneously. They are represented by the neighboring sides OA and OB of a parallelogram OACB formed from a point O in magnitude and direction. The diagonal OC running across O will thus indicate the size and direction of the consequent R .

If a body of unknown weight (say S) is suspended from the middle hanger of Gravesand's apparatus, and balancing weights P and Q are strung from the other two hangers, then

```
\(\vec{R}=\vec{P}+\vec{Q}\)
or
\(R=\sqrt{P^{2}+Q^{2}+2 P Q \cos \theta}\)
```


Formula of the Parallelogram Law of Vectors

Consider two vectors P and Q separated by an angle θ. The vector R, the resultant sum vector of the parallelogram law of vector addition, gives the sum of vectors P and Q. The formulas for the magnitude and direction of the resulting vector R , if it forms an angle ϕ with the vector P , are:

$$
\begin{aligned}
& \text { - }|R|=\sqrt{ }\left(P^{2}+Q^{2}+2 P Q \cos \theta\right) \\
& \text { - } \beta=\tan ^{-1}[(Q \sin \theta) /(P+Q \cos \theta)]
\end{aligned}
$$

Derivation of Parallelogram Law of Vectors

Let P and Q be two vectors acting at the same time at a point and represented in magnitude and direction by two adjacent sides OA and OD of the parallelogram OABD seen in the figure.

Let θ the angle formed by P and Q , and R be the resulting vector. The resultant of P and Q is therefore represented by diagonal OB , according to the parallelogram law of vector addition.

The magnitude of resultant

So, we have
$R=P+Q$

Now, expand A to C and draw $B C$ perpendicular to $O C$.

From triangle OCB,

$$
\begin{gather*}
O B^{2}=O C^{2}+B C^{2} \\
o r, O B^{2}=(O A+A C)^{2}+B C^{2} \tag{i}
\end{gather*}
$$

In triangle $A B C$,

$$
\begin{aligned}
& \cos \theta=\frac{A C}{A B} \\
& \text { or, } A C=A B \cos \theta \\
& \text { or, } A C=O D \cos \theta=Q \cos \theta \quad[\because A B=O D=Q]
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \cos \theta=\frac{B C}{A B} \\
& \text { or }, B C=A B \sin \theta \\
& \text { or }, B C=O D \sin \theta=Q \sin \theta \quad[\because A B=O D=Q]
\end{aligned}
$$

Direction of Resultant

Let \varnothing be the angle formed by the resultant R with P . Then, From the OBC triangle given in figure shown above.

Substituting value of $A C$ and $B C$ in (i), we get

$$
\begin{aligned}
R^{2} & =(P+Q \cos \theta)^{2}+(Q \sin \theta)^{2} \\
\text { or, } R^{2} & =P^{2}+2 P Q \cos \theta+Q^{2} \cos ^{2} \theta+Q^{2} \sin ^{2} \theta \\
\text { or, } R^{2} & =P^{2}+2 P Q \cos \theta+Q^{2} \\
\therefore R & =\sqrt{P^{2}+2 P Q \cos \theta+Q^{2}}
\end{aligned}
$$

which is the magnitude of resultant.

