

Important Questions On Chemical Equilibrium

https://byjusexamprep.com

Important Questions on Chemical Equilibrium

1. Calculate K_c for the reaction $2SO_3(g) \implies 2SO_2(g) + O_2(g)$ for which $K_p = 3.5 \times 10^{-23}$ atm at 27°C. A. 1.42×10^{-24}

B. 1.42×10⁻²⁸

C. 1.42×10⁻³⁰

C. 1.42 \times 10

D. 1.42×10⁻³⁹

2. At 30°C, K_p for the dissociation reaction, SO₂Cl₂(g) \implies SO₂(g) + Cl₂(g) is 2.9 × 10⁻² atm. If the total pressure is 1 atm, then calculate the degree of dissociation of SO₂Cl₂(Assume $\alpha << 1$).

A. 0.29

B. 0.17

C. 0.32

D. 0.56

3. For a homogeneous gaseous reaction, $AB_2(g) \implies A(g) + 2B(g)$

The volume is 10 L and temperature is 300 K. Initially, the flask contains 0.4 mole of AB_2 . The total pressure of the reaction mixture, after the attainment of equilibrium, is 1.2 atm. Calculate K_p .

A. 5.607×10⁻³

B. 4.308×10⁻³

C. 5.607×10⁻⁴

D. 4.308×10⁻⁴⁴

4. Consider the homogeneous gaseous reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ carried out in a vessel at a temperature T. When 1 mole of H_2 and 3 moles of I_2 are mixed, a certain amount of HI will be formed. When 2 additional moles of H_2 are introduced, the amount of HI formed becomes doubled the earlier amount. What is the value of K_p ?

A.6

B. 2

C. 4

D. 10

5. At 25°C, for the reaction $Br_2(I) + Cl_2(g) \implies 2BrCl(g)$, $K_p = 2.032$. At the same temperature,

the vapour pressure of $Br_2(I)$ is 0.281 atm. Pure BrCl(g) was introduced into a closed container with adjustable volume. The total pressure was kept at 1 atm and the temperature at 25°C. Calculate the fraction of BrCl originally present that has been converted into Br_2 and Cl_2 at equilibrium assuming that the gaseous species behave ideally.

A.0.256

B. 0.357

C. 0.687

D. 0.456

6. For the reaction, $H_2(g) + S(g) \Longrightarrow H_2S(g)$ The equilibrium constant K_p is 20.2 atm⁻¹ at 945°C and 9.1 atm⁻¹ at 1.065°C. Calculate ΔH° . A. -88.126 kJ/mol B. +88.126 kJ/mol C. -48.923 kJ/mol D. +48.923 kJ/mol

7. The following data were obtained for the temperature-dependence of the equilibrium constant of an inhibitor binding an enzyme. Determine the value of ΔG° (in kJ/mol) for this process at 25°C.

T(°C) 16.0 21.1 25.0 31.9 37.5 K_c 7.25 5.25 4.17 2.66 2.01(× 10⁷) A. -23.5 B. +23.5 C. -43.5 D. +43.5

8. Calculate the equilibrium pressure at which graphite gets converted to diamond at 25°C, given that the densities of graphite and diamond are, respectively, 2.25 and 3.51 g cm⁻³ and are independent of pressure. ΔG°_{f} values for graphite and diamond are zero and 2.90 kJ mol⁻¹, respectively.

- A. 32000 atm
- B. 25000 atm
- C. 18000 atm
- D. None of the above

9. Calculate the partial pressure of HCl gas above a sample of NH₄Cl(s) because of its decomposition according to the reaction NH₄Cl(s) \implies NH₃(g) + HCl(g). ΔG°_{f} values of NH₄Cl(s), NH₃(g) and HCl(g) are – 202.96 kJ mol⁻¹. –16.48 kJ mol⁻¹ and –95.30 kJ mol⁻¹. respectively.

A. 1.02×10⁻⁶ B. 2.02×10⁻⁸ C. 2.02×10⁻⁶

D. 1.02×10⁻⁸

10. At 450°C and 600 atm pressure, the equilibrium constant for the reaction N₂(g) + 3H₂(g) \implies 2NH₃(g) is 4.516 × 10⁻⁵. Calculate the degree of the conversion of N₂ and H₂ to NH₃ assuming that the system is a mixture of real gases. Fugacity coefficients are $\gamma_{N_2} = 1.3238$, H₂ = 1.2874 and $\gamma_{NH_3} = 0.8548$.

- A. 0.56
- B. 0.43
- C. 0.68
- D. 0.24

ANSWER KEY						
1. A	2. B	3. A	4. C	5. B	6. A	
7. C	8. B	9. D	10. B			

SOLUTIONS

Solution 1. For the reaction,

 $2SO_{3}(g) \implies 2SO_{2}(g) + O_{2}(g),$ $\Delta n = 2 + 1 - 1 = 1$ $\therefore K_{c} = \frac{K_{p}}{(RT)^{\Delta n}} = \frac{3.5 \times 10^{-23}}{(0.08206 \text{ dm}^{3} \text{ atm } \text{K}^{-1} \text{ mol}^{-1} \times 300 \text{ K})} = 1.42 \times 10^{-24} \text{ mol } \text{dm}^{-3}$

Solution 2. For the given equilibrium,

 $K_{\rm p} = \alpha^2 P / (1 - \alpha^2)$

In the present case, K_p = 2.9 \times 10 $^{-2}$ atm ; P = 1 atm

:
$$2.9 \times 10^{-2}$$
 atm = $\alpha^2 (1 \text{ atm})/(1 - \alpha^2)$.

Since, K_p in this case is very small, α would also be very small so that $\alpha^2 \ll 1$ and can be neglected in the denominator giving $K_p = \alpha^2 P$

: Degree of dissociation at P = 1 atm, $\alpha = (K_p)^{1/2} = (2.9 \times 10^{-2})^{1/2} = 0.17$

Solution 3.
$$K_p = \frac{P_A P_B^2}{P_{AB_2}} = \frac{(x_A P)(x_B P)^2}{x_{AB_2} P} = \frac{x_A x_B^2 P^2}{x_{AB_2}}$$

Here, $x_i x$ are the mole fractions and P is the total equilibrium pressure.

Since $x_i = n_i/n_{total}$, $K_p = \frac{n_A n_B^2 P^2}{n_{AB_2}(n_{total})^2}$ (i)

Let y be the number of moles of A formed at equilibrium. Then,

 $AB_2(g) \Longrightarrow A(g) + 2B(g)$

0.40–y y 2y $n_{total} = (0.40 - y) + y + 2y = 0.40 + 2y$ Also, if the mixture behaves ideally, then, PV (1.20 atm) (10 dm³)

n_{total} =
$$\frac{FV}{RT}$$
 = $\frac{(1.20 \text{ atm})(10 \text{ dm})}{(0.08206 \text{ dm}^3 \text{ atm} \text{ K}^{-1})(300\text{ K})}$ = 0.487 mole
∴ 0.487 = 0.40 + 2y
y = 0.0435 mole
Hence, from Eq. (i),
 $K_p = \frac{y(2y)^2(1.20)^2}{(0.40 - y)(0.40 + 2y)^2}$ = 5.607×10⁻³

Solution 4. Since the number of moles of reactants and products is the same, so, $K_p=K_c=K_x$

Suppose in the first case, $n_{HI} = x$ so that $n_{H_2} = 1 - (x/2)$ and $n_{I_2} = 3 - (x/2)$ $\therefore K_p = x^2/(1 - x/2) (3 - x/2) \dots(i)$ In the second case, $n_{HI} = 2x$ so that $n_{H_2} = 3 - x$ and $n_{I_2} = 3 - x$

 $K_p = (2x)^2/(3-x)^2$ (ii)

Hence, from equations (i) and (ii),

nd (ii),
$$\frac{x^2}{\left(1-\frac{x}{2}\right)\left(3-\frac{x}{2}\right)} = \frac{(2x)^2}{(3-x)^2}$$

Neglecting x^2 in the denominator on both sides, cross-multiplying and simplifying, x = 3/2. Hence, from Eq (i) or (ii), $K_p = 4$.

Solution 5. Since for the reaction, $Br_2(I) + Cl_2(g) \implies 2BrCl(g), K_p = 2.032,$

Therefore, for the reverse reaction that is,

 $2BrCl(g) \Longrightarrow Br_2(l) + Cl_2(g),$

 $K_p = 1/K_p = 1/2.032 = 0.4921$

 $p_{BrCl} + p_{Br_2} + p_{Cl_2} = 1 atm$

:.
$$p_{BrCl} + p_{Cl_2} = 1 \text{ atm} - p_{Br_2} = (1 - 0.281) \text{ atm} = 0.719 \text{ atm}$$

Let n_0 be the number of moles of BrCl initially present and α be its degree of dissociation. Then, at equilibrium,

$$n_{BrCl} = n_0 / (1 - \alpha)$$

$$n_{Cl_2} = n_0 \times 1 / 2 (\alpha) \quad [\because BrCl \rightarrow \frac{1}{2}Cl_2]$$

$$n_{BrCl} + n_{Cl_2} = n_0 (1 - \alpha / 2)$$

$$\therefore p_{BrCl} = \left\{ \frac{n_0 (1 - \alpha)}{n_0 (1 - \alpha / 2)} \right\} (0.719 \text{ atm})$$

$$p_{Cl_2} = \left\{ \frac{1 / 2\alpha \times n_0}{n_0 (1 - \alpha / 2)} \right\} (0.719 \text{ atm})$$

$$K'_p = \frac{p_{Cl_2}}{(p_{BrCl})^2} = \frac{\alpha / 2(1 - \alpha / 2)}{(1 - \alpha)^2 \times 0.719} = 0.4921$$

This gives the quadratic equation 0.604 α^2 – 1.208 α + 0.354 = 0 whose solution yields α = 0.357.

Solution 6. According to the integrated Van't Hoff equation,

$$ln\left(\frac{K_{p2}}{K_{p1}}\right) = \frac{\Delta H^{\circ}}{R} \left(\frac{T_{2} - T_{1}}{T_{1}T_{2}}\right)$$

Or,
$$\Delta H^{\circ} = R ln\left(\frac{K_{p2}}{K_{p1}}\right) \left(\frac{T_{1}T_{2}}{T_{2} - T_{1}}\right) = (8.314 \text{ J K}^{-1} \text{ mol}^{-1}) ln (9.21/20.2) \left[\frac{(1218 \text{ K}) (1338 \text{ K})}{1338 \text{ K} - 1218 \text{ K}}\right]$$
$$= -88126.3 \text{ J mol}^{-1} = -88.126 \text{ kJ mol}^{-1}$$

Solution 7. Let us rewrite the data in the following form: T(K) 289 294.1 298 304.9 310.5 $1/T \times 100 3.46 3.40 3.36 3.28 3.22$ K_c/10⁷ 7.25 5.25 4.17 2.66 2.01

In K_c 18.10 17.78 17.55 17.10 16.81

A plot of ln K_c versus 1/T will give a straight line whose slope comes out to be 5.40×10^3 . At 25°C, K_c = 4.17×10^7 , hence, $\Delta G^\circ = - RT \ln K_c = -(8.314 \times 10^{-3} \text{ kJ K}^{-1} \text{ mol}^{-1})$ (298 K) ln 4.17×10^7 = $- 43.5 \text{ kJ mol}^{-1}$

Solution 8. This example is an application of the thermodynamic relation $[\partial(\Delta G) / \partial P]_T = \Delta V \dots(i)$ For the reaction,

C (graphite) \implies C (diamond),

 $\Delta G^{\circ} = \Delta G^{\circ}_{f}(diamond) - \Delta G^{\circ}_{f}(graphite) = 2.90 \text{ kJ} - 0 = 2.90 \text{ kJ mol}^{-1}$ $= (2.90 \text{ kJ mol}^{-1}) \times \frac{(0.08206 \text{ dm}^{3} \text{ atm } \text{K}^{-1} \text{ mol}^{-1})}{8.314 \times 10^{-3} \text{ kJ mol}^{-1}} = 28.6 \text{ dm}^{3} \text{ atm mol}^{-1}$

The respective volumes of diamond and graphite are obtained from their densities, recalling that the atomic mass of carbon is 12 g mol⁻¹.

 $\therefore \Delta V = V_{diamond} - V_{graphite} = \frac{12g \text{ mol}^{-1}}{3.51 \times 10^3 \text{ g dm}^{-3}} - \frac{12g \text{ mol}^{-1}}{2.25 \times 10^3 \text{ g dm}^{-3}}$ = 1.91 × 10⁻³ dm³ mol⁻¹(iii) From Eq. (i), d(\Delta G) = \Delta V/dP, which on integration gives $\int_{1}^{2} d(\Delta G) = \int_{P_{1}}^{P_{2}} \Delta V dp$ Let P₁ = 1 atm and P₂ = P Then, $\Delta G_{2} - \Delta G_{1} = \Delta V(P_{2} - P_{1}) = \Delta V(P - 1)$ 0 - 28.6 dm³ atm mol⁻¹ = -1.91 × 10⁻³ dm³ mol⁻¹ (P - 1) P - 1 = \frac{28.6 \text{ dm}^{3} \text{ atm mol}^{-1}}{1.91 \times 10^{-3} \text{ dm}^{3} \text{ mol}^{-1}} = 1.497 \times 10^{4} \text{ atm} \therefore The equilibrium pressure, P = 2.497 × 10⁴ ≈ 25,000 atm

Solution 9. For the given reaction, $\Delta G^{\circ} = [(-16.48) + (-95.30) - (-95.30) - (-202.96)] = 91.18 \text{ kJ mol}^{-1}$ $\therefore K_{p} = \exp(-\Delta G^{\circ}/\text{RT})$

= exp [-91.18 kJ mol⁻¹/(8.314 × 10⁻³ kJ K⁻¹ mol⁻¹) (298 K) = 1.04 × 10⁻¹⁶ K_p = p_{NH₃} × p_{HCI} = p²_{HCI} ∴ p_{HCI} = K^{1/2}_n = 1.02 × 10⁻⁸ atm

Solution 10. Let α be the degree of conversion. Then, at equilibrium,

$$\begin{split} & \mathsf{N}_{2}(g) + \frac{3H_{2}(g)}{3(1-\alpha)} \underbrace{\longrightarrow}_{2\alpha} 2\mathsf{N}H_{3}(g) \\ & \mathsf{K}_{\text{thermo}} = \frac{(\mathsf{f}_{\mathsf{NH}_{3}})^{2}}{\mathsf{f}_{\mathsf{N}_{2}}(\mathsf{f}_{\mathsf{H}_{2}})^{3}} = \frac{(\mathsf{p}_{\mathsf{NH}_{3}})^{2}}{\mathsf{p}_{\mathsf{N}_{2}}(\mathsf{p}_{\mathsf{H}_{2}})^{3}} \times \frac{(\gamma_{\mathsf{NH}_{3}})^{2}}{\gamma_{\mathsf{N}_{2}}(\gamma_{\mathsf{H}_{2}})^{3}} = \mathsf{K}_{\mathsf{p}}\mathsf{K}_{\gamma} \end{split}$$

At equilibrium, the total number of moles, = $(1 - \alpha) + 3(1 - \alpha) + 2\alpha = 2(2 - \alpha)$

$$\therefore p_{N_2} = \frac{(1-\alpha)P}{2(2-\alpha)}; p_{H_2} = \frac{3(1-\alpha)P}{2(2-\alpha)}; p_{NH_3} = \frac{2\alpha P}{2(2-\alpha)}$$

Here, P = 600 atm.

$$\therefore 4.516 \times 10^{-5} = \frac{4\alpha^2 (600)^2}{4(2-\alpha)^2} \times \frac{2(2-\alpha)}{(1-\alpha)600} \times \frac{8(2-\alpha)^3}{27(1-\alpha)^3 (600)^3} \times \frac{(0.8548)^2}{(1.3238)(1.2874)^3}$$

This equation, on rearranging, gives a quadratic equation in α which on solving gives two values of α viz, 1.56 and 0.43. The first value is not acceptable since the conversion to NH₃ cannot be more than 1 (i.e., more than 100%). Thus, α = 0.43, i.e., the degree of conversion of N₂ and H₂ to NH₃ is 0.43.

CRASH COURSES Enrol for Ongoing

CSIR NET Crash Courses

CSIR NET General Aptitude Course 2021

Complete Study Plan to Boost the CSIR NET Score

What to Expect?

- Live Classes
- Quizzes
- Doubt Sessions
- PYQ Discussion

Course Language

Bilingual

This Course Includes

80+ Live Classes

Study Notes & Formula Sheets

Revision Tests

1000+

Mock Tests

10 +

Practice Questions

Mock Tests

Chapter-wise Tests

https://byjusexamprep.com/