Important Questions On Chemical Equilibrium

 EXAMPREP
Important Questions on Chemical Equilibrium

1. Calculate K_{c} for the reaction $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ for which $\mathrm{K}_{\mathrm{p}}=3.5 \times 10^{-23}$ atm at $27^{\circ} \mathrm{C}$.
A. 1.42×10^{-24}
B. 1.42×10^{-28}
C. 1.42×10^{-30}
D. 1.42×10^{-39}
2. At $30^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{p}}$ for the dissociation reaction, $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ is 2.9×10^{-2} atm. If the total pressure is 1 atm , then calculate the degree of dissociation of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ (Assume $\alpha \ll 1$).
A. 0.29
B. 0.17
C. 0.32
D. 0.56
3. For a homogeneous gaseous reaction, $A B_{2}(g) \rightleftharpoons A(g)+2 B(g)$

The volume is 10 L and temperature is 300 K . Initially, the flask contains 0.4 mole of $A B_{2}$. The total pressure of the reaction mixture, after the attainment of equilibrium, is 1.2 atm . Calculate K_{p}.
A. 5.607×10^{-3}
B. 4.308×10^{-3}
C. 5.607×10^{-4}
D. 4.308×10^{-44}
4. Consider the homogeneous gaseous reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ carried out in a vessel at a temperature T. When 1 mole of H_{2} and 3 moles of I_{2} are mixed, a certain amount of HI will be formed. When 2 additional moles of H_{2} are introduced, the amount of HI formed becomes doubled the earlier amount. What is the value of K_{p} ?
A. 6
B. 2
C. 4
D. 10
5. At $25^{\circ} \mathrm{C}$, for the reaction $\mathrm{Br}_{2}(\mathrm{I})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{BrCl}(\mathrm{g}), \mathrm{K}_{\mathrm{p}}=2.032$. At the same temperature, the vapour pressure of $\mathrm{Br}_{2}(\mathrm{I})$ is 0.281 atm. Pure $\mathrm{BrCl}(\mathrm{g})$ was introduced into a closed container with adjustable volume. The total pressure was kept at 1 atm and the temperature at $25^{\circ} \mathrm{C}$. Calculate the fraction of BrCl originally present that has been converted into Br_{2} and Cl_{2} at equilibrium assuming that the gaseous species behave ideally.
A.0.256
B. 0.357
C. 0.687
D. 0.456

EXAMPREP
6. For the reaction,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
The equilibrium constant K_{p} is 20.2 atm $^{-1}$ at $945^{\circ} \mathrm{C}$ and $9.1 \mathrm{~atm}^{-1}$ at $1.065^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}^{\circ}$.
A. $-88.126 \mathrm{~kJ} / \mathrm{mol}$
B. $+88.126 \mathrm{~kJ} / \mathrm{mol}$
C. $-48.923 \mathrm{~kJ} / \mathrm{mol}$
D. $+48.923 \mathrm{~kJ} / \mathrm{mol}$
7. The following data were obtained for the temperature-dependence of the equilibrium constant of an inhibitor binding an enzyme. Determine the value of $\Delta \mathrm{G}^{\circ}$ (in $\mathrm{kJ} / \mathrm{mol}$) for this process at $25^{\circ} \mathrm{C}$.
$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right) 16.021 .125 .031 .937 .5$
$\mathrm{K}_{\mathrm{c}} 7.255 .254 .172 .662 .01\left(\times 10^{7}\right)$
A. -23.5
B. +23.5
C. -43.5
D. +43.5
8. Calculate the equilibrium pressure at which graphite gets converted to diamond at $25^{\circ} \mathrm{C}$, given that the densities of graphite and diamond are, respectively, 2.25 and $3.51 \mathrm{~g} \mathrm{~cm}^{-3}$ and are independent of pressure. $\Delta \mathrm{G}^{\circ}$ f values for graphite and diamond are zero and 2.90 kJ mol^{-1}, respectively.
A. 32000 atm
B. 25000 atm
C. 18000 atm
D. None of the above
9. Calculate the partial pressure of HCl gas above a sample of $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ because of its decomposition according to the reaction $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) . \Delta \mathrm{G}^{\circ}$ f values of $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}), \mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{HCl}(\mathrm{g})$ are $-202.96 \mathrm{~kJ} \mathrm{~mol}^{-1}$. $-16.48 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-95.30 \mathrm{~kJ} \mathrm{~mol}^{-1}$. respectively.
A. 1.02×10^{-6}
B. 2.02×10^{-8}
C. 2.02×10^{-6}
D. 1.02×10^{-8}
10. At $450^{\circ} \mathrm{C}$ and 600 atm pressure, the equilibrium constant for the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ $\rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ is 4.516×10^{-5}. Calculate the degree of the conversion of N_{2} and H_{2} to NH_{3} assuming that the system is a mixture of real gases. Fugacity coefficients are $\gamma_{\mathrm{N}_{2}}=1.3238, \mathrm{H}_{2}$ $=1.2874$ and $\gamma_{\mathrm{NH}_{3}}=0.8548$.
A. 0.56
B. 0.43
C. 0.68
D. 0.24

ANSWER KEY

1. A	2. B	3. A	4. C	5. B	6. A
7. C	8. B	9. D	10. B		

SOLUTIONS

Solution 1. For the reaction,

$$
\begin{aligned}
& 2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \\
& \Delta \mathrm{n}=2+1-1=1 \\
& \left.\therefore \mathrm{~K}_{\mathrm{c}}=\frac{\mathrm{K}_{\mathrm{p}}}{(\mathrm{RT})^{\Delta n}}=\frac{3.5 \times 10^{-23}}{\left(0.08206 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}\right.}{ }^{-1} \mathrm{~mol}^{-1} \times 300 \mathrm{~K}\right)
\end{aligned}=1.42 \times 10^{-24} \mathrm{~mol} \mathrm{dm}^{-3} .
$$

Solution 2. For the given equilibrium,
$K_{p}=\alpha^{2} P /\left(1-\alpha^{2}\right)$
In the present case, $K_{p}=2.9 \times 10^{-2} \mathrm{~atm} ; \mathrm{P}=1$ atm
$\therefore 2.9 \times 10^{-2} \mathrm{~atm}=\alpha^{2}(1 \mathrm{~atm}) /\left(1-\alpha^{2}\right)$.
Since, K_{p} in this case is very small, α would also be very small so that $\alpha^{2} \ll 1$ and can be neglected in the denominator giving $K_{p}=\alpha^{2} P$
\therefore Degree of dissociation at $P=1 \mathrm{~atm}, \alpha=\left(K_{p}\right)^{1 / 2}=\left(2.9 \times 10^{-2}\right)^{1 / 2}=0.17$

Solution 3. $\mathrm{K}_{\mathrm{p}}=\frac{P_{A} P_{B}^{2}}{P_{A B_{2}}}=\frac{\left(x_{A} P\right)\left(x_{B} P\right)^{2}}{x_{A B_{2}} P}=\frac{x_{A} x_{B}^{2} P^{2}}{x_{A B_{2}}}$
Here, $x_{i} x$ are the mole fractions and P is the total equilibrium pressure.
Since $x_{i}=n_{i} / n_{\text {total }}$,
$K_{p}=\frac{n_{A} n_{B}^{2} \mathrm{P}^{2}}{\left.n_{\mathrm{AB}_{2}\left(n_{\text {total }}\right.}\right)^{2}} \ldots$. (i)
Let y be the number of moles of A formed at equilibrium. Then,
$A B_{2}(g) \rightleftharpoons A(g)+2 B(g)$
$0.40-\mathrm{y}$ y 2 y
$n_{\text {total }}=(0.40-y)+y+2 y=0.40+2 y$
Also, if the mixture behaves ideally, then,
$\mathrm{n}_{\text {total }}=\frac{\mathrm{PV}}{R T}=\frac{(1.20 \mathrm{~atm})\left(10 \mathrm{dm}^{3}\right)}{\left(0.08206 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1}\right)(300 \mathrm{~K})}=0.487 \mathrm{~mole}$
$\therefore 0.487=0.40+2 y$
$y=0.0435$ mole
Hence, from Eq. (i),
$K_{p}=\frac{y(2 y)^{2}(1.20)^{2}}{(0.40-y)(0.40+2 y)^{2}}=5.607 \times 10^{-3}$

Solution 4. Since the number of moles of reactants and products is the same, so,
$K_{p}=K_{c}=K_{x}$
Suppose in the first case, $\mathrm{n}_{\mathrm{HI}}=x$ so that $\mathrm{n}_{\mathrm{H}_{2}}=1-(\mathrm{x} / 2)$ and $\mathrm{n}_{\mathrm{l}_{2}}=3-(\mathrm{x} / 2)$
$\therefore K_{p}=x^{2} /(1-x / 2)(3-x / 2) \ldots \ldots$ (i)
In the second case, $\mathrm{n}_{\mathrm{HI}}=2 x$ so that $\mathrm{n}_{\mathrm{H}_{2}}=3-x$ and $\mathrm{n}_{\mathrm{I}_{2}}=3-\mathrm{x}$
$K_{p}=(2 x)^{2} /(3-x)^{2}$
Hence, from equations (i) and (ii), $\frac{x^{2}}{\left(1-\frac{x}{2}\right)\left(3-\frac{x}{2}\right)}=\frac{(2 x)^{2}}{(3-x)^{2}}$
Neglecting x^{2} in the denominator on both sides, cross-multiplying and simplifying, $x=3 / 2$. Hence, from Eq (i) or (ii),
$K_{p}=4$.
Solution 5 . Since for the reaction,
$\mathrm{Br}_{2}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{BrCl}(\mathrm{g}), \mathrm{K}_{\mathrm{p}}=2.032$,
Therefore, for the reverse reaction that is,
$2 \mathrm{BrCl}(\mathrm{g}) \rightleftharpoons \mathrm{Br}_{2}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g})$,
$K_{p}=1 / K_{p}=1 / 2.032=0.4921$
$\mathrm{p}_{\mathrm{BrCl}}+\mathrm{p}_{\mathrm{Br}_{2}}+\mathrm{p}_{\mathrm{Cl}_{2}}=1 \mathrm{~atm}$
$\therefore \mathrm{p}_{\mathrm{Bral}}+\mathrm{p}_{\mathrm{Cl}_{2}}=1 \mathrm{~atm}-\mathrm{p}_{\mathrm{Br}_{2}}=(1-0.281) \mathrm{atm}=0.719 \mathrm{~atm}$
Let n_{0} be the number of moles of BrCl initially present and α be its degree of dissociation.
Then, at equilibrium,
$\mathrm{n}_{\mathrm{BrCl}}=\mathrm{n}_{0} /(1-\alpha)$
$\mathrm{n}_{\mathrm{Cl}_{2}}=\mathrm{n}_{0} \times 1 / 2(\alpha)\left[\because \mathrm{BrCl} \rightarrow 1 / 2 \mathrm{Cl}_{2}\right]$
$\mathrm{n}_{\mathrm{BrCl}}+\mathrm{n}_{\mathrm{Cl}_{2}}=\mathrm{n}_{0}(1-\alpha / 2)$
$\therefore p_{\text {BrCl }}=\left\{\frac{n_{0}(1-\alpha)}{n_{0}(1-\alpha / 2)}\right\}(0.719 \mathrm{~atm})$
$p_{\mathrm{Cl}_{2}}=\left\{\frac{1 / 2 \alpha \times n_{0}}{n_{0}(1-\alpha / 2)}\right\}(0.719 \mathrm{~atm})$
$\mathrm{K}_{\mathrm{p}}^{\prime}=\frac{\mathrm{p}_{\mathrm{C}_{2}}}{\left(\mathrm{p}_{\mathrm{BrCl}}\right)^{2}}=\frac{\alpha / 2(1-\alpha / 2)}{(1-\alpha)^{2} \times 0.719}=0.4921$
This gives the quadratic equation $0.604 \alpha^{2}-1.208 \alpha+0.354=0$ whose solution yields $\alpha=$ 0.357 .

Solution 6. According to the integrated Van't Hoff equation,
$\ln \left(\frac{\mathrm{K}_{\mathrm{p} 2}}{\mathrm{~K}_{\mathrm{p} 1}}\right)=\frac{\Delta \mathrm{H}^{\circ}}{\mathrm{R}}\left(\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{1} \mathrm{~T}_{2}}\right)$
Or,
$\Delta H^{\circ}=R \ln \left(\frac{\mathrm{~K}_{\mathrm{p} 2}}{\mathrm{~K}_{\mathrm{p} 1}}\right)\left(\frac{\mathrm{T}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}\right)=\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \ln (9.21 / 20.2)\left[\frac{(1218 \mathrm{~K})(1338 \mathrm{~K})}{1338 \mathrm{~K}-1218 \mathrm{~K}}\right]$
$=-88126.3 \mathrm{~J} \mathrm{~mol}^{-1}=-88.126 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Solution 7. Let us rewrite the data in the following form:
T(K) 289294.1298304 .9310 .5
1/T×100 3.463 .403 .363 .283 .22
$\mathrm{K}_{\mathrm{c}} / 10^{7} 7.255 .254 .172 .662 .01$

In $K_{c} 18.1017 .7817 .5517 .1016 .81$
A plot of $\ln K_{c}$ versus $1 / \mathrm{T}$ will give a straight line whose slope comes out to be 5.40×10^{3}.
At $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=4.17 \times 10^{7}$, hence,
$\Delta G^{\circ}=-R T \ln K_{c}=-\left(8.314 \times 10^{-3} \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298 \mathrm{~K}) \ln 4.17 \times 10^{7}$
$=-43.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Solution 8. This example is an application of the thermodynamic relation
$[\partial(\Delta \mathrm{G}) / \partial \mathrm{P}]_{\mathrm{T}}=\Delta \mathrm{V}$
For the reaction,
C (graphite) $\rightleftharpoons \mathrm{C}$ (diamond),
$\Delta \mathrm{G}^{\circ}=\Delta \mathrm{G}^{\circ}{ }_{\mathrm{f}}($ diamond $)-\Delta \mathrm{G}^{\circ} \mathrm{f}($ graphite $)=2.90 \mathrm{~kJ}^{\mathrm{C}}-0=2.90 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$=\left(2.90 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \times \frac{\left(0.08206 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)}{8.314 \times 10^{-3} \mathrm{~kJ} \mathrm{~mol}^{-1}}=28.6 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~mol}^{-1}$
The respective volumes of diamond and graphite are obtained from their densities, recalling that the atomic mass of carbon is $12 \mathrm{~g} \mathrm{~mol}^{-1}$.
$\therefore \Delta \mathrm{V}=\mathrm{V}_{\text {diamond }}-\mathrm{V}_{\text {graphite }}=\frac{12 \mathrm{~g} \mathrm{~mol}^{-1}}{3.51 \times 10^{3} \mathrm{~g} \mathrm{dm}^{-3}}-\frac{12 \mathrm{~g} \mathrm{~mol}^{-1}}{2.25 \times 10^{3} \mathrm{~g} \mathrm{dm}^{-3}}$
$=1.91 \times 10^{-3} \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ \qquad
From Eq. (i),
$d(\Delta G)=\Delta V / d P$, which on integration gives
$\int_{1}^{2} d(\Delta G)=\int_{P_{1}}^{p_{2}} \Delta V d p$
Let $\mathrm{P}_{1}=1$ atm and $\mathrm{P}_{2}=\mathrm{P}$ Then,
$\Delta \mathrm{G}_{2}-\Delta \mathrm{G}_{1}=\Delta \mathrm{V}\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)=\Delta \mathrm{V}(\mathrm{P}-1)$
$0-28.6 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~mol}^{-1}=-1.91 \times 10^{-3} \mathrm{dm}^{3} \mathrm{~mol}^{-1}(\mathrm{P}-1)$
$\mathrm{P}-1=\frac{28.6 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~mol}^{-1}}{1.91 \times 10^{-3} \mathrm{dm}^{3} \mathrm{~mol}^{-1}}=1.497 \times 10^{4} \mathrm{~atm}$
\therefore The equilibrium pressure, $\mathrm{P}=2.497 \times 10^{4} \approx 25,000 \mathrm{~atm}$
Solution 9. For the given reaction,
$\Delta \mathrm{G}^{\circ}=[(-16.48)+(-95.30)-(-95.30)-(-202.96)]=91.18 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\therefore K_{p}=\exp \left(-\Delta G^{\circ} / R T\right)$
$=\exp \left[-91.18 \mathrm{~kJ} \mathrm{~mol}^{-1} /\left(8.314 \times 10^{-3} \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298 \mathrm{~K})=1.04 \times 10^{-16}\right.$
$\mathrm{K}_{\mathrm{p}}=\mathrm{p}_{\mathrm{NH}_{3}} \times \mathrm{p}_{\mathrm{HCl}}=\mathrm{p}_{\mathrm{HCl}}^{2}$
$\therefore \mathrm{p}_{\mathrm{HCI}}=\mathrm{K}_{\mathrm{p}}^{1 / 2}=1.02 \times 10^{-8} \mathrm{~atm}$
Solution 10. Let α be the degree of conversion. Then, at equilibrium,

$$
\begin{aligned}
& \underset{1-\alpha}{\mathrm{N}_{2}(\mathrm{~g})}+\underset{3(1-\alpha)}{3 \mathrm{H}_{2}(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
& 2 \alpha \\
& \mathrm{~K}_{\text {thermo }}=\frac{\left(\mathrm{f}_{\mathrm{NH}_{3}}\right)^{2}}{\mathrm{f}_{\mathrm{N}_{2}}\left(\mathrm{f}_{\mathrm{H}_{2}}\right)^{3}}=\frac{\left(\mathrm{p}_{\mathrm{NH}_{3}}\right)^{2}}{\mathrm{p}_{\mathrm{N}_{2}}\left(\mathrm{p}_{\mathrm{H}_{2}}\right)^{3}} \times \frac{\left(\gamma_{\mathrm{NH}_{3}}\right)^{2}}{\gamma_{\mathrm{N}_{2}}\left(\gamma_{\mathrm{H}_{2}}\right)^{3}}=\mathrm{K}_{\mathrm{p}} \mathrm{~K}_{\gamma}
\end{aligned}
$$

At equilibrium, the total number of moles, $=(1-\alpha)+3(1-\alpha)+2 \alpha=2(2-\alpha)$
$\therefore \mathrm{p}_{\mathrm{N}_{2}}=\frac{(1-\alpha) \mathrm{P}}{2(2-\alpha)} ; \mathrm{p}_{\mathrm{H}_{2}}=\frac{3(1-\alpha) \mathrm{P}}{2(2-\alpha)} ; \mathrm{p}_{\mathrm{NH}_{3}}=\frac{2 \alpha \mathrm{P}}{2(2-\alpha)}$
Here, $\mathrm{P}=600 \mathrm{~atm}$.
$\therefore 4.516 \times 10^{-5}=\frac{4 \alpha^{2}(600)^{2}}{4(2-\alpha)^{2}} \times \frac{2(2-\alpha)}{(1-\alpha) 600} \times \frac{8(2-\alpha)^{3}}{27(1-\alpha)^{3}(600)^{3}} \times \frac{(0.8548)^{2}}{(1.3238)(1.2874)^{3}}$
This equation, on rearranging, gives a quadratic equation in α which on solving gives two values of α viz, 1.56 and 0.43 . The first value is not acceptable since the conversion to NH_{3} cannot be more than 1 (i.e., more than 100%). Thus, $\alpha=0.43$, i.e., the degree of conversion of N_{2} and H_{2} to NH_{3} is 0.43 .

CRASH COURSES Enrol for Ongoing CSIR NET Crash Courses

- Live Classes
- Mock Tests
- Quizzes
- Doubt Sessions
- PYQ Discussion
- Chapter-wise Tests
- Revision Tests
- Expert faculty

Course Language

This Course Includes
$80+$
Live Classes

(图)
$1000+$
Practice Questions
Study Notes \&
Formula Sheets

$10+$
Mock Tests

CSIR NET Life Science 2021 Crash Course

Revision Plan to clear the exam
What to Expect?

- Live Classes
- Quizzes
- Doubt Sessions *
- PYQ Discussion e

Course Language

- English

This Course Includes

$200+$
Live Classes
200+
Study PDFs

$3000+$
Practice Questions
$10+$
Mock Tests

CSIR NET Chemical Science 2021 Crash Course

Complete Revision Plan to ACE the Exam
What to Expect?

Live Classes

- Quizzes
- Doubt Sessions
- PYQ Discussion

Course Language

* English

This Course Includes
1804
Live Classes
$200+$
Study PDFs

- Mock Tests
- Chapter-wise Tests
- Revision Tests
- Expert faculty

3000+
Practice Questions
10+
Mock Tests

