

Important Questions on Thermochemistry

Important Questions on Thermochemistry

- 1. One mole of naphthalene was burnt in oxygen gas at constant volume and produces carbon dioxide gas and liquid water at 25°C. The heat evolved was found to be 5138.8 kJ. Calculate the enthalpy of the reaction. $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$.
- A. -5143.8 kJ
- B. -403.21 kJ
- C. -382.65 kJ
- D. -636.24 kJ
- 2. For glucose $C_6H_{12}O_6(s)$, the enthalpy of combustion is $-2816~kJ~mol^{-1}$ at 25° C. Calculate ΔH_f° ($C_6H_{12}O_6$). The ΔH_f° values for $CO_2(g)$ and $H_2O(I)$ are -393.5 and $-285.9~kJ~mol^{-1}$, respectively.
- A. -1360.2 kJ mol-1
- B. -1132.4 kJ mol⁻¹
- C. -1260.4 kJ mol⁻¹
- D. -1462.3 kJ mol⁻¹
- 3. The heat evolved on dissolving CuSO₄(s) in water is 86.6 kJ mol⁻¹. If $\Delta H^{\circ}_{f}(Cu^{2+})$ is 64.4 kJ mol⁻¹, what is $\Delta H^{\circ}_{f}(SO_{4}^{2-})$? $\Delta H^{\circ}_{f}(CuSO_{4}(s)) = -770.0$ kJ mol⁻¹
- A. 642.3 kJ
- B. 543.8 kJ
- C. 747.8 kJ
- D. 345.9 kJ
- 4. In a bomb calorimeter, cyanamide was subjected to combustion at constant volume and the heat evolved was found to be 742.7 kJ at 25°C. Calculate q_p for the reaction.
- A. 643.2 kJ
- B. 452.8 kJ
- C. 741.5 kJ
- D. 327.8 kJ
- 5. Determine the enthalpy of formation of OHions at 25°C from the following thermochemical data: $H_2O(I) \rightarrow H^+(aq) + OH^-$ (aq); $\Delta H^\circ = 57.3 \text{ kJ}$

$$H_2(g) + \frac{1}{2} \, O_2(g) \rightarrow H_2O(I); \, \Delta H^\circ \text{=-}285.9 \; \text{kJ}$$

- A. 324.8 kJ
- B. 228.6 kJ
- C. 278.5 kJ
- D. 356.8 kJ

6. The enthalpy of reaction (ΔH) for the formation of ammonia according to the reaction:

 $N_2 + 3H_2 = 2NH_3$ at 27°C was found to be -91.94 kJ.

What will be the enthalpy of reaction (ΔH) at 50°C? The molar heat capacities at constant pressure and at 27°C for nitrogen, hydrogen and ammonia are 28.45, 28.32 and 37.07 joules, respectively.

- A. 78.85 kJ
- B. 62.70 kJ
- C. 56.35 kJ
- D. 92.85 kJ
- 7. Calculate the enthalpy change at 125° C for the reaction:

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g);$

The molar heat capacities (in J K⁻¹ mol⁻¹) for the various gases involved in the reaction vary with temperature as follows:

$$\begin{split} &C_p(N_2) = 27.26 + 5.23 \times 10^{-3} \, T - 4.18 \times 10^{-9} \, T^2 \\ &C_p(H_2) = 29.02 - 8.35 \times 10^{-4} \, T + 20.80 \times 10^{-7} \, T^2 \\ &C_p(NH_3) = 25.86 + 32.94 \times 10^{-2} \, T - 30.42 \times 10^{-7} \, T^2 \end{split}$$

- A. 83.20 kJ
- B. 96.50 kJ
- C. 45.60 kJ
- D. 76.83 kJ
- 8. H_2 gas is mixed with air at 25°C under the pressure of one atmosphere and explodes in a closed vessel. The enthalpy of reaction $H_2(g)$ + 1/2 $O_2(g) \rightarrow H_2O(g)$ at constant volume, ΔU_{298} = -240.6 kJ and C_Ps for H_2O vapour and N_2 in the temperature range 298 K and 3,200 K are 39.1 J K⁻¹ and 36.4 J K⁻¹, respectively. Calculate the explosion temperature under adiabatic conditions.
- A. 3216 K
- B. 4230 K
- C. 2916 k
- D. 5200 K

9. 0.50 g of benzoic acid was subjected to combustion in a bomb calorimeter when the temperature of the calorimeter system (including water) was found to rise by 0.55°C. Determine the enthalpy of combustion of benzoic acid. The ΔT calorimeter constant was found to be 23.85 kJ K⁻¹.

 $A. - 3234.7 \text{ kJ mol}^{-1}$

 $B. - 2301.9 \text{ kJ mol}^{-1}$

 $C. - 4032.6 \text{ kJ mol}^{-1}$

D. - 3201.9 kJ mol⁻¹

10. For the hypothetical reaction: $2B(g) \rightarrow B_2(g)$, ΔC_P (in joules) = $6.0 + 2.0 \times 10^{-3}$ T and ΔH°_{298} = - 20.0 kJ mol $^{-1}$. Estimate the temperature at which ΔH° = 0 for this reaction.

A. 2527 K

B. 3245 K

C. 1234 K

D. 1200 K

ANSWER KEY						
1. A	2. C	3. C	4. C	5. B	6. D	
7. B	8. C	9. D	10. A			

Solutions:

Solution 1.

The thermochemical equation for the reaction can be written as

 $C_{10}H_8(s) + 12O_2(g) \rightarrow 10CO_2(g) + 4H_2O(I)$; $q_v = -5138.8$

The number of moles of gaseous reactants, $n_1 = 12$.

The number of moles of gaseous products, $n_2 = 10$.

Hence,

 $\Delta n_g = n_2 - n_1 = 10 - 12 = -2$

 $q_p = q_v + \Delta n_g RT$

Substituting the various value in above equation as:

 $q_p = -5138.8 \text{ kJ} - 2 \text{ mol} \times 8.314 \times 10^{-3} \text{ kJ K}^{-1}$ $mol^{-1} \times 298 \text{ K} = -5143.8 \text{ Kj}$

Solution 2.

 $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I); \Delta H^\circ = -2816 \text{ kJ}$

Since,

 $\Delta H = \Sigma \Delta H^{\circ}_{f \text{ (products)}} - \Sigma \Delta H^{\circ}_{f \text{(reactants)}}$

 $-2816 \text{ kJ} = 6(-393.5 \text{ kJ mol}^{-1}) + 6(-285.9 \text{ kJ})$

 mol^{-1}) $-\Delta H^{\circ}_{f}(C_{6}H_{12}O_{6}) - 6\Delta H^{\circ}_{f}(O_{2})$

 $\Delta H_f^{\circ}(O_2) = 0$

On solving,

 $\Delta H_{f}^{\circ} (C_{6}H_{12}O_{6}) = -1260.4 \text{ kJ mol}^{-1}$

Solution 3.

 $CuSO_4(s) \rightarrow Cu^{2+}(aq) + SO_4^{2-}(aq)$

 $\Delta H = \Delta H^{\circ}_{f}(Cu^{2+}) + \Delta H^{\circ}_{f}(SO_{4}^{2-}) - \Delta H^{\circ}_{f}(CuSO_{4})(s)$

Rearrange and substitute the given values,

 $\Delta H_{f}^{\circ}(SO_{4}^{2-}) = -747.8 \text{ kJ}$

Solution 4.

 $NH_2CN(s) + 3/2O_2(g) \rightarrow N_2(g) + CO_2(g) + H_2O(l)$

 $\Delta n_g = 1 + 1 - 3/2 = 1/2$

 $q_p = q_v + \Delta n_g RT = -742.7 \text{ kJ} + (0.5 \text{ mol}) (8.314 \text{ J})$

 $K^{-1} \text{ mol}^{-1}$)(298 K)/1000 J kJ⁻¹

= [-742.7 kJ + 1.240 kJ] = -741.5 kJ

Solution 5.

Add the two equations,

 $H_2(g) + 1/2O_2(g) \rightarrow H^+(aq) + OH^-(aq)$

 $\therefore \Delta H^{\circ} = -228.6 \text{ kJ} = 0 + \Delta H^{\circ}_{f}(OH^{-}(aq)) - (0 + 0),$

since, by convention, $\Delta H^{\circ}_{f}[H^{+}(aq)] = 0$,

∴ $\Delta H^{\circ}_{f}[OH^{-}(aq)] = -228.6 \text{ kJ}$

Solution 6.

According to the Kirchhoff equation,

 $d(\Delta H) = \Delta C_P dT \text{ or } \Delta H_2 - \Delta H_1(T_2 - T_1) = \Delta C_P$

In the present case,

 $\Delta H_1 = -91.94 \text{ kJ}$; $T_1 = 27 + 273 = 300 \text{ K and } T_2 =$

50 + 273 = 323 K

 ΔC_P = Heat capacities of products minus heat capacities of reactants,

 $= 2 \times 37.07 \text{ J K}^{-1} - (28.45 \text{ J K}^{-1} + 3 \times 28.32 \text{ J K}^{-1})$

 $= 39.28 \text{ J K}^{-1} = -39.28 \times 10^{-3} \text{ kJ K}^{-1}$

If the heat capacities do not change with temperature, ΔH_2 , at 50°C, will be given as:

 $\Delta H_2 = \Delta H_1 + (T_2 - T_1) \Delta C_P$

 $= -91.94 \text{ kJ} + (323 \text{ K} - 300 \text{ K}) (-39.28 \times 10^{-3} \text{ kJ})$

 K^{-1}) = -92.85 kJ

Solution 7.

$$\Delta H_2 - \Delta H_1 = \int_{T_1}^{T_2} \Delta C_p dT$$

Let us first calculate ΔC_p .

$$\Delta C_p = -2C_p(NH_3) - [C_p(N_2) + 3C_p(H_2)]$$

Substituting the given data, the value of ΔC_p is given by:

$$\Delta C_p = -62.60 + 63.14 \times 10^{-3} \, T - 123.20 \times 10^{-7} T^2$$
 Hence,

$$\begin{array}{lll} \Delta H_2 & - & \Delta H_1 & = \\ \int\limits_{T_2}^{T_2} \left[-62.60 + 63.14 \times 10^{-3} \, T - 123.20 \times 10^{-7} \, T^2 \right] dT \\ T_1 & \\ Or, & \\ \Delta H_{398} - \Delta H_{298} = \left[-62.60 \, + \, 63.14 \, \times \, 10^{-3} T^2 / 2 \, - \right. \\ 123.20 \times 10^{-7} T^3 / 3 \, \big]_{798}^{398} & \\ \end{array}$$

Simplifying and putting ΔH_{298} = -92.41 kJ, ΔH_{398} = -96.50 Kj

Solution 8.

For a constant volume process under adiabatic conditions:

$$\Delta U = \Delta U_{heating} + \Delta U_{298} = 0$$

Hence,

$$\Delta U_{heating} = \Delta U_{298} = -\int_{298}^{T_f} \Sigma nC_V dT = -240.60 \text{ kJ}$$

Since 2 moles of unreacted N_2 are associated with 1/2 mole of O_2 ,

$$\Sigma nC_v = C_v(H_2O, g) + 2C_v(N_2, g) = (39.1 + 2 \times 26.4)$$

J K⁻¹ = 91.9 J K⁻¹

Hence, from Eq. (i), on integrating, we have $91.9 \text{ J K}^{-1} (T_f - 298) = 240,600 \text{ J}$

$$T_f - 298 = 240,600 \text{ J/}91.9 \text{ J K}^{-1} = 2618 \text{ K}$$

$$T_f = (2618 + 298) K = 2916 K$$

Solution 9.

$$q_v = c \times \theta \times M/m$$

= 23.85 kJ K⁻¹ × 0.55 K × 122 g mol⁻¹/0.50 g =

 $3200.7 \text{ kJ mol}^{-1} = -3200.7 \text{ kJ mol}^{-1}$

$$C_6H_5COOH(s) + \frac{15}{2}O_2(g) \rightarrow 7CO_2(g) + 3H_2O(I)$$

We know that,

$$q_p = q_v + \Delta n_g RT$$
; $\Delta n = 7 - 7.5 = -0.5$
 $q_p = -3200.7 \text{ kJ mol}^{-1} + (-0.5) (8.314 \times 10^{-3} \text{ kJ} \text{ K}^{-1} \text{ mol}^{-1}) (298 \text{ K}) = -3201.9 \text{ kJ mol}^{-1}$

Solution 10.

Using the Kirchhoff equation,

$$\Delta H_2 = \Delta H_1 + \int_{T_1}^{T_2} (\Delta C_P) dT$$

$$0 = -20,000 - \int_{298}^{T} (6.0 + 2.0 \times 10^{-3} \text{ T}) dT$$

$$20,000 = [(6.0)(T - 298] + [(1.0 \times 10^{-3})(T^2 - (298)^2] = T - 1788 + 1 \times 10^{-3} T^2 - 88.8$$

 $10^{-3} T^2 + 6T - 1,876.8 = 0$

This is a quadratic equation in T which, when solved, gives two roots – one positive and the other negative. The negative root has no physical significance. The positive root gives T = 2527 K.

CRASH COURSES

Enrol for Ongoing CSIR NET Crash Courses

